1
|
Song CU, Purnaningtyas DW, Choi H, Jeon D, Kim S, Hwang H, Kim CG, Lee YH, Eyun SI. Do red tide events promote an increase in zooplankton biodiversity? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124880. [PMID: 39236840 DOI: 10.1016/j.envpol.2024.124880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Red tides occurring off the southern coast of Korea impact the marine ecosystem and aquaculture industries. Zooplankton are crucial in the food web, connecting primary producers to higher predators and interact diversely with red tide organisms. This study explores dynamics of the zooplankton community over seven years including three red tide and four non-red tide years in Tongyeong using metabarcoding. In non-red tide years, zooplankton diversity showed typical seasonal patterns, increasing from June to early October. However, during red tide years, diversity remained high, with a shift in species composition-decreased Copepoda and increased Branchiopoda, Echinodermata, Malacostraca, and Annelida. Diversity indices were significantly higher in red tide years across all periods except for the richness in "after" that showed an insignificant higher value. The differences in zooplankton assemblages across periods were influenced by surface temperatures and the density of the red tide-causing alga Margalefidinium polykrikoides. Eight species emerged as indicator species and showed direct correlations with M. polykrikoides and among them, seven species were indicator species for red tide occurrence years. The ecological characteristics of M. polykrikoides blooms and their recurrent occurrences over several decades suggest that zooplankton may adapt to the toxins and use these blooms as spawning cues. Overall, this study provides comprehensive understanding on changes in zooplankton communities during red tide events, offering novel insights into their ecology.
Collapse
Affiliation(s)
- Chi-Une Song
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | | | - Hyeongwoo Choi
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Donggu Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Sung Kim
- Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Hyenjung Hwang
- Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Choong-Gon Kim
- Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Youn-Ho Lee
- KIOST School, University of Science and Technology, Busan, 49111, South Korea.
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
2
|
Liu W, Semmouri I, Janssen CR, Asselman J. Temperature dependent sensitivity of the harpacticoid copepod Nitokra spinipes to marine algal toxins. CHEMOSPHERE 2024; 366:143420. [PMID: 39349068 DOI: 10.1016/j.chemosphere.2024.143420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Harmful algal blooms (HABs) - proliferated algae densities, often producing toxins - have increasingly been found in ocean and coastal areas. Recent studies show that rising temperatures contribute to HAB occurrence, but the broader influence of climate change on these outbreaks is less quantified. Of particular concern is the limited research on HAB toxin effects under varying temperatures, especially regarding primary consumers such as copepods, a crucial component of aquatic ecosystems. Therefore, we examined the impact of marine toxins on the harpacticoid copepod Nitokra spinipes, a model organism for marine ecotoxicology, in the context of climate change. We evaluated the toxicity of four purified, commonly occurring algal toxins, at three different temperatures in the laboratory. First, adult females were exposed to a concentration series of toxins at 15, 20, and 25 °C for 48 h. EC50 values of domoic acid ranged from 8.79 ± 1.93 μg L-1 to 25.97 ± 11.96 μg L-1. Nauplii, aged 48-72 h, were exposed at 18, 20 and 22 °C for the same duration. Less sensitive compared to adults, the EC50 of domoic acid in this case varied from 57.26 ± 6.82 μg L-1 to 97.24 ± 6.45 μg L-1. Both results indicated a temperature-dependent EC50. For the chronic toxicity tests, larval development ratio (LDR), brood size and inter-brood time of domoic acid (DA), yessotoxin (YTX), saxitoxin (STX), and microcystin-LR (MC-LR) were examined at 18, 20 and 22 °C. We observed that with increasing temperatures, LDR increased, whereas brood size significantly decreased as DA, YTX or STX concentrations rose. No interaction between temperature and algal toxins was found but a temperature dependent sensitivity of copepods towards DA, YTX and STX was revealed. Our research provides insights into the effects of long-term exposure to algal toxins on marine copepods and the potential impacts of climate warming.
Collapse
Affiliation(s)
- Wenxin Liu
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Ostend, Belgium.
| | - Ilias Semmouri
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Ostend, Belgium
| | - Colin R Janssen
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Ostend, Belgium
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Ostend, Belgium
| |
Collapse
|
3
|
Sajidevi AM, Abraham B, Benchamin D. Environmental drivers of mesozooplankton dynamics in the Munroe Island, adjacent to Ashtamudi Estuary, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:963. [PMID: 39304582 DOI: 10.1007/s10661-024-13129-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
The response of mesozooplankton is critical in assessing the health of an estuarine ecosystem. Reports on the spatial and temporal dynamics of mesozooplankton community in estuarine and backwaters of the Southern parts of India are scanty. In this scenario, we appraised the community structure of mesozooplankton and their spatio-temporal dynamics based on various multivariate statistical assessments. A total of 31 taxa were identified and the abundance was principally dominated by Copepoda followed by Luciferidae during three sampling seasons. The most abundant species were: Paracalanus parvus parvus, Pseudodiaptomus aurivillii, Temora stylifera, and Pseudodiaptomus serricaudatus. Canonical correspondence analysis and Spearman's correlation coefficients underlined that salinity, turbidity, conductivity, temperature, dissolved oxygen, chlorophyll a (Chl-a), and nutrients were the principal environmental variables strongly linked with mesozooplankton dynamics in Munroe Island. The highest abundance of mesozooplankton was recorded in MoN (monsoon), followed by PrM (pre-monsoon), and PoM (post-monsoon). Hierarchical clustering confirmed that the grouping of sampling stations is based on the estuarine and freshwater influences on mesozooplankton abundance. During the entire investigation, various ecological indices were observed in good condition. Moreover, the optimum environmental conditions during the PoM season are marked with the highest indices values. Overall, multivariate investigations undoubtedly proved the suitability of mesozooplankton communities as potential bioindicators for spatial and seasonal ecological assessments. Our investigation emphasizes the high assemblages of mesozooplankton and their responses to various environmental variables and highlights the significance of long-term ecological monitoring in a threatened ecosystem like Munroe Island.
