1
|
Pozhydaiev V, Paparesta A, Moran J, Lebœuf D. Iron(II)-Catalyzed 1,2-Diamination of Styrenes Installing a Terminal NH 2 Group Alongside Unprotected Amines. Angew Chem Int Ed Engl 2024; 63:e202411992. [PMID: 39016034 DOI: 10.1002/anie.202411992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
1,2-Diamination of alkenes represents an attractive way to generate differentiated vicinal diamines, which are prevalent motifs in biologically active compounds and catalysts. However, existing methods are usually limited in scope and produce diamines where one or both nitrogens are protected, adding synthetic steps for deprotection and further N-functionalization to reach a desired target. Furthermore, the range of amino groups that can be introduced at the internal position is fairly limited. Here we describe a 1,2-diamination of styrenes that directly installs a free amino group at the terminal position and a wide variety of unprotected nitrogen nucleophiles (primary or secondary alkyl or aromatic amines, sulfoximines, N-heterocycles, and ammonia surrogate) at the internal position. Two complementary sets of conditions encompass electronically activated and deactivated styrenes with diverse substitution patterns and functional groups. Moreover, this strategy can be extended to the 1,2-aminothiolation of styrenes.
Collapse
Affiliation(s)
- Valentyn Pozhydaiev
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Antonio Paparesta
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Institut Universitaire de France (IUF), 75005, Paris, France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
2
|
West JG. Building Catalytic Reactions One Electron at a Time. Acc Chem Res 2024; 57:3068-3078. [PMID: 39317431 DOI: 10.1021/acs.accounts.4c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
ConspectusClassical education in organic chemistry and catalysis, not the least my own, has centered on two-electron transformations, from nucleophilic attack to oxidative addition. The focus on two-electron chemistry is well-founded, as this brand of chemistry has enabled incredible feats of synthesis, from the development of life-saving pharmaceuticals to the production of ubiquitous commodity chemicals. With that said, this approach is in many ways complementary to the approach of nature, where enzymes frequently make use of single-electron "radical" steps to achieve challenging reactions with exceptional selectivity, including light detection and C-H hydroxylation. While the power of radical elementary steps is undeniable, the fundamental understanding of─and ability to apply─these in catalysis remains underdeveloped, constraining the palette with which chemists can make new reactions.Motivation to remedy this traditional underemphasis on radical catalysis has been intensified by the runaway success of outer-sphere photoredox catalysis, not only confirming the versatility of radicals in anthropogenic catalysis but also teaching the value of robust and well-understood catalytic cycles for reaction design. Indeed, I would argue the success of outer-sphere photoredox catalysis has been fueled by strong fundamental understanding of its underlying radical elementary steps, with consideration of single-electron transfer (SET) energetics allowing new reactions to be designed de novo with enviable confidence. However, outer-sphere photoredox catalysis is an outlier in this regard, with other mechanistic approaches remaining underexplored.Our research group is part of a growing movement to expand the vocabulary of synthetic radical catalysis beyond the traditional outer-sphere photoredox SET manifold, assembling new cycles comprised of hydrogen atom transfer (HAT), light-induced homolysis (LIH), and radical ligand transfer (RLT) steps in new combinations to achieve challenging transformations. These efforts have been made possible by the ever-growing understanding of these radical elementary steps and discovery of catalyst systems with significant mechanistic flexibility, most recently iron/thiol (Fe/S) cocatalysis.In this Account, I will focus on our efforts applying HAT and LIH steps in Fe/S cocatalysis, sharing broad guidelines we have found helpful for using these steps and demonstrating how they can be combined to make new reactions using three case studies: radical hydrogenation (HAT + HAT), decarboxylative protonation (LIH + HAT), and alkene hydrofluoroalkylation (LIH + HAT, with an intervening radical alkene addition). These efforts have highlighted the importance of several key parameters, including bond dissociation energy (BDE) and radical polarity, and I hope our findings similarly provide a valuable framework to others designing new radical catalytic reactions.
