1
|
Zhao Z, Liu Z, Edmonds MT, Medhekar NV. CoX 2Y 4: a family of two-dimensional magnets with versatile magnetic order. NANOSCALE HORIZONS 2024. [PMID: 39140209 DOI: 10.1039/d4nh00103f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Two-dimensional (2D) magnetic materials offer a promising platform for nanoscale spintronics and for exploration of novel physical phenomena. Here, we predict a diverse range of magnetic orders in cobalt-based 2D single septuple layers CoX2Y4, namely, CoBi2Te4, CoBi2Se2Te2, CoBi2Se4, and CoSb2Te4. Notably, CoBi2Te4 presents intrinsic non-collinear antiferromagnetism (AFM), while the others display collinear AFM. The emergence of AFM in all CoX2Y4 materials is attributed to the antiferromagnetic 90° Co-Te(Se)-Co superexchange coupling. The origin of non-collinear/collinear orders lies in competing Heisenberg exchange interactions within the Co triangular lattice. A pivotal factor governing the non-collinear order of CoBi2Te4 is the vanishingly small ratio of exchange coupling between next-nearest neighbour Co and the nearest neighbour Co (J2/J1 ∼ 0.01). Furthermore, our investigation into strain effects on CoX2Y4 lattices demonstrates the tunability of the magnetic state of CoSb2Te4 from collinear to non-collinear. Our prediction of the unique non-collinear AFM in 2D suggests the potential for observing extraordinary magnetic phenomena in 2D, including non-collinear scattering and magnetic domain walls.
Collapse
Affiliation(s)
- Ziyuan Zhao
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia.
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies FLEET, Monash University, Clayton, Victoria 3800, Australia
| | - Zhao Liu
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia.
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies FLEET, Monash University, Clayton, Victoria 3800, Australia
| | - Mark T Edmonds
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies FLEET, Monash University, Clayton, Victoria 3800, Australia
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Nikhil V Medhekar
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia.
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies FLEET, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
2
|
Li Q, Mo SK, Edmonds MT. Recent progress of MnBi 2Te 4 epitaxial thin films as a platform for realising the quantum anomalous Hall effect. NANOSCALE 2024; 16:14247-14260. [PMID: 39015951 DOI: 10.1039/d4nr00194j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Since the first realisation of the quantum anomalous Hall effect (QAHE) in a dilute magnetic-doped topological insulator thin film in 2013, the quantisation temperature has been limited to less than 1 K due to magnetic disorder in dilute magnetic systems. With magnetic moments ordered into the crystal lattice, the intrinsic magnetic topological insulator MnBi2Te4 has the potential to eliminate or significantly reduce magnetic disorder and improve the quantisation temperature. Surprisingly, to date, the QAHE has yet to be observed in molecular beam epitaxy (MBE)-grown MnBi2Te4 thin films at zero magnetic field, and what leads to the difficulty in quantisation is still an active research area. Although bulk MnBi2Te4 and exfoliated flakes have been well studied, revealing both the QAHE and axion insulator phases, experimental progress on MBE thin films has been slower. Understanding how the breakdown of the QAHE occurs in MnBi2Te4 thin films and finding solutions that will enable mass-produced millimetre-size QAHE devices operating at elevated temperatures are required. In this mini-review, we will summarise recent studies on the electronic and magnetic properties of MBE MnBi2Te4 thin films and discuss mechanisms that could explain the failure of the QAHE from the aspects of defects, electronic structure, magnetic order, and consequences of their delicate interplay. Finally, we propose several strategies for realising the QAHE at elevated temperatures in MnBi2Te4 thin films.
Collapse
Affiliation(s)
- Qile Li
- School of Physics and Astronomy, Monash University, Clayton, VIC, Australia.
- ARC Centre for Future Low Energy Electronics Technologies, Monash University, Clayton, VIC, Australia
| | - Sung-Kwan Mo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mark T Edmonds
- School of Physics and Astronomy, Monash University, Clayton, VIC, Australia.