Collapse
Affiliation(s)
- Arya Madhu Sajidevi
- Zoology Research Centre, St. Stephen's College, Pathanapuram, University of Kerala, Thiruvananthapuram, India.
| | - Biju Abraham
- Zoology Research Centre, St. Stephen's College, Pathanapuram, University of Kerala, Thiruvananthapuram, India
| | - Dani Benchamin
- Zoology Research Centre, St. Stephen's College, Pathanapuram, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
4
|
Diogoul N, Brehmer P, Kiko R, Perrot Y, Lebourges-Dhaussy A, Rodrigues E, Thiam A, Mouget A, El Ayoubi S, Sarré A. Estimating the copepod biomass in the North West African upwelling system using a bi-frequency acoustic approach. PLoS One 2024; 19:e0308083. [PMID: 39240850 PMCID: PMC11379317 DOI: 10.1371/journal.pone.0308083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/16/2024] [Indexed: 09/08/2024] Open
Abstract
The Canary Current Large Marine Ecosystem (CCLME) is one of the most productive Large Marine Ecosystems worldwide. Assessing the abundance, biomass and distribution of zooplankton in the southern part of this system, off the coast of West Africa, remains challenging due to limited sampling efforts and data availability. However, zooplankton is of primary importance for pelagic ecosystem functioning. We applied an inversion method with combined analysis of acoustic and biological data for copepod discrimination using a bi-frequency (38 and 120 kHz) approach. Large copepods with equivalent spherical radii > 0.5 mm were identified using differences in the mean volume backscattering strength (MVBS). Regarding abundance measured by net sampling, copepods strongly dominated the zooplankton community and the large fraction account for 18%. This estimate correlated significantly with MVBS values that were obtained using an inverse algorithm. We confirmed the utility of using 38 kHz for large copepod detection. An epipelagic biomass of large copepod was estimated at 120-850 mg m-2 in March during upwelling season. It is worth noting that this estimation likely underestimates the true biomass due to inherent uncertainties associated with the measurement method. We recommend future investigations in the interest of using only nighttime data to improve the sampling pattern, particularly on the upper part of the water column (< 10 m) as well as on the shallow part of the continental shelf (< 20 m depth) not covered by fisheries vessel. Nevertheless, such high copepod biomass supports high fish production underlining the key role of copepod in the CCLME. Our results open the way to the analysis of the fluctuation and trend of copepod biomass, along with three decades of fisheries acoustics data available in the region. This helps to determine ecosystem changes, particularly under climate change, and to investigate the role of copepods in the southern CCLME carbon pump at the fine scale.
Collapse
Affiliation(s)
- Ndague Diogoul
- IRD, CNRS, Ifremer, Lemar, SRFC, CSRP, University Brest, Dakar, Senegal
- IRD, CNRS, Ifremer, Lemar, DR Ouest, University Brest, Plouzané, France
- Institut Sénégalais de Recherches Agricoles, ISRA, Centre de Recherches Océanographiques de Dakar Thiaroye, CRODT, Dakar, Senegal
| | - Patrice Brehmer
- IRD, CNRS, Ifremer, Lemar, SRFC, CSRP, University Brest, Dakar, Senegal
- IRD, CNRS, Ifremer, Lemar, DR Ouest, University Brest, Plouzané, France
| | - Rainer Kiko
- Laboratoire d'Océanographie de Villefranche (LOV), Institut de la Mer de Villefranche (MEV), Villefranche-sur-Mer, France
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Yannick Perrot
- IRD, CNRS, Ifremer, Lemar, DR Ouest, University Brest, Plouzané, France
| | | | | | - Abou Thiam
- Institute of Environmental Science (ISE), University Cheikh Anta Diop UCAD, Dakar, Senegal
| | - Anne Mouget
- IRD, CNRS, Ifremer, Lemar, DR Ouest, University Brest, Plouzané, France
| | | | - Abdoulaye Sarré
- Institut Sénégalais de Recherches Agricoles, ISRA, Centre de Recherches Océanographiques de Dakar Thiaroye, CRODT, Dakar, Senegal
| |
Collapse
|
5
|
Lin YJ, Chen TC, Chen CTA, Wong SL, Meng PJ, Chen MH. Long-term monitoring dataset of plankton assemblages in western Taiwan coastal water. Sci Data 2024; 11:917. [PMID: 39179583 PMCID: PMC11344027 DOI: 10.1038/s41597-024-03784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Plankton plays important roles in the marine ecosystems as important producers for primary production, major components in the global biogeochemical cycles, and the foundation of the marine food web. Despite their importance, long-term monitoring data about marine plankton are fairly limited, especially in the Asia-Pacific region. We fill this knowledge gap by providing a 29-year long-term monitoring data on the coastal areas of western Taiwan quarterly from 1993 to 2021. This long-term monitoring data can be used to set proper baseline for detecting human-induced impacts on the plankton, as well as modelling future scenarios under global changes.