Collapse
Affiliation(s)
- Julian G West
- Department of Chemistry, Rice University, 6100 Main St, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Cheng X, Yin Q, Cheng YF, Wu SH, Sun XC, Kong DY, Deng QH. Practical and regioselective halonitrooxylation of olefins to access β-halonitrates. Nat Commun 2024; 15:7131. [PMID: 39164277 PMCID: PMC11335742 DOI: 10.1038/s41467-024-51655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Organic nitrates, as effective donors of the signaling molecule nitric oxide, are widely applied in the pharmaceutical industry. However, practical and efficient methods for accessing organic nitrates are still scarce, and achieving high regiocontrol in unactivated alkene difunctionalization remains challenging. Here we present a simple and practical method for highly regioselective halonitrooxylation of unactivated alkenes. The approach utilizes TMSX (X: Cl, Br, or I) and oxybis(aryl-λ3-iodanediyl) dinitrates (OAIDN) as sources of halogen and nitrooxy groups, with 0.5 mol % FeCl3 as the catalyst. Remarkably, high regioselectivity in the halonitrooxylation of aromatic alkenes can be achieved even without any catalyst. This protocol features easy scalability and excellent functional group compatibility, providing a range of β-halonitrates (127 examples, up to 99% yield, up to >20:1 rr). Notably, 2-iodoethyl nitrate, a potent synthon derived from ethylene, reacts smoothly with a variety of functional units to incorporate the nitrooxy group into the desired molecules.
Collapse
Affiliation(s)
- Xuan Cheng
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Quan Yin
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Yi-Fei Cheng
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Shao-Hua Wu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Xin-Chang Sun
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - De-Yi Kong
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Qing-Hai Deng
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, China.
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
4
|
Patra S, Nandasana BN, Valsamidou V, Katayev D. Mechanochemistry Drives Alkene Difunctionalization via Radical Ligand Transfer and Electron Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402970. [PMID: 38829256 PMCID: PMC11304296 DOI: 10.1002/advs.202402970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Indexed: 06/05/2024]
Abstract
A general and modular protocol is reported for olefin difunctionalization through mechanochemistry, facilitated by cooperative radical ligand transfer (RLT) and electron catalysis. Utilizing mechanochemical force and catalytic amounts of 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO), ferric nitrate can leverage nitryl radicals, transfer nitrooxy-functional group via RLT, and mediate an electron catalysis cycle under room temperature. A diverse range of activated and unactivated alkenes exhibited chemo- and regioselective 1,2-nitronitrooxylation under solvent-free or solvent-less conditions, showcasing excellent functional group tolerance. Mechanistic studies indicated a significant impact of mechanochemistry and highlighted the radical nature of this nitrative difunctionalization process.
Collapse
Affiliation(s)
- Subrata Patra
- Department of ChemistryBiochemistry, and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| | - Bhargav N. Nandasana
- Department of ChemistryBiochemistry, and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| | - Vasiliki Valsamidou
- Department of ChemistryBiochemistry, and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| | - Dmitry Katayev
- Department of ChemistryBiochemistry, and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| |
Collapse
|
5
|
Lu S, Li Y, Yu Y. Glutathione-Scavenging Celastrol-Cu Nanoparticles Induce Self-Amplified Cuproptosis for Augmented Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404971. [PMID: 38935977 DOI: 10.1002/adma.202404971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/26/2024] [Indexed: 06/29/2024]
Abstract
Cuproptosis is a novel copper-dependent programmed cell death. The efficacy of cuproptosis is highly dependent on intracellular copper accumulation and counteracted by a high level of glutathione (GSH) in tumor cells. Here, this work develops a self-amplified cuproptosis nanoparticles (Cel-Cu NP) using celastrol (Cel), a natural product isolated from medical plant. In Cel-Cu NP, Cel serves as a versatile copper ionophore, exhibiting an ideal coordination capacity toward copper ions without compromising the cuproptosis induction. Notably, Cel can simultaneously scavenge GSH content to amplify cuproptosis. Moreover, this self-amplified cuproptosis further activates immunogenic cell death (ICD) to elicit robust immune response. Combining with immune checkpoint blockade, Cel-Cu NP effectively eradicates metastatic tumors in a mouse lung metastasis model. This study provides an efficient nanomedicine by inducing self-amplified cuproptosis for robust immunotherapy.
Collapse
Affiliation(s)
- Sheng Lu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yifan Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
6
|
Jiang X, Lan Y, Hao Y, Jiang K, He J, Zhu J, Jia S, Song J, Li SJ, Niu L. Iron photocatalysis via Brønsted acid-unlocked ligand-to-metal charge transfer. Nat Commun 2024; 15:6115. [PMID: 39033136 PMCID: PMC11271273 DOI: 10.1038/s41467-024-50507-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Reforming sustainable 3d-metal-based visible light catalytic platforms for inert bulk chemical activation is highly desirable. Herein, we demonstrate the use of a Brønsted acid to unlock robust and practical iron ligand-to-metal charge transfer (LMCT) photocatalysis for the activation of multifarious inert haloalkylcarboxylates (CnXmCOO-, X = F or Cl) to produce CnXm radicals. This process enables the fluoro-polyhaloalkylation of non-activated alkenes by combining easily available Selectfluor as a fluorine source. Valuable alkyl fluorides including potential drug molecules can be easily obtained through this protocol. Mechanistic studies indicate that the real light-harvesting species may derive from the in situ-assembly of Fe3+, CnXmCOO-, H+, and acetonitrile solvent, in which the Brønsted acid indeed increases the efficiency of LMCT between the iron center and CnXmCOO- via hydrogen-bond interactions. We anticipate that this Brønsted acid-unlocked iron LMCT platform would be an intriguing sustainable option to execute the activation of inert compounds.