- ARC Centre for Future Low Energy Electronics Technologies, Monash University, Clayton, VIC, Australia
- ANFF-VIC Technology Fellow, Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
| |
Collapse
|
3
|
Li S, Gong M, Li YH, Jiang H, Xie XC. High spin axion insulator. Nat Commun 2024; 15:4250. [PMID: 38762497 PMCID: PMC11102527 DOI: 10.1038/s41467-024-48542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
Axion insulators possess a quantized axion field θ = π protected by combined lattice and time-reversal symmetry, holding great potential for device applications in layertronics and quantum computing. Here, we propose a high-spin axion insulator (HSAI) defined in large spin-s representation, which maintains the same inherent symmetry but possesses a notable axion field θ = (s + 1/2)2π. Such distinct axion field is confirmed independently by the direct calculation of the axion term using hybrid Wannier functions, layer-resolved Chern numbers, as well as the topological magneto-electric effect. We show that the guaranteed gapless quasi-particle excitation is absent at the boundary of the HSAI despite its integer surface Chern number, hinting an unusual quantum anomaly violating the conventional bulk-boundary correspondence. Furthermore, we ascertain that the axion field θ can be precisely tuned through an external magnetic field, enabling the manipulation of bonded transport properties. The HSAI proposed here can be experimentally verified in ultra-cold atoms by the quantized non-reciprocal conductance or topological magnetoelectric response. Our work enriches the understanding of axion insulators in condensed matter physics, paving the way for future device applications.
Collapse
Affiliation(s)
- Shuai Li
- School of Physical Science and Technology, Soochow University, Suzhou, 215006, China
- Institute for Advanced Study, Soochow University, Suzhou, 215006, China
| | - Ming Gong
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Yu-Hang Li
- School of Physics, Nankai University, Tianjin, 300071, China.
| | - Hua Jiang
- Institute for Advanced Study, Soochow University, Suzhou, 215006, China.
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai, 200433, China.
- Interdisciplinary Center for Theoretical Physics and Information Sciences (ICTPIS), Fudan University, Shanghai, 200433, China.
| | - X C Xie
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai, 200433, China
- Interdisciplinary Center for Theoretical Physics and Information Sciences (ICTPIS), Fudan University, Shanghai, 200433, China
- Hefei National Laboratory, Hefei, 230088, China
| |
Collapse
|
4
|
Chernoukhov IV, Bogach AV, Cherednichenko KA, Gashigullin RA, Shevelkov AV, Verchenko VY. Mn 2Ga 2S 5 and Mn 2Al 2Se 5 van der Waals Chalcogenides: A Source of Atomically Thin Nanomaterials. Molecules 2024; 29:2026. [PMID: 38731517 PMCID: PMC11085105 DOI: 10.3390/molecules29092026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Layered chalcogenides containing 3d transition metals are promising for the development of two-dimensional nanomaterials with interesting magnetic properties. Both mechanical and solution-based exfoliation of atomically thin layers is possible due to the low-energy van der Waals bonds. In this paper, we present the synthesis and crystal structures of the Mn2Ga2S5 and Mn2Al2Se5 layered chalcogenides. For Mn2Ga2S5, we report magnetic properties, as well as the exfoliation of nanofilms and nanoscrolls. The synthesis of both polycrystalline phases and single crystals is described, and their chemical stability in air is studied. Crystal structures are probed via powder X-ray diffraction and high-resolution transmission electron microscopy. The new compound Mn2Al2Se5 is isomorphous with Mn2Ga2S5 crystallizing in the Mg2Al2Se5 structure type. The crystal structure is built by the ABCBCA sequence of hexagonal close-packing layers of chalcogen atoms, where Mn2+ and Al3+/Ga3+ species preferentially occupy octahedral and tetrahedral voids, respectively. Mn2Ga2S5 exhibits an antiferromagnetic-like transition at 13 K accompanied by the ferromagnetic hysteresis of magnetization. Significant frustration of the magnetic system may yield spin-glass behavior at low temperatures. The exfoliation of Mn2Ga2S5 layers was performed in a non-polar solvent. Nanolayers and nanoscrolls were observed using high-resolution transmission electron microscopy. Fragments of micron-sized crystallites with a thickness of 70-100 nanometers were deposited on a glass surface, as evidenced by atomic force microscopy.