Collapse
Affiliation(s)
- Yu-Jia Lin
- Institute of Marine Ecology and Conservation, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Tzu-Chun Chen
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Chen-Tung Arthur Chen
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Saou-Lien Wong
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Pei-Jie Meng
- National Applied Research Laboratories, Taiwan Ocean Research Institute, Kaohsiung, 85243, Taiwan
- Graduate Institute of Marine Biology, National Dong Hwa University, Hualien, 97401, Taiwan
| | - Meng-Hsien Chen
- Institute of Marine Ecology and Conservation, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
- Water Resources Research Center, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
6
|
Stukel MR, Décima M, Fender CK, Gutierrez-Rodriguez A, Selph KE. Gelatinous filter feeders increase ecosystem efficiency. Commun Biol 2024; 7:1039. [PMID: 39179787 PMCID: PMC11343865 DOI: 10.1038/s42003-024-06717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
Gelatinous filter feeders (e.g., salps, doliolids, and pyrosomes) have high filtration rates and can feed at predator:prey size ratios exceeding 10,000:1, yet are seldom included in ecosystem or climate models. We investigated foodweb and trophic dynamics in the presence and absence of salp blooms using traditional productivity and grazing measurements combined with compound-specific isotopic analysis of amino acids estimation of trophic position during Lagrangian framework experiments in the Southern Ocean. Trophic positions of salps ranging 10-132 mm in size were 2.2 ± 0.3 (mean ± std) compared to 2.6 ± 0.4 for smaller (mostly crustacean) mesozooplankton. The mostly herbivorous salp trophic position was maintained despite biomass dominance of ~10-µm-sized primary producers. We show that potential energy flux to >10-cm organisms increases by approximately an order of magnitude when salps are abundant, even without substantial alteration to primary production. Comparison to a wider dataset from other marine regions shows that alterations to herbivore communities are a better predictor of ecosystem transfer efficiency than primary-producer dynamics. These results suggest that diverse consumer communities and intraguild predation complicate climate change predictions (e.g., trophic amplification) based on linear food chains. These compensatory foodweb dynamics should be included in models that forecast marine ecosystem responses to warming and reduced nutrient supply.
Collapse
Affiliation(s)
- Michael R Stukel
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, USA.
- Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, FL, USA.
| | - Moira Décima
- Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA
| | - Christian K Fender
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, USA
| | | | - Karen E Selph
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
7
|
Di Capua I, Luise F, Zampicinini G, Roncalli V, Carotenuto Y, Piredda R. Integrative approach to monitoring metazoan diversity and distribution in two Mediterranean coastal sites through morphology and organismal eDNA. Sci Rep 2024; 14:19291. [PMID: 39164301 PMCID: PMC11336219 DOI: 10.1038/s41598-024-69520-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024] Open
Abstract
Marine and coastal ecosystems respond to climate change in various ways, such as the type of ecosystem, the species composition, interactions, and distribution, and the effect of local stressors. Metazoan organisms, particularly zooplankton, are important indicators for monitoring the effects climate-driven warming in marine coastal ecosystems over the long term. In this study, the diversity and distribution of zooplankton communities in the Mediterranean Sea (Canyon Dohrn and LTER-MareChiara, Gulf of Naples), a known biodiversity and climate changes hotspot, have been assessed using the integration of morphological-based identification and organismal eDNA. Our findings showed that the multi-locus strategy including the mitochondrial cytochrome c oxidase I (COI) gene and the hypervariable region V9 of the 18S rDNA (18S V9) as targets, improved the taxonomic overview, with the COI gene being more effective than the 18S V9 region for metazoans at the species level. However, appendicularians were detected only with the 18S V9 region. Overall, organismal eDNA is a powerful approach for revealing hidden biodiversity, especially for gelatinous and meroplankton components, and provided new insights into biodiversity patterns. The ecological importance of calanoid copepods in coastal ecosystems has been confirmed. In contrast, the discovery of 13 new metazoan records in the Mediterranean Sea, including two non-indigenous copepod species, suggested that local stressors affect zooplankton community structure and resilience, highlighting the importance of biomonitoring and protecting marine coastal ecosystems.
Collapse
Affiliation(s)
- Iole Di Capua
- Marine Organism Taxonomy Core Facility - MOTax, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy.
| | | | | | - Vittoria Roncalli
- Marine Organism Taxonomy Core Facility - MOTax, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Ylenia Carotenuto
- Marine Organism Taxonomy Core Facility - MOTax, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Roberta Piredda
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
8
|
Sun Z, Song D, Fan M. Dynamics of a stoichiometric phytoplankton-zooplankton model with season-driven light intensity. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:6870-6897. [PMID: 39483097 DOI: 10.3934/mbe.2024301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Chemical heterogeneity significantly influences the dynamics of phytoplankton and zooplankton interactions through its effects on phytoplankton carrying capacity and zooplankton ingestion rates. Our central objective of this study was to develop and examine a nonautonomous model of phytoplankton-zooplankton growth, which incorporates season-driven variations in light intensity and chemical heterogeneity. The dynamics of the system is characterized by positive invariance, dissipativity, boundary dynamics, and internal dynamics. Subsequently, numerical simulations were conducted to validate the theoretical findings and to elucidate the effects of seasonal light intensity, nutrient availability, and zooplankton loss rates on phytoplankton dynamics. The outcomes of our model and analysis offer a potential explanation for seasonal phytoplankton blooms.
Collapse
Affiliation(s)
- Zhenyao Sun
- School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, China
| | - Da Song
- School of Science, Shanghai Maritime University, 1550 Haigang Avenue, Shanghai, 201306, China
| | - Meng Fan
- School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, China
| |
Collapse
|
9
|
Zhang Z, Bao Y, Fang X, Ruan Y, Rong Y, Yang G. A circumpolar study of surface zooplankton biodiversity of the Southern Ocean based on eDNA metabarcoding. ENVIRONMENTAL RESEARCH 2024; 255:119183. [PMID: 38768883 DOI: 10.1016/j.envres.2024.119183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/02/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Under pressure from climate change and fishing, the Southern Ocean ecosystems have been changing. Zooplankton plays a vital role in the food web of the Southern Ocean and is crucial for maintaining ecosystem stability. Investigating the circumpolar-scale species composition and biodiversity of zooplankton is crucial for ensuring ecosystem-based conservation and management of the Southern Ocean in a changing climate. Here, we utilized eDNA metabarcoding to assess the biodiversity of zooplankton in the surface seawater surrounding the Antarctica based on samples collected during two expeditions spanning from 2021 to 2022. The main purpose of this paper is to provide more baseline information about circumpolar zooplankton biodiversity based on the emerging eDNA metabarcoding tool. This comprehensive approach led to the identification of over 300 distinct zooplankton species, forming a diverse community dominated by Jellyfish, Mollusca and Polychaete. Surprisingly, common dominant taxonomic groups such as krill and copepods in the Southern Ocean did not show high relative abundance (reads) in surface seawater. The results of redundancy analysis (RDA) and correlation analysis highlighted that water temperature and chlorophyll a had the most significant impact on the reads and diversity of zooplankton. Notably, the influence of water temperature on zooplankton seemed to be primarily indirect, potentially mediated by its effects on primary productivity. Increasing in primary production might lead to lower zooplankton biodiversity in the Southern Ocean in future. This research underscores the effectiveness of eDNA metabarcoding as a valuable tool for monitoring zooplankton diversity in open seas. Given the ongoing changes in temperature, sea ice extent and their impact on primary production, our findings lay a crucial foundation for using eDNA techniques to establish long-term biodiversity monitoring programs across extensive marine ecosystems in the future.
