1
|
Chien C, He K, Perry S, Tchitchkan E, Han Y, Li X, Dickman D. Distinct input-specific mechanisms enable presynaptic homeostatic plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612361. [PMID: 39314403 PMCID: PMC11419068 DOI: 10.1101/2024.09.10.612361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Synapses are endowed with the flexibility to change through experience, but must be sufficiently stable to last a lifetime. This tension is illustrated at the Drosophila neuromuscular junction (NMJ), where two motor inputs that differ in structural and functional properties co-innervate most muscles to coordinate locomotion. To stabilize NMJ activity, motor neurons augment neurotransmitter release following diminished postsynaptic glutamate receptor functionality, termed presynaptic homeostatic potentiation (PHP). How these distinct inputs contribute to PHP plasticity remains enigmatic. We have used a botulinum neurotoxin to selectively silence each input and resolve their roles in PHP, demonstrating that PHP is input-specific: Chronic (genetic) PHP selectively targets the tonic MN-Ib, where active zone remodeling enhances Ca2+ influx to promote increased glutamate release. In contrast, acute (pharmacological) PHP selectively increases vesicle pools to potentiate phasic MN-Is. Thus, distinct homeostatic modulations in active zone nanoarchitecture, vesicle pools, and Ca2+ influx collaborate to enable input-specific PHP expression.
Collapse
Affiliation(s)
- Chun Chien
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
- USC Neuroscience Graduate Program
| | - Kaikai He
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
- USC Neuroscience Graduate Program
| | - Sarah Perry
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
| | - Elizabeth Tchitchkan
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
| | - Yifu Han
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
- USC Neuroscience Graduate Program
| | - Xiling Li
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
- USC Neuroscience Graduate Program
| | - Dion Dickman
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
| |
Collapse
|
2
|
Han TH, Vicidomini R, Ramos CI, Mayer M, Serpe M. Neto proteins differentially modulate the gating properties of Drosophila NMJ glutamate receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590603. [PMID: 38903091 PMCID: PMC11188076 DOI: 10.1101/2024.04.22.590603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The formation of functional synapses requires co-assembly of ion channels with their accessory proteins which controls where, when, and how neurotransmitter receptors function. The auxiliary protein Neto modulates the function of kainate-type glutamate receptors in vertebrates as well as at the Drosophila neuromuscular junction (NMJ), a glutamatergic synapse widely used for genetic studies on synapse development. We previously reported that Neto is essential for the synaptic recruitment and function of glutamate receptors. Here, using outside-out patch-clamp recordings and fast ligand application, we examine for the first time the biophysical properties of recombinant Drosophila NMJ receptors expressed in HEK293T cells and compare them with native receptor complexes of genetically controlled composition. The two Neto isoforms, Neto-α and Neto-β, differentially modulate the gating properties of NMJ receptors. Surprisingly, we found that deactivation is extremely fast and that the decay of synaptic currents resembles the rate of iGluR desensitization. The functional analyses of recombinant iGluRs that we report here should greatly facilitate the interpretation of compound in vivo phenotypes of mutant animals.