Collapse
Affiliation(s)
- Xiaoyu Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China.
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, PR China.
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, PR China.
| | - Yudong Hao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jiali Zhu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jinshuai Song
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shi-Jun Li
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China.
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, PR China.
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China.
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, PR China.
| |
Collapse
|
7
|
Venkatraman RK, Tolba AH, Sølling TI, Cibulka R, El-Zohry AM. Ultrafast Events of Photoexcited Iron(III) Chloride for Activation of Benzylic C-H Bonds. J Phys Chem Lett 2024; 15:6202-6208. [PMID: 38836909 DOI: 10.1021/acs.jpclett.4c01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The usage of rare-earth-metal catalysts in the synthesis of organic compounds is widespread in chemical industries but is limited owing to its environmental and economic costs. However, recent studies indicate that abundant-earth metals like iron(III) chloride can photocatalyze diverse organic transformations using blue-light LEDs. Still, the underlying mechanism behind such activity is debatable and controversial, especially in the absence of ultrafast spectroscopic results. To address this urgent challenge, we performed femtosecond time-resolved electronic absorption spectroscopy experiments of iron(III) chloride in selected organic solvents relevant to its photocatalytic applications. Our results show that the long-lived species [Fe(II) ← Cl•]* is primarily responsible for both oxidizing the organic substrate and reducing molecular oxygen through the diffusion process, leading to the final product and regenerating the photocatalyst rather than the most widely proposed free chloride radical (Cl•). Our study will guide the rational design of efficient earth-abundant photocatalysts.
Collapse
Affiliation(s)
- Ravi Kumar Venkatraman
- Ultrafast Laser Spectroscopy Lab Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Amal Hassan Tolba
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
- Chemistry Department, Faculty of Science, Assiut University, Assiut 2074020, Egypt
| | - Theis I Sølling
- Ultrafast Laser Spectroscopy Lab Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Radek Cibulka
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Ahmed M El-Zohry
- Ultrafast Laser Spectroscopy Lab Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
8
|
Wojdyla Z, Srnec M. Radical ligand transfer: mechanism and reactivity governed by three-component thermodynamics. Chem Sci 2024; 15:8459-8471. [PMID: 38846394 PMCID: PMC11151871 DOI: 10.1039/d4sc01507j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/19/2024] [Indexed: 06/09/2024] Open
Abstract
Here, we demonstrate that the relationship between reactivity and thermodynamics in radical ligand transfer chemistry can be understood if this chemistry is dissected as concerted ion-electron transfer (cIET). Namely, we investigate radical ligand transfer reactions from the perspective of thermodynamic contributions to the reaction barrier: the diagonal effect of the free energy of the reaction, and the off-diagonal effect resulting from asynchronicity and frustration, which we originally derived from the thermodynamic cycle for concerted proton-electron transfer (cPET). This study on the OH transfer reaction shows that the three-component thermodynamic model goes beyond cPET chemistry, successfully capturing the changes in radical ligand transfer reactivity in a series of model FeIII-OH⋯(diflouro)cyclohexadienyl systems. We also reveal the decisive role of the off-diagonal thermodynamics in determining the reaction mechanism. Two possible OH transfer mechanisms, in which electron transfer is coupled with either OH- and OH+ transfer, are associated with two competing thermodynamic cycles. Consequently, the operative mechanism is dictated by the cycle yielding a more favorable off-diagonal effect on the barrier. In line with this thermodynamic link to the mechanism, the transferred OH group in OH-/electron transfer retains its anionic character and slightly changes its volume in going from the reactant to the transition state. In contrast, OH+/electron transfer develops an electron deficiency on OH, which is evidenced by an increase in charge and a simultaneous decrease in volume. In addition, the observations in the study suggest that an OH+/electron transfer reaction can be classified as an adiabatic radical transfer, and the OH-/electron transfer reaction as a less adiabatic ion-coupled electron transfer.