Collapse
Affiliation(s)
- Zishang Zhang
- College of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Yongchao Bao
- College of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiaoyue Fang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yilin Ruan
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Yue Rong
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Guang Yang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 10049, China.
| |
Collapse
|
10
|
Thorpe RB. We need to talk about the role of zooplankton in marine food webs. JOURNAL OF FISH BIOLOGY 2024; 105:444-458. [PMID: 38777334 DOI: 10.1111/jfb.15773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/25/2024]
Abstract
Zooplankton are the key intermediary between primary production and the fish community and a cornerstone of marine food webs, but they are often poorly represented in models that tend to focus on fish, charismatic top predators, or ocean biogeochemistry. In this study, we use an intermediate complexity end-to-end food web model of the North Sea with explicit two-way coupling of zooplankton to phytoplankton and higher trophic levels to ask whether this matters. We vary the metabolic rate of omnivorous zooplankton (OZ) as a proxy for uncertainties in our understanding and modeling of zooplankton form and function, and moving beyond previous studies we look at the impacts on the food web in concert with climate warming and fishing. We consider impacts on food web state and time to recover the relevant unfished state after fishing ceases. We also consider potential impacts on pelagic and demersal fishing fleets if we assume that they are constrained by the requirement to allow recovery to an unfished state within a certain period of time as a way of ensuring consistency with Good Environmental Status as required by EU and UK legislation. We find that all three aspects considered are highly sensitive to changes in the treatment of zooplankton, with impacts being larger than for warming of 2 or 4°C across most food web functional groups, particularly for apex predators. We call for a programme of research aimed at improving our understanding of zooplankton ecology and its relationship to the wider food web, and we recommend that improved representations of zooplankton are incorporated in future modeling studies as a priority.
Collapse
Affiliation(s)
- Robert B Thorpe
- Department of Fisheries Ecosystems and Management Advice (FEMA), Centre for Environment Fisheries and Aquaculture Science, Pakefield, Lowestoft, Suffolk, UK
| |
Collapse
|
11
|
Borja A, Berg T, Gundersen H, Hagen AG, Hancke K, Korpinen S, Leal MC, Luisetti T, Menchaca I, Murray C, Piet G, Pitois S, Rodríguez-Ezpeleta N, Sample JE, Talbot E, Uyarra MC. Innovative and practical tools for monitoring and assessing biodiversity status and impacts of multiple human pressures in marine systems. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:694. [PMID: 38963575 DOI: 10.1007/s10661-024-12861-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
Human activities at sea can produce pressures and cumulative effects on ecosystem components that need to be monitored and assessed in a cost-effective manner. Five Horizon European projects have joined forces to collaboratively increase our knowledge and skills to monitor and assess the ocean in an innovative way, assisting managers and policy-makers in taking decisions to maintain sustainable activities at sea. Here, we present and discuss the status of some methods revised during a summer school, aiming at better management of coasts and seas. We include novel methods to monitor the coastal and ocean waters (e.g. environmental DNA, drones, imaging and artificial intelligence, climate modelling and spatial planning) and innovative tools to assess the status (e.g. cumulative impacts assessment, multiple pressures, Nested Environmental status Assessment Tool (NEAT), ecosystem services assessment or a new unifying approach). As a concluding remark, some of the most important challenges ahead are assessing the pros and cons of novel methods, comparing them with benchmark technologies and integrating these into long-standing time series for data continuity. This requires transition periods and careful planning, which can be covered through an intense collaboration of current and future European projects on marine biodiversity and ecosystem health.
Collapse
Affiliation(s)
- Angel Borja
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea S/N, 20110, Pasaia, Spain.