Collapse
Affiliation(s)
- Ivan V. Chernoukhov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexey V. Bogach
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | | | | | - Andrei V. Shevelkov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | |
Collapse
|
5
|
Li Y, Wang Y, Lian Z, Li H, Gao Z, Xu L, Wang H, Lu R, Li L, Feng Y, Zhu J, Liu L, Wang Y, Fu B, Yang S, Yang L, Wang Y, Xia T, Liu C, Jia S, Wu Y, Zhang J, Wang Y, Liu C. Fabrication-induced even-odd discrepancy of magnetotransport in few-layer MnBi 2Te 4. Nat Commun 2024; 15:3399. [PMID: 38649376 PMCID: PMC11035656 DOI: 10.1038/s41467-024-47779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
The van der Waals antiferromagnetic topological insulator MnBi2Te4 represents a promising platform for exploring the layer-dependent magnetism and topological states of matter. Recently observed discrepancies between magnetic and transport properties have aroused controversies concerning the topological nature of MnBi2Te4 in the ground state. In this article, we demonstrate that fabrication can induce mismatched even-odd layer dependent magnetotransport in few-layer MnBi2Te4. We perform a comprehensive study of the magnetotransport properties in 6- and 7-septuple-layer MnBi2Te4, and reveal that both even- and odd-number-layer device can show zero Hall plateau phenomena in zero magnetic field. Importantly, a statistical survey of the optical contrast in more than 200 MnBi2Te4 flakes reveals that the zero Hall plateau in odd-number-layer devices arises from the reduction of the effective thickness during the fabrication, a factor that was rarely noticed in previous studies of 2D materials. Our finding not only provides an explanation to the controversies regarding the discrepancy of the even-odd layer dependent magnetotransport in MnBi2Te4, but also highlights the critical issues concerning the fabrication and characterization of 2D material devices.
Collapse
Affiliation(s)
- Yaoxin Li
- Department of Physics, State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University, Beijing, 100084, China
| | - Yongchao Wang
- Department of Physics, State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University, Beijing, 100084, China
| | - Zichen Lian
- Department of Physics, State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University, Beijing, 100084, China
| | - Hao Li
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Department of Physics, Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing, 100084, China
| | - Zhiting Gao
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, China
| | - Liangcai Xu
- Department of Physics, State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University, Beijing, 100084, China
| | - Huan Wang
- Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-Nano Devices, Renmin University of China, 100872, Beijing, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
| | - Rui'e Lu
- School of Mechanical and Electric Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Longfei Li
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Yang Feng
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, China
| | - Jinjiang Zhu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Liangyang Liu
- Department of Physics, State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University, Beijing, 100084, China
| | - Yongqian Wang
- Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-Nano Devices, Renmin University of China, 100872, Beijing, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
| | - Bohan Fu
- Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-Nano Devices, Renmin University of China, 100872, Beijing, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
| | - Shuai Yang
- Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-Nano Devices, Renmin University of China, 100872, Beijing, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
| | - Luyi Yang
- Department of Physics, State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University, Beijing, 100084, China
- Frontier Science Center for Quantum Information, Beijing, 100084, China
| | - Yihua Wang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433, China
- Shanghai Research Center for Quantum Sciences, Shanghai, 201315, China
| | - Tianlong Xia
- Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-Nano Devices, Renmin University of China, 100872, Beijing, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
| | - Chang Liu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shuang Jia
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, 100871, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yang Wu
- College of Math and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinsong Zhang
- Department of Physics, State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University, Beijing, 100084, China
- Frontier Science Center for Quantum Information, Beijing, 100084, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Yayu Wang
- Department of Physics, State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University, Beijing, 100084, China
- Frontier Science Center for Quantum Information, Beijing, 100084, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Chang Liu
- Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-Nano Devices, Renmin University of China, 100872, Beijing, China.