Collapse
Affiliation(s)
- Zuzanna Wojdyla
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences Dolejškova 3 Prague 8 18223 Czech Republic
| | - Martin Srnec
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences Dolejškova 3 Prague 8 18223 Czech Republic
| |
Collapse
|
9
|
Patra J, Nair AM, Volla CMR. Expedient radical phosphonylations via ligand to metal charge transfer on bismuth. Chem Sci 2024; 15:7136-7143. [PMID: 38756813 PMCID: PMC11095378 DOI: 10.1039/d4sc00692e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
Bismuth, in spite of its low cost and low toxicity, has found limited application in organic synthesis. Although the photoactivity of Bi(iii) salts has been well studied, this has not been effectively exploited in photocatalysis. To date, only a single report exists for the Bi-based photocatalysis, wherein carbon centered radicals were generated using ligand to metal charge transfer (LMCT) on bismuth. In this regard, expanding the horizon of bismuth LMCT catalysis for the generation of heteroatom centered radicals, we hereby report an efficient radical phosphonylation using BiCl3 as the LMCT catalyst. Phosphonyl radicals generated via visible-light induced LMCT of BiCl3 were subjected to a variety of transformations like alkylation, amination, alkynylation and cascade cyclizations. The catalytic system tolerated a wide range of substrate classes, delivering excellent yields of the scaffolds. The reactions were scalable and required low catalytic loading of bismuth. Detailed mechanistic studies were carried out to probe the reaction mechanism. Diverse radical phosphonylations leading to the formation of sp3-C-P, sp2-C-P, sp-C-P, and P-N bonds in the current work present the candidacy of bismuth as a versatile photocatalyst for small molecule activation.
Collapse
Affiliation(s)
- Jatin Patra
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Akshay M Nair
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
10
|
Ge L, Wang H, Liu Y, Feng X. Asymmetric Three-Component Radical Alkene Carboazidation by Direct Activation of Aliphatic C-H Bonds. J Am Chem Soc 2024; 146:13347-13355. [PMID: 38710023 DOI: 10.1021/jacs.4c02012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Azide compounds are widely present in natural products and drug molecules, and their easy-to-transform characteristics make them widely used in the field of organic synthesis. The merging of transition-metal catalysis with radical chemistry offers a versatile platform for radical carboazidation of alkenes, allowing the rapid assembly of highly functionalized organic azides. However, the direct use of readily available hydrocarbon feedstocks as sp3-hybridized carbon radical precursors to participate in catalytic enantioselective carboazidation of alkenes remains a significant challenge that has yet to be addressed. Herein, we describe an iron-catalyzed asymmetric three-component radical carboazidation of electron-deficient alkenes by direct activation of aliphatic C-H bonds. This approach involves intermolecular hydrogen atom transfer between a hydrocarbon and an alkoxy/aryl carboxyl radical, leading to the formation of a carbon-centered radical. The resulting radical then reacts with electron-deficient alkenes to generate a new radical species that undergoes chiral iron-complex-mediated C-N3 bond coupling. An array of valuable chiral azides bearing a quaternary stereocenter were directly accessed from widely available chemical feedstocks, and their synthetic potential is further demonstrated through more facile transformations to give other valuable enantioenriched building blocks.
Collapse
Affiliation(s)
- Liang Ge
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, P. R. China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
| | - Hongkai Wang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
| | - Yangbin Liu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
| | - Xiaoming Feng
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
11
|
Xia GD, Li R, Zhang L, Wei Y, Hu XQ. Iron-Catalyzed Photochemical Synthesis of Sulfinamides from Aliphatic Hydrocarbons and Sulfinylamines. Org Lett 2024; 26:3703-3708. [PMID: 38668695 DOI: 10.1021/acs.orglett.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
An iron-catalyzed photochemical sulfinamidation of hydrocarbons with N-sulfinylamines has been developed. The merger of ligand-to-metal charge transfer (LMCT) of FeCl3 with hydrogen atom transfer (HAT) process is the key for the generation of alkyl radicals from hydrocarbons, and the resultant alkyl radicals were readily trapped by N-sulfinylamines to produce structurally diverse sulfinamides. Contrary to traditional methods that inevitably use sensitive organometallic reagents and prefunctionalized substrates, our approach features simple operation and the wide availability of starting materials. Gratifyingly, the reaction is scalable, and the obtained sulfinamides can be conveniently converted to highly functionalized sulfur(VI) derivatives.