| | - Torsten Berg
- MariLim Aquatic Research GmbH, 24232, Schönkirchen, Germany
| | - Hege Gundersen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | | | - Kasper Hancke
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Samuli Korpinen
- Finnish Environment Institute, Marine Research Centre, Helsinki, Finland
| | - Miguel C Leal
- Science Crunchers, Scitation Lda, TecLabs - Campus da FCUL, 1749-016, Lisbon, Portugal
| | | | - Iratxe Menchaca
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea S/N, 20110, Pasaia, Spain
| | - Ciaran Murray
- NIVA Denmark Water Research, 2300, Copenhagen S, Denmark
| | - GerJan Piet
- Wageningen University and Research, Wageningen Marine Research, P.O. Box 57, 1780 AB, Den Helder, the Netherlands
| | | | - Naiara Rodríguez-Ezpeleta
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea Z/G, 48395, Sukarrieta, Spain
| | - James E Sample
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Elizabeth Talbot
- Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK
| | - María C Uyarra
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea S/N, 20110, Pasaia, Spain
| |
Collapse
|
12
|
Li Z, Xu K, Meng M, Xu Y, Ji D, Wang W, Xie C. Environmental heterogeneity caused by large-scale cultivation of Pyropia haitanensis shapes multi-group biodiversity distribution in coastal areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172692. [PMID: 38663622 DOI: 10.1016/j.scitotenv.2024.172692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/09/2024]
Abstract
The response of marine biodiversity to mariculture has long been a research focus in marine ecology. However, the effects of seaweed cultivation on biological community assembly are poorly understood, especially in diverse communities with distinct ecological characteristics. In this study, we used environmental DNA metabarcoding to investigate the spatial distribution patterns of bacterial, protistan, and metazoan diversity, aiming to reveal the mechanisms of community assembly in the Pyropia haitanensis cultivation zone along the Fujian coast, China. We found that, compared with the biological communities in control zones, those in P. haitanensis cultivation zones exhibited stronger geographic distance-decay patterns and displayed more complex and stable network structures. Deterministic processes (environmental selection) played a more important role in the assembly of bacterial, protistan, and metazoan communities in P. haitanensis cultivation zones, especially metazoan communities. Variance partitioning analysis showed that environmental variables made greater contributions to the diversity of the three types of communities within the P. haitanensis cultivation zones than in the control zones. Partial least squares path modeling analysis identified nitrate‑nitrogen (NO3-N), pH, particulate organic carbon (POC), and dissolved organic carbon (DOC) as the key environmental variables affecting biodiversity. Overall, the environmental heterogeneity caused by the large-scale cultivation of P. haitanensis could be the crucial factor influencing the composition and structure of various biological communities. Our results highlight the importance of the responses of multi-group organisms to the cultivation of seaweed, and provide insights into the coexistence patterns of biodiversity at the spatial scale.
Collapse
Affiliation(s)
- Zongtang Li
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde 352100, China
| | - Kai Xu
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde 352100, China
| | - Muhan Meng
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde 352100, China
| | - Dehua Ji
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde 352100, China
| | - Wenlei Wang
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde 352100, China.
| | - Chaotian Xie
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde 352100, China.
| |
Collapse
|
13
|
Prosnier L. Zooplankton as a model to study the effects of anthropogenic sounds on aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172489. [PMID: 38621539 DOI: 10.1016/j.scitotenv.2024.172489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/23/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
There is a growing interest in the impact of acoustic pollution on aquatic ecosystems. Currently, research has primarily focused on hearing species, particularly fishes and mammals. However, species from lower trophic levels, including many invertebrates, are less studied despite their ecological significance. Among these taxa, studies examining the effects of sound on holozooplankton are extremely rare. This literature review examines the effects of sound on both marine and freshwater zooplankton. It highlights two differences: the few used organisms and the types of sound source. Marine studies focus on the effects of very intense acute sound on copepods, while freshwater studies focus on less intense chronic sound on cladocerans. But, in both, various negative effects are reported. The effects of sound remain largely unknown, although previous studies have shown that zooplankton can detect vibrations using mechanoreceptors. The perception of their environment can be affected by sounds, potentially causing stress. Limited research suggests that sound may affect the physiology, behaviour, and fitness of zooplankton. Following this review, I highlight the potential to use methods from ecology, ecotoxicology, and parasitology to study the effects of sound at the individual level, including changes in physiology, development, survival, and behaviour. Responses to sound, which could alter species interactions and population dynamics, are expected to have larger-scale implications with bottom-up effects, such as changes in food web dynamics and ecosystem functioning. To improve the study of the effect of sound, to better use zooplankton as biological models and as bioindicators, researchers need to better understand how they perceive their acoustic environment. Consequently, an important challenge is the measurement of particle motion to establish useable dose-response relationships and particle motion soundscapes.
Collapse
Affiliation(s)
- Loïc Prosnier
- Faculté des Sciences et Techniques, University of Saint Etienne, Saint-Etienne, France; France Travail, Saint-Etienne, France.
| |
Collapse
|
14
|
Lin H, Wei Y, Li S, Mao X, Qin J, Su S, He T. Changes in transcriptome regulations of a marine rotifer Brachionus plicatilis under methylmercury stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101177. [PMID: 38104474 DOI: 10.1016/j.cbd.2023.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Mercury (Hg), a heavy metal pollutant worldwide, can be transformed into methylmercury (MeHg) by various aquatic microorganisms in water, thus accumulating along the aquatic food chain and posing a particular challenge to human health. Zooplankton plays a crucial role in aquatic ecosystems and serves as a major component of the food chain. To evaluate the effects of MeHg on the rotifer Brachionus plicatilis and reveal the underlying mechanism of these effects, we exposed B. plicatilis to MeHg by either direct immersion or by feeding with MeHg-poisoned Chlorella pyrenoidesa, respectively, and conducted a transcriptomic analysis. The results showed that B. plicatilis directly exposed to MeHg by immersion showed significant enrichment of the glutathione metabolism pathway for detoxification of MeHg. In addition, the exposure to MeHg by feeding induced a significant enrichment of lysosome and notch signaling pathways of rotifers, supporting the hypothesis that MeHg can induce autophagy dysfunction in cells and disturb the nervous system of rotifers. In two different routes of MeHg exposure, the pathway of cytochrome P450 in rotifers showed significant enrichment for resisting MeHg toxicity. Our results suggest further studies on the potential mechanism and biological responses of MeHg toxicity in other links of the aquatic food chain.