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
6
|
Li S, Liu T, Liu C, Wang Y, Lu HZ, Xie XC. Progress on the antiferromagnetic topological insulator MnBi 2Te 4. Natl Sci Rev 2024; 11:nwac296. [PMID: 38213528 PMCID: PMC10776361 DOI: 10.1093/nsr/nwac296] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/18/2022] [Accepted: 11/09/2022] [Indexed: 01/13/2024] Open
Abstract
Topological materials, which feature robust surface and/or edge states, have now been a research focus in condensed matter physics. They represent a new class of materials exhibiting nontrivial topological phases, and provide a platform for exploring exotic transport phenomena, such as the quantum anomalous Hall effect and the quantum spin Hall effect. Recently, magnetic topological materials have attracted considerable interests due to the possibility to study the interplay between topological and magnetic orders. In particular, the quantum anomalous Hall and axion insulator phases can be realized in topological insulators with magnetic order. MnBi2Te4, as the first intrinsic antiferromagnetic topological insulator discovered, allows the examination of existing theoretical predictions; it has been extensively studied, and many new discoveries have been made. Here we review the progress made on MnBi2Te4 from both experimental and theoretical aspects. The bulk crystal and magnetic structures are surveyed first, followed by a review of theoretical calculations and experimental probes on the band structure and surface states, and a discussion of various exotic phases that can be realized in MnBi2Te4. The properties of MnBi2Te4 thin films and the corresponding transport studies are then reviewed, with an emphasis on the edge state transport. Possible future research directions in this field are also discussed.
Collapse
Affiliation(s)
- Shuai Li
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
- Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
| | - Tianyu Liu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
- Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
| | - Chang Liu
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
| | - Yayu Wang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
- Hefei National Laboratory, Hefei 230088, China
| | - Hai-Zhou Lu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
- Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
| | - X C Xie
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
7
|
Bai Y, Li Y, Luan J, Liu R, Song W, Chen Y, Ji PF, Zhang Q, Meng F, Tong B, Li L, Jiang Y, Gao Z, Gu L, Zhang J, Wang Y, Xue QK, He K, Feng Y, Feng X. Quantized anomalous Hall resistivity achieved in molecular beam epitaxy-grown MnBi 2Te 4 thin films. Natl Sci Rev 2024; 11:nwad189. [PMID: 38213514 PMCID: PMC10776363 DOI: 10.1093/nsr/nwad189] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 01/13/2024] Open
Abstract
The intrinsic magnetic topological insulator MnBi2Te4 provides a feasible pathway to the high-temperature quantum anomalous Hall (QAH) effect as well as various novel topological quantum phases. Although quantized transport properties have been observed in exfoliated MnBi2Te4 thin flakes, it remains a big challenge to achieve molecular beam epitaxy (MBE)-grown MnBi2Te4 thin films even close to the quantized regime. In this work, we report the realization of quantized anomalous Hall resistivity in MBE-grown MnBi2Te4 thin films with the chemical potential tuned by both controlled in situ oxygen exposure and top gating. We find that elongated post-annealing obviously elevates the temperature to achieve quantization of the Hall resistivity, but also increases the residual longitudinal resistivity, indicating a picture of high-quality QAH puddles weakly coupled by tunnel barriers. These results help to clarify the puzzles in previous experimental studies on MnBi2Te4 and to find a way out of the big difficulty in obtaining MnBi2Te4 samples showing quantized transport properties.
Collapse
Affiliation(s)
- Yunhe Bai
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, China
| | - Yuanzhao Li
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, China
| | - Jianli Luan
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, China
| | - Ruixuan Liu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, China
| | - Wenyu Song
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, China
| | - Yang Chen
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, China
| | - Peng-Fei Ji
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, China
| | - Qinghua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
| | - Fanqi Meng
- School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Bingbing Tong
- Beijing Academy of Quantum Information Sciences, Beijing100193, China