Collapse
Affiliation(s)
- Guang-Da Xia
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Run Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Long Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yi Wei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
12
|
May AM, Dempsey JL. A new era of LMCT: leveraging ligand-to-metal charge transfer excited states for photochemical reactions. Chem Sci 2024; 15:6661-6678. [PMID: 38725519 PMCID: PMC11079626 DOI: 10.1039/d3sc05268k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
Ligand-to-metal charge transfer (LMCT) excited states are capable of undergoing a wide array of photochemical reactions, yet receive minimal attention compared to other charge transfer excited states. This work provides general criteria for designing transition metal complexes that exhibit low energy LMCT excited states and routes to drive photochemistry from these excited states. General design principles regarding metal identity, oxidation state, geometry, and ligand sets are summarized. Fundamental photoreactions from these states including visible light-induced homolysis, excited state electron transfer, and other photoinduced chemical transformations are discussed and key design principles for enabling these photochemical reactions are further highlighted. Guided by these fundamentals, this review outlines critical considerations for the future design and application of coordination complexes with LMCT excited states.
Collapse
Affiliation(s)
- Ann Marie May
- Department of Chemistry, University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599-3290 USA
| | - Jillian L Dempsey
- Department of Chemistry, University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599-3290 USA
| |
Collapse
|
13
|
Qiu W, Liao L, Xu X, Huang H, Xu Y, Zhao X. Catalytic 1,1-diazidation of alkenes. Nat Commun 2024; 15:3632. [PMID: 38684686 PMCID: PMC11058774 DOI: 10.1038/s41467-024-47854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Compared to well-developed catalytic 1,2-diazidation of alkenes to produce vicinal diazides, the corresponding catalytic 1,1-diazidation of alkenes to yield geminal diazides has not been realized. Here we report an efficient approach for catalytic 1,1-diazidation of alkenes by redox-active selenium catalysis. Under mild conditions, electron-rich aryl alkenes with Z or E or Z/E mixed configuration can undergo migratory 1,1-diazidation to give a series of functionalized monoalkyl or dialkyl geminal diazides that are difficult to access by other methods. The method is also effective for the construction of polydiazides. The formed diazides are relatively safe by TGA-DSC analysis and impact sensitivity tests, and can be easily converted into various valuable molecules. In addition, interesting reactivity that geminal diazides give valuable molecules via the geminal diazidomethyl moiety as a formal leaving group in the presence of Lewis acid is disclosed. Mechanistic studies revealed that a selenenylation-deselenenylation followed by 1,2-aryl migration process is involved in the reactions, which provides a basis for the design of new reactions.
Collapse
Affiliation(s)
- Wangzhen Qiu
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Lihao Liao
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
| | - Xinghua Xu
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hongtai Huang
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Yang Xu
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
14
|
Moser AJ, Funk BE, West JG. Vitamin B 12 in Photocatalysis - An Underexplored Frontier in Cooperative Catalysis. ChemCatChem 2024; 16:e202301231. [PMID: 39372221 PMCID: PMC11452056 DOI: 10.1002/cctc.202301231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Indexed: 10/08/2024]
Abstract
Vitamin B12 (VB12) is a flexible and sustainable catalyst both in nature and the reaction flask, facilitating varied organic transformations of high value to both enzymatic processes and synthetic chemists. Key to this value is the breadth of reactivity it possesses, capable of both ionic, 2 electron chemistry, and radical, 1 electron chemistry. In particular, the ability to generate carbon-centered radical intermediates via photolysis of organocobalt intermediates formed from alkyl electrophiles opens the door to powerful new radical transformations challenging to achieve using classical photoredox or ligand-to-metal charge transfer (LMCT) catalysis. While this unique photocatalytic reactivity of VB12 has been increasingly leveraged in monocatalytic schemes, recent reports have demonstrated VB12 is able to function as the photocatalytic component in cooperative schemes, driving diverse reactivity including remote elimination of alkyl halides, regioselective epoxide arylation, and regioselective epoxide reduction. This concept briefly overviews the enabling photochemical properties of VB12 and recent applications in cooperative catalysis, providing a framework for the continued development of new cooperative catalyst systems using this powerful photoactive complex.
Collapse
Affiliation(s)
- Austin J. Moser
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005 United States
| | - Brian E. Funk
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005 United States
| | - Julian G. West
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005 United States
| |
Collapse
|
15
|
Hooson JF, Tran HN, Bian KJ, West JG. Simple, catalytic C(sp 3)-H azidation using the C-H donor as the limiting reagent. Chem Commun (Camb) 2024. [PMID: 38477139 DOI: 10.1039/d3cc04728h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
C-N bonds play a critical role in pharmaceutical, agrochemical, and materials sciences, necessitating ever-better methods to forge this linkage. Here we report a simple procedure for direct C(sp3)-H azidation using iron or manganese catalysis and a nucleophilic azide source. All reagents are commercially available, the experimental procedure is simple, and we can use the C-H donor substrate as the limiting reagent, a challenge for many C-H azidation methods. Preliminary experiments are consistent with a hydrogen atom transfer (HAT)/radical ligand transfer (RLT) radical cascade mechanism and a wide variety of substrates can be azidated in moderate to high yields.