Collapse
Affiliation(s)
- Hangyu Lin
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China
| | - Yanlin Wei
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China
| | - Songzhang Li
- College of Fisheries, Southwest University, Chongqing 400715, China
| | - Xiaodong Mao
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, South Australia 5001, Australia
| | - Shengqi Su
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China.
| | - Tao He
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China.
| |
Collapse
|
15
|
Zhou Q, Dong X, Wang J, Ye Y, Yang Y, Xiang P, Chen Y, Zheng X. Critical factors driving spatiotemporal variability in the phytoplankton community structure of the coral habitat in Dongshan Bay, China. Front Microbiol 2024; 15:1355028. [PMID: 38435699 PMCID: PMC10904553 DOI: 10.3389/fmicb.2024.1355028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
This study investigated the spatiotemporal distribution of the phytoplankton in the coral habitat of Dongshan Bay (China), along with critical factors affecting the distribution, during June, August, and December 2022. Phytoplankton abundance in Dongshan Bay exhibited considerably temporal variation, peaking in June 2022, gradually decreasing thereafter, and reaching its lowest point in December 2022. The abundance of bottom-layer phytoplankton consistently exceeded that of the surface layer throughout all seasons. The average phytoplankton abundance in the coral habitat of Dongshan Bay was lower than that in non-coral habitat areas. Fluctuations in the Zhangjiang River and coastal upwelling influenced the diversity and community structure of the phytoplankton. Critical factors causing spatiotemporal variability in phytoplankton community structure included nutrient concentrations and seawater temperature. Nutrients played key roles in influencing various phytoplankton groups. Dominant diatom species, such as Thalassionema nitzschioides and Thalassiosira diporocyclus, were positively correlated with ammonia nitrogen, seawater salinity, coral cover, and the number of coral species present. In winter, Calanus sinicus exhibited a negative correlation with harmful algal bloom species. Additionally, it was found that both in the coral habitat and surrounding open sea, currents, nutrients, and zooplankton may play crucial roles in determining the spatiotemporal variability in the phytoplankton community structure.
Collapse
Affiliation(s)
- Qianqian Zhou
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Fujian Provincial Station for Field Observation and Research of Island and Coastal Zone in Zhangzhou, Zhangzhou, China
- Observation and Research Station of Island and Coastal Ecosystem in the Western Taiwan Strait, MNR, Xiamen, China
| | - Xu Dong
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Fujian Provincial Station for Field Observation and Research of Island and Coastal Zone in Zhangzhou, Zhangzhou, China
- Observation and Research Station of Island and Coastal Ecosystem in the Western Taiwan Strait, MNR, Xiamen, China
| | - Jianjia Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Fujian Provincial Station for Field Observation and Research of Island and Coastal Zone in Zhangzhou, Zhangzhou, China
- Observation and Research Station of Island and Coastal Ecosystem in the Western Taiwan Strait, MNR, Xiamen, China
| | - Youyin Ye
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yanyan Yang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Peng Xiang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yanghang Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xinqing Zheng
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Fujian Provincial Station for Field Observation and Research of Island and Coastal Zone in Zhangzhou, Zhangzhou, China
- Observation and Research Station of Island and Coastal Ecosystem in the Western Taiwan Strait, MNR, Xiamen, China
| |
Collapse
|
16
|
Uttieri M, Svetlichny L. Escape performance in the cyclopoid copepod Oithona davisae. Sci Rep 2024; 14:1078. [PMID: 38212397 PMCID: PMC10784515 DOI: 10.1038/s41598-024-51288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024] Open
Abstract
Escaping a predator is one of the keys to success for any living creature. The performance of adults (males, females, and ovigerous females) of the cyclopoid copepod Oithona davisae exposed to an electrical stimulus is analysed as a function of temperature by measuring characteristic parameters associated with the escape movement (distance covered, duration of the appendage movement, mean and maximum escape speeds, Reynolds number). In addition, as a proxy for the efficiency of the motion, the Strouhal number was calculated. The escape performance showed temperature-dependent relationships within each adult state, as well as differences between sexes; additionally, changes owing to the presence of the egg sac were recorded in females. In a broader perspective, the results collected reveal the occurrence of different behavioural adaptations in males and females, adding to the comprehension of the mechanisms by which O. davisae interacts with its environment and shedding new light on the in situ population dynamics of this species.
Collapse
Affiliation(s)
- Marco Uttieri
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy.
| | - Leonid Svetlichny
- Department of Invertebrate Fauna and Systematics, I. I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
17
|
Dalpadado P, Roxy MK, Arrigo KR, van Dijken GL, Chierici M, Ostrowski M, Skern-Mauritzen R, Bakke G, Richardson AJ, Sperfeld E. Rapid climate change alters the environment and biological production of the Indian Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167342. [PMID: 37758130 DOI: 10.1016/j.scitotenv.2023.167342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
We synthesize and review the impacts of climate change on the physical, chemical, and biological environments of the Indian Ocean and discuss mitigating actions and knowledge gaps. The most recent climate scenarios identify with high certainty that the Indian Ocean (IO) is experiencing one of the fastest surface warming among the world's oceans. The area of surface waters of >28 °C (IO Warm Pool) has significantly increased during 1982-2021 by expanding into the northern-central basins. A significant decrease in pH and aragonite (building blocks of calcified organisms) levels in the IO was observed from 1981-2020 due to an increase in atmospheric CO2 concentrations. There are also signals of decreasing trends in primary productivity in the north, likely related to enhanced stratification and nutrient depletion. Further, the rapid warming of the IO will manifest more extreme weather conditions along its adjacent continents and oceans, including marine heat waves that are likely to reshape biodiversity. However, the impact of climate change beyond the unprecedented warming, increase in marine heat waves, expansion of the IO Warm Pool, and decrease in pH, remains uncertain for many other key variables in the IO including changes in salinity, oxygen, and net primary production. Understanding the response of these physical, chemical, and biological variables to climate change is vital to project future changes in regional fisheries and identify mitigation actions. We accordingly conclude by identifying knowledge gaps and recommending directions for sustainable fisheries and climate impact studies.