| | - Lin Li
- Beijing Academy of Quantum Information Sciences, Beijing100193, China
| | - Yuying Jiang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, China
| | - Zongwei Gao
- Beijing Academy of Quantum Information Sciences, Beijing100193, China
| | - Lin Gu
- School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Jinsong Zhang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, China
- Frontier Science Center for Quantum Information, Beijing100084, China
- Hefei National Laboratory, Hefei230088, China
| | - Yayu Wang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, China
- Frontier Science Center for Quantum Information, Beijing100084, China
- Hefei National Laboratory, Hefei230088, China
| | - Qi-Kun Xue
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, China
- Frontier Science Center for Quantum Information, Beijing100084, China
- Beijing Academy of Quantum Information Sciences, Beijing100193, China
- Southern University of Science and Technology, Shenzhen518055, China
| | - Ke He
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, China
- Frontier Science Center for Quantum Information, Beijing100084, China
- Beijing Academy of Quantum Information Sciences, Beijing100193, China
- Hefei National Laboratory, Hefei230088, China
| | - Yang Feng
- Beijing Academy of Quantum Information Sciences, Beijing100193, China
| | - Xiao Feng
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, China
- Frontier Science Center for Quantum Information, Beijing100084, China
- Beijing Academy of Quantum Information Sciences, Beijing100193, China
- Hefei National Laboratory, Hefei230088, China
| |
Collapse
|
8
|
Zou X, Li R, Chen Z, Dai Y, Huang B, Niu C. Engineering Gapless Edge States from Antiferromagnetic Chern Homobilayer. NANO LETTERS 2024; 24:450-457. [PMID: 38112315 DOI: 10.1021/acs.nanolett.3c04304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
We put forward that stacked Chern insulators with opposite chiralities offer a strategy to achieve gapless helical edge states in two dimensions. We employ the square lattice as an example and elucidate that the gapless chiral and helical edge states emerge in the monolayer and antiferromagnetically stacked bilayer, characterized by Chern number C = - 1 and spin Chern number C S = - 1 , respectively. Particularly, for a topological phase transition to the normal insulator in the stacked bilayer, a band gap closing and reopening procedure takes place accompanied by helical edge states disappearing, where the Chern insulating phase in the monolayer vanishes at the same time. Moreover, EuO is revealed as a suitable candidate for material realization. This work is not only valuable to the research of the quantum anomalous Hall effect but also offers a favorable platform to realize magnetic topologically insulating materials for spintronics applications.
Collapse
Affiliation(s)
- Xiaorong Zou
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Runhan Li
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Zhiqi Chen
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Ying Dai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Baibiao Huang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Chengwang Niu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
9
|
Liu S, Yu JX, Zhang E, Li Z, Sun Q, Zhang Y, Cao L, Li L, Zhao M, Leng P, Cao X, Li A, Zou J, Kou X, Zang J, Xiu F. Gate-tunable Intrinsic Anomalous Hall Effect in Epitaxial MnBi 2Te 4 Films. NANO LETTERS 2024; 24:16-25. [PMID: 38109350 DOI: 10.1021/acs.nanolett.3c02926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The anomalous Hall effect (AHE) is an important transport signature revealing topological properties of magnetic materials and their spin textures. Recently, MnBi2Te4 has been demonstrated to be an intrinsic magnetic topological insulator. However, the origin of its intriguing AHE behaviors remains elusive. Here, we demonstrate the Berry curvature-dominated intrinsic AHE in wafer-scale MnBi2Te4 films. By applying back-gate voltages, we observe an ambipolar conduction and n-p transition in ∼7-layer MnBi2Te4, where a quadratic relation between the AHE resistance and longitudinal resistance suggests its intrinsic AHE nature. In particular, for ∼3-layer MnBi2Te4, the AHE sign can be tuned from pristine negative to positive. First-principles calculations unveil that such an AHE reversal originated from the competing Berry curvature between oppositely polarized spin-minority-dominated surface states and spin-majority-dominated inner bands. Our results shed light on the underlying physical mechanism of the intrinsic AHE and provide new perspectives for the unconventional sign-tunable AHE.