Collapse
Affiliation(s)
- James F Hooson
- Department of Chemistry, Rice University, 6500 Main St, Houston, TX, USA.
| | - Hai N Tran
- Department of Chemistry, Rice University, 6500 Main St, Houston, TX, USA.
| | - Kang-Jie Bian
- Department of Chemistry, Rice University, 6500 Main St, Houston, TX, USA.
| | - Julian G West
- Department of Chemistry, Rice University, 6500 Main St, Houston, TX, USA.
| |
Collapse
|
16
|
Jiao RQ, Li M, Chen X, Zhang Z, Gong XP, Yue H, Liu XY, Liang YM. Copper-Catalyzed Selective Three-Component 1,2-Phosphonoazidation of 1,3-Dienes. Org Lett 2024; 26:1387-1392. [PMID: 38341862 DOI: 10.1021/acs.orglett.3c04308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
We report a copper-catalyzed selective 1,2-phosphonoazidation of conjugated dienes. This three-component reaction is achieved by using readily available P(O)-H compounds and bench-stable NaN3. Salient features of this strategy include its mild reaction conditions, broad functional group tolerance, and high chemoselectivity and regioselectivity. Moreover, the compatibility with the late-stage functionalization of drug molecules, the potential for scalable production, and the feasibility of further modifications of the products underscore the practical utility of this protocol in synthetic applications.
Collapse
Affiliation(s)
- Rui-Qiang Jiao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xi Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ping Gong
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Heng Yue
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
17
|
Liu SH, Dong ZC, Zang ZL, Zhou CH, Cai GX. Selective α-oxidation of amides via visible-light-driven iron catalysis. Org Biomol Chem 2024; 22:1205-1212. [PMID: 38224270 DOI: 10.1039/d3ob01984e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Hydroxyl radicals (˙OH) as one of the highly reactive species can react unselectively with a wide range of chemicals. The ˙OH radicals are typically generated under harsh conditions. Herein, we report hydroxyl radical-induced selective N-α C(sp3)-H bond oxidation of amides under greener and mild conditions via an Fe(NO3)3·9H2O catalyst inner sphere pathway upon irradiation with a 30 W blue LED light strip (λ = 455 nm) using NaBrO3 as the oxidant. This protocol exhibited high chemoselectivity and excellent functional group tolerance. A preliminary mechanism investigation demonstrated that the iron catalyst afforded hydroxyl radicals via the visible-light-induced homolysis (VLIH) of iron complexes followed by a hydrogen atom transfer (HAT) process to realize this transformation.
Collapse
Affiliation(s)
- Shu-Hong Liu
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Zhi-Chao Dong
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Gui-Xin Cai
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
18
|
Bian KJ, Nemoto D, Chen XW, Kao SC, Hooson J, West JG. Photocatalytic, modular difunctionalization of alkenes enabled by ligand-to-metal charge transfer and radical ligand transfer. Chem Sci 2023; 15:124-133. [PMID: 38131080 PMCID: PMC10732012 DOI: 10.1039/d3sc05231a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Ligand-to-metal charge transfer (LMCT) is a mechanistic strategy that provides a powerful tool to access diverse open-shell species using earth abundant elements and has seen tremendous growth in recent years. However, among many reaction manifolds driven by LMCT reactivity, a general and catalytic protocol for modular difunctionalization of alkenes remains unknown. Leveraging the synergistic cooperation of iron-catalyzed ligand-to-metal charge transfer and radical ligand transfer (RLT), here we report a photocatalytic, modular difunctionalization of alkenes using inexpensive iron salts catalytically to function as both radical initiator and terminator. Additionally, strategic use of a fluorine atom transfer reagent allows for general fluorochlorination of alkenes, providing the first example of interhalogen compound formation using earth abundant element photocatalysis. Broad scope, mild conditions and versatility in converting orthogonal nucleophiles (TMSN3 and NaCl) directly into corresponding open-shell radical species are demonstrated in this study, providing a robust means towards accessing vicinal diazides and homo-/hetero-dihalides motifs catalytically. These functionalities are important precursors/intermediates in medicinal and material chemistry. Preliminary mechanistic studies support the radical nature of these transformations, disclosing the tandem LMCT/RLT as a powerful reaction manifold in catalytic olefin difunctionalization.