Collapse
Affiliation(s)
| | - Mathew Koll Roxy
- Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
| | - Kevin R Arrigo
- Department of Earth System Science, Stanford University, Stanford, CA, United States
| | - Gert L van Dijken
- Department of Earth System Science, Stanford University, Stanford, CA, United States
| | | | - Marek Ostrowski
- Institute of Marine Research, PO Box 1870, 5817 Bergen, Norway
| | | | - Gunnstein Bakke
- Directorate of Fisheries, Strandgaten 229, 5804 Bergen, Norway
| | - Anthony J Richardson
- School of the Environment, University of Queensland, St. Lucia, 4072, QLD, Australia; CSIRO Environment, Queensland Biosciences Precinct, St Lucia, 4067, Queensland, Australia
| | - Erik Sperfeld
- Animal Ecology, Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| |
Collapse
|
18
|
Lin H, Mao X, Wei Y, Li S, Qin J, Zhu S, Su S, He T. Metabolic pathways of methylmercury in rotifer Brachionus plicatilis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167063. [PMID: 37709075 DOI: 10.1016/j.scitotenv.2023.167063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Methylmercury (MeHg) readily accumulates in aquatic organisms while transferring and amplifying in the aquatic food chains. This study firstly explores the in vivo accumulation sites and metabolic regulation of MeHg in the rotifer Brachionus plicatilis by aggregation-induced emission fluorogen (AIEgen) and metabolomics. Fluorescent image analysis by AIEgen showed that MeHg in B. plicatilis mainly occured in the ciliary corona, esophagus, mastax, stomach and intestine in the direct absorption group. In the other group, where B. plicatilis were indirectly supplied with MeHg via food intake, the accumulation of MeHg in the rotifer occurred in the ciliary corona, various digestive organs, and the pedal gland. However, the MeHg accumulated in the rotifer is difficult to metabolize outside the body. Metabolomics analysis showed that the significant enrichment of ABC transporters was induced by the direct exposure of rotifers to dissolved MeHg. In contrast, exposure of rotifers to MeHg via food intake appeared to influence carbon, galactose, alanine, aspartate and glutamate metabolisms. Besides, the disturbed biological pathways such as histidine metabolism, beta-alanine metabolism and pantothenate and CoA biosynthesis in rotifers may be associated with L-aspartic acid upregulation in the feeding group. The significant enrichment of ABC transporters and carbon metabolism in rotifers may be related to the accumulation of MeHg in the intestine of rotifers. In both pathways of MeHg exposure, the arginine biosynthesis and metabolism of rotifers were disturbed, which may support the hypothesis that rotifers produce more energy to resist MeHg toxicity. This study provides new insight into the accumulation and toxicity mechanisms of MeHg on marine invertebrates from the macro and micro perspectives.
Collapse
Affiliation(s)
- Hangyu Lin
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China
| | - Xiaodong Mao
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China
| | - Yanlin Wei
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China
| | - Songzhang Li
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, South Australia 5001, Australia
| | - Song Zhu
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China
| | - Shengqi Su
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China.
| | - Tao He
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China.
| |
Collapse
|
19
|
Choquet M, Lenner F, Cocco A, Toullec G, Corre E, Toullec JY, Wallberg A. Comparative Population Transcriptomics Provide New Insight into the Evolutionary History and Adaptive Potential of World Ocean Krill. Mol Biol Evol 2023; 40:msad225. [PMID: 37816123 PMCID: PMC10642690 DOI: 10.1093/molbev/msad225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
Genetic variation is instrumental for adaptation to changing environments but it is unclear how it is structured and contributes to adaptation in pelagic species lacking clear barriers to gene flow. Here, we applied comparative genomics to extensive transcriptome datasets from 20 krill species collected across the Atlantic, Indian, Pacific, and Southern Oceans. We compared genetic variation both within and between species to elucidate their evolutionary history and genomic bases of adaptation. We resolved phylogenetic interrelationships and uncovered genomic evidence to elevate the cryptic Euphausia similis var. armata into species. Levels of genetic variation and rates of adaptive protein evolution vary widely. Species endemic to the cold Southern Ocean, such as the Antarctic krill Euphausia superba, showed less genetic variation and lower evolutionary rates than other species. This could suggest a low adaptive potential to rapid climate change. We uncovered hundreds of candidate genes with signatures of adaptive evolution among Antarctic Euphausia but did not observe strong evidence of adaptive convergence with the predominantly Arctic Thysanoessa. We instead identified candidates for cold-adaptation that have also been detected in Antarctic fish, including genes that govern thermal reception such as TrpA1. Our results suggest parallel genetic responses to similar selection pressures across Antarctic taxa and provide new insights into the adaptive potential of important zooplankton already affected by climate change.
Collapse
Affiliation(s)
- Marvin Choquet
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Felix Lenner
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Arianna Cocco
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gaëlle Toullec
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Erwan Corre
- CNRS, Sorbonne Université, FR 2424, ABiMS Platform, Station Biologique de Roscoff, Roscoff, France
| | - Jean-Yves Toullec
- CNRS, UMR 7144, AD2M, Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Goździejewska AM, Kruk M. The response of zooplankton network indicators to winter water warming using shallow artificial reservoirs as model case study. Sci Rep 2023; 13:18002. [PMID: 37865664 PMCID: PMC10590368 DOI: 10.1038/s41598-023-45430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/19/2023] [Indexed: 10/23/2023] Open
Abstract
To predict the most likely scenarios, the consequences of the rise in water surface temperature have been studied using various methods. We tested the hypothesis that winter water warming significantly alters the importance and nature of the relationships in zooplankton communities in shallow reservoirs. These relationships were investigated using network graph analysis for three thermal variants: warm winters (WW), moderate winters (MW) and cold winters (CW). The CW network was the most cohesive and was controlled by eutrophic Rotifera and Copepoda, with a corresponding number of positive and negative interspecific relationships. An increase in water temperature in winter led to a decrease in the centrality of MW and WW networks, and an increase in the importance of species that communicated with the highest number of species in the subnetworks. The WW network was the least cohesive, controlled by psammophilous and phytophilous rotifers, and littoral cladocerans. Adult copepods were not identified in the network and the importance of antagonistic relationships decreased, indicating that the WW network structure was weak and unstable. This study can serve as a model for generalisations of zooplankton community response to the disappearance of long winter periods of low temperatures, as predicted in global climate change projections.