Collapse
Affiliation(s)
- Shanshan Liu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, 41st Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Jie-Xiang Yu
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Enze Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Zihan Li
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, 41st Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Qiang Sun
- Materials Engineering, The University of Queensland, Brisbane QLD 4072, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane QLD 4072, Australia
| | - Yong Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Liwei Cao
- Beijing Key Lab of Microstructure and Property of Advanced Material, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124, China
| | - Lun Li
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Minhao Zhao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, 41st Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Pengliang Leng
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, 41st Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Xiangyu Cao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, 41st Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Ang Li
- Beijing Key Lab of Microstructure and Property of Advanced Material, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124, China
| | - Jin Zou
- Materials Engineering, The University of Queensland, Brisbane QLD 4072, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane QLD 4072, Australia
| | - Xufeng Kou
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiadong Zang
- Department of Physics and Astronomy, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Faxian Xiu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, 41st Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai 200232, China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
10
|
Andersen MP, Mikheev E, Rosen IT, Tai L, Zhang P, Wang KL, Kastner MA, Goldhaber-Gordon D. Universal Conductance Fluctuations in a MnBi 2Te 4 Thin Film. NANO LETTERS 2023. [PMID: 38029283 DOI: 10.1021/acs.nanolett.3c02932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Quantum coherence of electrons can produce striking behaviors in mesoscopic conductors. Although magnetic order can also strongly affect transport, the combination of coherence and magnetic order has been largely unexplored. Here, we examine quantum coherence-driven universal conductance fluctuations in the antiferromagnetic, canted antiferromagnetic, and ferromagnetic phases of a thin film of the topological material MnBi2Te4. In each magnetic phase, we extract a charge carrier phase coherence length of about 100 nm. The conductance magnetofingerprint is repeatable when sweeping applied magnetic field within one magnetic phase. Surprisingly, in the antiferromagnetic and canted antiferromagnetic phases, but not in the ferromagnetic phase, the magnetofingerprint depends on the direction of the field sweep. To explain our observations, we suggest that conductance fluctuation measurements are sensitive to the motion and nucleation of magnetic domain walls in MnBi2Te4.
Collapse
Affiliation(s)
- Molly P Andersen
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Evgeny Mikheev
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department of Physics, Stanford University, Stanford, California 94305, United States
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Ilan T Rosen
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, United States
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lixuan Tai
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Peng Zhang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Kang L Wang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Marc A Kastner
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department of Physics, Stanford University, Stanford, California 94305, United States
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David Goldhaber-Gordon
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department of Physics, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
11
|
Gong M, Liu H, Jiang H, Chen CZ, Xie XC. Half-quantized helical hinge currents in axion insulators. Natl Sci Rev 2023; 10:nwad025. [PMID: 37565212 PMCID: PMC10411682 DOI: 10.1093/nsr/nwad025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/19/2022] [Accepted: 12/08/2022] [Indexed: 08/12/2023] Open
Abstract
Fractional quantization can emerge in noncorrelated systems due to the parity anomaly, while its condensed matter realization is a challenging problem. We propose that in axion insulators (AIs), parity anomaly manifests a unique fractional boundary excitation: the half-quantized helical hinge currents. These helical hinge currents microscopically originate from the lateral Goos-Hänchen (GH) shift of massless side-surface Dirac electrons that are totally reflected from the hinges. Meanwhile, due to the presence of the massive top and bottom surfaces of the AI, the helical current induced by the GH shift is half-quantized. The semiclassical wave packet analysis uncovers that the hinge current has a topological origin and its half quantization is robust to parameter variations. Lastly, we propose an experimentally feasible six-terminal device to identify the half-quantized hinge channels by measuring the nonreciprocal conductances. Our results advance the realization of the half-quantization and topological magnetoelectric responses in AIs.
Collapse
Affiliation(s)
- Ming Gong
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Haiwen Liu
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Hua Jiang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- Institute for Advanced Study, Soochow University, Suzhou 215006, China
| | - Chui-Zhen Chen
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- Institute for Advanced Study, Soochow University, Suzhou 215006, China
| | - X-C Xie
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
12
|
Jiang Z, Chong SK, Zhang P, Deng P, Chu S, Jahanbani S, Wang KL, Lai K. Implementing microwave impedance microscopy in a dilution refrigerator. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:2887606. [PMID: 37125853 DOI: 10.1063/5.0138831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
We report the implementation of a dilution refrigerator-based scanning microwave impedance microscope with a base temperature of ∼100 mK. The vibration noise of our apparatus with tuning-fork feedback control is as low as 1 nm. Using this setup, we have demonstrated the imaging of quantum anomalous Hall states in magnetically (Cr and V) doped (Bi, Sb)2Te3 thin films grown on mica substrates. Both the conductive edge modes and topological phase transitions near the coercive fields of Cr- and V-doped layers are visualized in the field-dependent results. Our study establishes the experimental platform for investigating nanoscale quantum phenomena at ultralow temperatures.
Collapse
Affiliation(s)
- Zhanzhi Jiang
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - Su Kong Chong
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, USA
| | - Peng Zhang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, USA
| | - Peng Deng
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, USA
| | - Shizai Chu
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - Shahin Jahanbani
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - Kang L Wang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, USA
| | - Keji Lai
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|