Collapse
Affiliation(s)
- Kang-Jie Bian
- Department of Chemistry, Rice University 6100 Main St MS 602 Houston TX 77005 USA
| | - David Nemoto
- Department of Chemistry, Rice University 6100 Main St MS 602 Houston TX 77005 USA
| | - Xiao-Wei Chen
- Department of Chemistry, Rice University 6100 Main St MS 602 Houston TX 77005 USA
| | - Shih-Chieh Kao
- Department of Chemistry, Rice University 6100 Main St MS 602 Houston TX 77005 USA
| | - James Hooson
- Department of Chemistry, Rice University 6100 Main St MS 602 Houston TX 77005 USA
| | - Julian G West
- Department of Chemistry, Rice University 6100 Main St MS 602 Houston TX 77005 USA
| |
Collapse
|
19
|
Bian KJ, Lu YC, Nemoto D, Kao SC, Chen X, West JG. Photocatalytic hydrofluoroalkylation of alkenes with carboxylic acids. Nat Chem 2023; 15:1683-1692. [PMID: 37957278 PMCID: PMC10983801 DOI: 10.1038/s41557-023-01365-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/09/2023] [Indexed: 11/15/2023]
Abstract
Incorporation of fluoroalkyl motifs in pharmaceuticals can enhance the therapeutic profiles of the parent molecules. The hydrofluoroalkylation of alkenes has emerged as a promising route to diverse fluoroalkylated compounds; however, current methods require superstoichiometric oxidants, expensive/oxidative fluoroalkylating reagents and precious metals, and often exhibit limited scope, making a universal protocol that addresses these limitations highly desirable. Here we report the hydrofluoroalkylation of alkenes with cheap, abundant and available fluoroalkyl carboxylic acids as the sole reagents. Hydrotrifluoro-, difluoro-, monofluoro- and perfluoroalkylation are all demonstrated, with broad scope, mild conditions (redox neutral) and potential for late-stage modification of bioactive molecules. Critical to success is overcoming the exceedingly high redox potential of feedstock fluoroalkyl carboxylic acids such as trifluoroacetic acid by leveraging cooperative earth-abundant, inexpensive iron and redox-active thiol catalysis, enabling these reagents to be directly used as hydroperfluoroalkylation donors without pre-activation. Preliminary mechanistic studies support the radical nature of this cooperative process.
Collapse
Affiliation(s)
- Kang-Jie Bian
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Yen-Chu Lu
- Department of Chemistry, Rice University, Houston, TX, USA
| | - David Nemoto
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Shih-Chieh Kao
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Xiaowei Chen
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Julian G West
- Department of Chemistry, Rice University, Houston, TX, USA.
| |
Collapse
|
20
|
Zhang W, Liu T, Ang HT, Luo P, Lei Z, Luo X, Koh MJ, Wu J. Modular and Practical 1,2-Aryl(Alkenyl) Heteroatom Functionalization of Alkenes through Iron/Photoredox Dual Catalysis. Angew Chem Int Ed Engl 2023; 62:e202310978. [PMID: 37699857 DOI: 10.1002/anie.202310978] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Efficient methods for synthesizing 1,2-aryl(alkenyl) heteroatomic cores, encompassing heteroatoms such as nitrogen, oxygen, sulfur, and halogens, are of significant importance in medicinal chemistry and pharmaceutical research. In this study, we present a mild, versatile and practical photoredox/iron dual catalytic system that enables access to highly privileged 1,2-aryl(alkenyl) heteroatomic pharmacophores with exceptional efficiency and site selectivity. Our approach exhibits an extensive scope, allowing for the direct utilization of a wide range of commodity or commercially available (hetero)arenes as well as activated and unactivated alkenes with diverse functional groups, drug scaffolds, and natural product motifs as substrates. By merging iron catalysis with the photoredox cycle, a vast array of alkene 1,2-aryl(alkenyl) functionalization products that incorporate a neighboring azido, amino, halo, thiocyano and nitrooxy group were secured. The scalability and ability to rapid synthesize numerous bioactive small molecules from readily available starting materials highlight the utility of this protocol.
Collapse
Affiliation(s)
- Weigang Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Tao Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Hwee Ting Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Penghao Luo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhexuan Lei
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xiaohua Luo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
21
|
Lindner H, Amberg WM, Carreira EM. Iron-Mediated Photochemical Anti-Markovnikov Hydroazidation of Unactivated Olefins. J Am Chem Soc 2023; 145:22347-22353. [PMID: 37811819 PMCID: PMC10591317 DOI: 10.1021/jacs.3c09122] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Indexed: 10/10/2023]
Abstract
Unactivated olefins are converted to alkyl azides with bench-stable NaN3 in the presence of FeCl3·6H2O under blue-light irradiation. The products are obtained with anti-Markovnikov selectivity, and the reaction can be performed under mild ambient conditions in the presence of air and moisture. The transformation displays broad functional group tolerance, which renders it suitable for functionalization of complex molecules. Mechanistic investigations are conducted to provide insight into the hydroazidation reaction and reveal the role of water from the iron hydrate as the H atom source.