Collapse
Affiliation(s)
- Anna Maria Goździejewska
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719, Olsztyn, Poland.
| | - Marek Kruk
- Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Słoneczna 54, 10-710, Olsztyn, Poland
| |
Collapse
|
21
|
Jaspers C, Hopcroft RR, Kiørboe T, Lombard F, López-Urrutia Á, Everett JD, Richardson AJ. Gelatinous larvacean zooplankton can enhance trophic transfer and carbon sequestration. Trends Ecol Evol 2023; 38:980-993. [PMID: 37277269 DOI: 10.1016/j.tree.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023]
Abstract
Larvaceans are gelatinous zooplankton abundant throughout the ocean. Larvaceans have been overlooked in research because they are difficult to collect and are perceived as being unimportant in biogeochemical cycles and food-webs. We synthesise evidence that their unique biology enables larvaceans to transfer more carbon to higher trophic levels and deeper into the ocean than is commonly appreciated. Larvaceans could become even more important in the Anthropocene because they eat small phytoplankton that are predicted to become more prevalent under climate change, thus moderating projected future declines in ocean productivity and fisheries. We identify critical knowledge gaps and argue that larvaceans should be incorporated into ecosystem assessments and biogeochemical models to improve predictions of the future ocean.
Collapse
Affiliation(s)
- Cornelia Jaspers
- Centre for Gelatinous Plankton Ecology & Evolution, Technical University of Denmark, DTU Aqua, Kongens Lyngby, Denmark; Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Kongens Lyngby, Denmark.
| | | | - Thomas Kiørboe
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Fabien Lombard
- Sorbonne Université, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | - Ángel López-Urrutia
- Centro Oceanográfico de Gijón, Instituto Español de Oceanografia, IEO-CSIC, Gijón, Asturias, Spain
| | - Jason D Everett
- School of Environment, University of Queensland, Brisbane, QLD, Australia; CSIRO Environment, Queensland Biosciences Precinct, St Lucia, QLD, Australia; Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Anthony J Richardson
- School of Environment, University of Queensland, Brisbane, QLD, Australia; CSIRO Environment, Queensland Biosciences Precinct, St Lucia, QLD, Australia
| |
Collapse
|
22
|
Montie S, Thomsen MS. Facilitation of animals is stronger during summer marine heatwaves and around morphologically complex foundation species. Ecol Evol 2023; 13:e10512. [PMID: 37727775 PMCID: PMC10505761 DOI: 10.1002/ece3.10512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Foundation species create biogenic habitats, modify environmental conditions, augment biodiversity, and control animal community structures. In recent decades, marine heatwaves (MHWs) have affected the ecology of foundation species worldwide, and perhaps also their associated animal communities. However, no realistic field experiment has tested how MHWs affect animals that live in and around these foundation species. We therefore tested, in a four-factorial field experiment, if colonisation by small mobile marine animals (epifauna) onto plates with attached single versus co-occurring foundation species of different morphological complexities, were affected by 3-5°C heating (that mirrored a recent extreme MHW in the study area) and if the heating effect on the epifauna varied within and between seasons. For this experiment mimics of turf seaweed represented the single foundation species and holdfasts of seven common canopy-forming seaweed represented the co-occurring foundation species with different morphological complexities. We found that the taxonomic richness and total abundance of epifauna, dominated by copepods, generally were higher on heated plates with complex seaweed holdfasts in warmer summer trials. Furthermore, several interactions between test-factors were significant, e.g., epifaunal abundances, were, across taxonomic groups, generally higher in warmer than colder summer trials. These results suggest that, in temperate ecosystems, small, mobile, short-lived, and fast-growing marine epifauna can be facilitated by warmer oceans and morphologically complex foundation species, implying that future MHWs may increase secondary production and trophic transfers between primary producers and fish. Future studies should test whether these results can be scaled to other ecological species-interactions, across latitudes and biogeographical regions, and if similar results are found after longer MHWs or within live foundation species under real MHW conditions.
Collapse
Affiliation(s)
- Shinae Montie
- Marine Ecology Research Group, School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Mads S. Thomsen
- Marine Ecology Research Group, School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
- Aarhus UniversityDepartment of EcoscienceRoskildeDenmark
| |
Collapse
|
23
|
Roberts AJ, Suttle CA. Pathogens and Passengers: Roles for Crustacean Zooplankton Viruses in the Global Ocean. Microorganisms 2023; 11:microorganisms11041054. [PMID: 37110477 PMCID: PMC10142142 DOI: 10.3390/microorganisms11041054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Viruses infect all living organisms, but the viruses of most marine animals are largely unknown. Crustacean zooplankton are a functional lynchpin in marine food webs, but very few have been interrogated for their associated viruses despite the profound potential effects of viral infection. Nonetheless, it is clear that the diversity of viruses in crustacean zooplankton is enormous, including members of all realms of RNA viruses, as well as single- and double-stranded DNA viruses, in many cases representing deep branches of viral evolution. As there is clear evidence that many of these viruses infect and replicate in zooplankton species, we posit that viral infection is likely responsible for a significant portion of unexplained non-consumptive mortality in this group. In turn, this infection affects food webs and alters biogeochemical cycling. In addition to the direct impacts of infection, zooplankton can vector economically devastating viruses of finfish and other crustaceans. The dissemination of these viruses is facilitated by the movement of zooplankton vertically between epi- and mesopelagic communities through seasonal and diel vertical migration (DVM) and across long distances in ship ballast water. The large potential impact of viruses on crustacean zooplankton emphasises the need to clearly establish the relationships between specific viruses and the zooplankton they infect and investigate disease and mortality for these host-virus pairs. Such data will enable investigations into a link between viral infection and seasonal dynamics of host populations. We are only beginning to uncover the diversity and function of viruses associated with crustacean zooplankton.
Collapse
Affiliation(s)
- Alastair J Roberts
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Curtis A Suttle
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|