Collapse
Affiliation(s)
- Tae Hee Han
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
| | - Rosario Vicidomini
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
| | - Cathy Isaura Ramos
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
- current address: The Institute of Functional Genomics of Lyon, 69007 Lyon, France
| | - Mark Mayer
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892, USA
| | - Mihaela Serpe
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
3
|
Chen J, He K, Han Y, Dickman D. Ca 2+ imaging of synaptic compartments using subcellularly targeted GCaMP8f in Drosophila. STAR Protoc 2024; 5:102832. [PMID: 38198278 PMCID: PMC10820801 DOI: 10.1016/j.xpro.2023.102832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/12/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
GCaMP8f is a sensitive genetically encoded Ca2+ indicator that enables imaging of neuronal activity. Here, we present a protocol to perform Ca2+ imaging of the Drosophila neuromuscular junction using GCaMP8f targeted to pre- or postsynaptic compartments. We describe ratiometric Ca2+ imaging using GCaMP8f fused to mScarlet and synaptotagmin that reveals Ca2+ dynamics at presynaptic terminals. We then detail "quantal" imaging of miniature transmission events using GCaMP8f targeted to postsynaptic compartments by fusion to a PDZ-binding motif. For complete details on the use and execution of this protocol, please refer to Li et al.,1 Han et al.,2 Perry et al.,3 and Han et al.4.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Kaikai He
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Yifu Han
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
4
|
Beckers CJ, Mrestani A, Komma F, Dannhäuser S. Versatile Endogenous Editing of GluRIIA in Drosophila melanogaster. Cells 2024; 13:323. [PMID: 38391936 PMCID: PMC10887371 DOI: 10.3390/cells13040323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Glutamate receptors at the postsynaptic side translate neurotransmitter release from presynapses into postsynaptic excitation. They play a role in many forms of synaptic plasticity, e.g., homeostatic scaling of the receptor field, activity-dependent synaptic plasticity and the induction of presynaptic homeostatic potentiation (PHP). The latter process has been extensively studied at Drosophila melanogaster neuromuscular junctions (NMJs). The genetic removal of the glutamate receptor subunit IIA (GluRIIA) leads to an induction of PHP at the synapse. So far, mostly imprecise knockouts of the GluRIIA gene have been utilized. Furthermore, mutated and tagged versions of GluRIIA have been examined in the past, but most of these constructs were not expressed under endogenous regulatory control or involved the mentioned imprecise GluRIIA knockouts. We performed CRISPR/Cas9-assisted gene editing at the endogenous locus of GluRIIA. This enabled the investigation of the endogenous expression pattern of GluRIIA using tagged constructs with an EGFP and an ALFA tag for super-resolution immunofluorescence imaging, including structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM). All GluRIIA constructs exhibited full functionality and PHP could be induced by philanthotoxin at control levels. By applying hierarchical clustering algorithms to analyze the dSTORM data, we detected postsynaptic receptor cluster areas of ~0.15 µm2. Consequently, our constructs are suitable for ultrastructural analyses of GluRIIA.
Collapse
Affiliation(s)
- Constantin J. Beckers
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, D-97070 Würzburg, Germany
| | - Achmed Mrestani
- Department of Neurology, University of Leipzig Medical Center, D-04103 Leipzig, Germany;
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, D-04103 Leipzig, Germany
| | - Fabian Komma
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, D-97070 Würzburg, Germany
| | - Sven Dannhäuser
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, D-97070 Würzburg, Germany
| |
Collapse
|
5
|
Han Y, Goel P, Chen J, Perry S, Tran N, Nishimura S, Sanjani M, Chien C, Dickman D. Excess glutamate release triggers subunit-specific homeostatic receptor scaling. Cell Rep 2023; 42:112775. [PMID: 37436892 PMCID: PMC10529671 DOI: 10.1016/j.celrep.2023.112775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/06/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023] Open
Abstract
Ionotropic glutamate receptors (GluRs) are targets for modulation in Hebbian and homeostatic synaptic plasticity and are remodeled by development, experience, and disease. We have probed the impact of synaptic glutamate levels on the two postsynaptic GluR subtypes at the Drosophila neuromuscular junction, GluRA and GluRB. We first demonstrate that GluRA and GluRB compete to establish postsynaptic receptive fields, and that proper GluR abundance and composition can be orchestrated in the absence of any synaptic glutamate release. However, excess glutamate adaptively tunes postsynaptic GluR abundance, echoing GluR scaling observed in mammalian systems. Furthermore, when GluRA vs. GluRB competition is eliminated, GluRB becomes insensitive to glutamate modulation. In contrast, GluRA is now homeostatically regulated by excess glutamate to maintain stable miniature activity, where Ca2+ permeability through GluRA receptors is required. Thus, excess glutamate, GluR competition, and Ca2+ signaling collaborate to selectively target GluR subtypes for homeostatic regulation at postsynaptic compartments.