Collapse
Affiliation(s)
- Henry Lindner
- Department of Chemistry and
Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zurich, Switzerland
| | - Willi M. Amberg
- Department of Chemistry and
Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zurich, Switzerland
| | - Erick M. Carreira
- Department of Chemistry and
Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zurich, Switzerland
| |
Collapse
|
22
|
Nemoto DT, Bian KJ, Kao SC, West JG. Radical ligand transfer: a general strategy for radical functionalization. Beilstein J Org Chem 2023; 19:1225-1233. [PMID: 37614927 PMCID: PMC10442530 DOI: 10.3762/bjoc.19.90] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023] Open
Abstract
The place of alkyl radicals in organic chemistry has changed markedly over the last several decades, evolving from challenging-to-generate "uncontrollable" species prone to side reactions to versatile reactive intermediates enabling construction of myriad C-C and C-X bonds. This maturation of free radical chemistry has been enabled by several advances, including the proliferation of efficient radical generation methods, such as hydrogen atom transfer (HAT), alkene addition, and decarboxylation. At least as important has been innovation in radical functionalization methods, including radical-polar crossover (RPC), enabling these intermediates to be engaged in productive and efficient bond-forming steps. However, direct engagement of alkyl radicals remains challenging. Among these functionalization approaches, a bio-inspired mechanistic paradigm known as radical ligand transfer (RLT) has emerged as a particularly promising and versatile means of forming new bonds catalytically to alkyl radicals. This development has been driven by several key features of RLT catalysis, including the ability to form diverse bonds (including C-X, C-N, and C-S), the use of simple earth abundant element catalysts, and the intrinsic compatibility of this approach with varied radical generation methods, including HAT, radical addition, and decarboxylation. Here, we provide an overview of the evolution of RLT catalysis from initial studies to recent advances and provide a conceptual framework we hope will inspire and enable future work using this versatile elementary step.
Collapse
Affiliation(s)
- David T Nemoto
- Department of Chemistry, Rice University, 6100 Main St MS 602, Houston, TX 77005, USA
| | - Kang-Jie Bian
- Department of Chemistry, Rice University, 6100 Main St MS 602, Houston, TX 77005, USA
| | - Shih-Chieh Kao
- Department of Chemistry, Rice University, 6100 Main St MS 602, Houston, TX 77005, USA
| | - Julian G West
- Department of Chemistry, Rice University, 6100 Main St MS 602, Houston, TX 77005, USA
| |
Collapse
|
23
|
Baidya M, De Sarkar S. Synthesis of Quinoxalines through Cu-electrocatalytic Azidation/Annulation Cascade at Low Catalyst Loading. Org Lett 2023; 25:5896-5901. [PMID: 37515784 DOI: 10.1021/acs.orglett.3c02186] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
A Cu-electrocatalytic azidation of N-aryl enamines and subsequent denitrogenative annulation for the construction of quinoxaline frameworks is reported. Only 0.5 mol % of copper(II) chloride was employed for this cascade transformation displaying excellent functional-group compatibility even with complex bioactive scaffolds. The efficient electro-oxidative protocol enables the use of NaN3 as the cheapest azide source. Detailed mechanistic experiments, cyclic voltammetry, and spectroscopic studies provided strong evidence for a dual role of the Cu catalyst in azidyl and iminyl radical generation steps.
Collapse
Affiliation(s)
- Mrinmay Baidya
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
24
|
Xia GD, Liu ZK, Zhao YL, Jia FC, Hu XQ. Radical Phosphorylation of Aliphatic C-H Bonds via Iron Photocatalysis. Org Lett 2023; 25:5279-5284. [PMID: 37431881 DOI: 10.1021/acs.orglett.3c01824] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The synthesis of tertiary phosphines(III) has been a long-standing challenge in synthetic chemistry because of inevitable issues including harsh conditions, sensitive organometallic reagents, and prefunctionalized substrates in traditional synthesis. Herein, we report a strategically novel C(sp3)-H bond phosphorylation that enables the assembly of structurally diverse tertiary phosphines(III) from industrial phosphine(III) sources under mild photocatalytic conditions. The merger of ligand-to-metal charge transfer (LMCT) of FeCl3 with the hydrogen atom-transfer (HAT) process is the key for the generation of alkyl radicals from hydrocarbons. Strikingly, this catalytic system can be successfully applied for the polymerization of electron-deficient alkenes.
Collapse
Affiliation(s)
- Guang-Da Xia
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Zi-Kui Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yu-Lian Zhao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Feng-Cheng Jia
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|