Collapse
Affiliation(s)
- Yifu Han
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jiawen Chen
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Nancy Tran
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Samantha Nishimura
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Manisha Sanjani
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Chun Chien
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
6
|
Mallik B, Brusich DJ, Heyrman G, Frank CA. Precise mapping of one classic and three novel GluRIIA mutants in Drosophila melanogaster. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000784. [PMID: 37334199 PMCID: PMC10276266 DOI: 10.17912/micropub.biology.000784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/24/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023]
Abstract
Mutation of the Drosophila melanogaster GluRIIA gene or pharmacological agents targeting it are commonly used to assess homeostatic synaptic function at the larval neuromuscular junction (NMJ). The commonly used mutation, GluRIIA SP16 , is a null allele created by a large and imprecise excision of a P-element which affects GluRIIA and multiple upstream genes. Here we mapped the exact bounds of the GluRIIA SP16 allele, refined a multiplex PCR strategy for positive identification of GluRIIA SP16 in homozygous or heterozygous backgrounds, and sequenced and characterized three new CRISPR-generated GluRIIA mutants. We found the three new GluRIIA alleles are apparent nulls that lack GluRIIA immunofluorescence signal at the 3 rd instar larval NMJ and are predicted to cause premature truncations at the genetic level. Further, these new mutants have similar electrophysiological outcomes as GluRIIA SP16 , including reduced miniature excitatory postsynaptic potential (mEPSP) amplitude and frequency compared to controls, and they express robust homeostatic compensation as evidenced by normal excitatory postsynaptic potential (EPSP) amplitude and elevated quantal content. These findings and new tools extend the capacity of the D. melanogaster NMJ for assessment of synaptic function.
Collapse
Affiliation(s)
- Bhagaban Mallik
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States
| | - Douglas J Brusich
- Human Biology Department, University of Wisconsin–Green Bay, Green Bay, Wisconsin, United States
| | - Georgette Heyrman
- Human Biology Department, University of Wisconsin–Green Bay, Green Bay, Wisconsin, United States
| | - C. Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States
- Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
7
|
Armstrong NS, Frank CA. The calcineurin regulator Sarah enables distinct forms of homeostatic plasticity at the Drosophila neuromuscular junction. Front Synaptic Neurosci 2023; 14:1033743. [PMID: 36685082 PMCID: PMC9846150 DOI: 10.3389/fnsyn.2022.1033743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction: The ability of synapses to maintain physiological levels of evoked neurotransmission is essential for neuronal stability. A variety of perturbations can disrupt neurotransmission, but synapses often compensate for disruptions and work to stabilize activity levels, using forms of homeostatic synaptic plasticity. Presynaptic homeostatic potentiation (PHP) is one such mechanism. PHP is expressed at the Drosophila melanogaster larval neuromuscular junction (NMJ) synapse, as well as other NMJs. In PHP, presynaptic neurotransmitter release increases to offset the effects of impairing muscle transmitter receptors. Prior Drosophila work has studied PHP using different ways to perturb muscle receptor function-either acutely (using pharmacology) or chronically (using genetics). Some of our prior data suggested that cytoplasmic calcium signaling was important for expression of PHP after genetic impairment of glutamate receptors. Here we followed up on that observation. Methods: We used a combination of transgenic Drosophila RNA interference and overexpression lines, along with NMJ electrophysiology, synapse imaging, and pharmacology to test if regulators of the calcium/calmodulin-dependent protein phosphatase calcineurin are necessary for the normal expression of PHP. Results: We found that either pre- or postsynaptic dysregulation of a Drosophila gene regulating calcineurin, sarah (sra), blocks PHP. Tissue-specific manipulations showed that either increases or decreases in sra expression are detrimental to PHP. Additionally, pharmacologically and genetically induced forms of expression of PHP are functionally separable depending entirely upon which sra genetic manipulation is used. Surprisingly, dual-tissue pre- and postsynaptic sra knockdown or overexpression can ameliorate PHP blocks revealed in single-tissue experiments. Pharmacological and genetic inhibition of calcineurin corroborated this latter finding. Discussion: Our results suggest tight calcineurin regulation is needed across multiple tissue types to stabilize peripheral synaptic outputs.
Collapse
Affiliation(s)
- Noah S. Armstrong
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
| | - C. Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States,*Correspondence: C. Andrew Frank
| |
Collapse
|