1
|
Huda N, Kusumanchi P, Jiang Y, Gao H, Thoudam T, Zeng G, Skill NJ, Sun Z, Liangpunsakul S, Ma J, Yang Z. Silencing FAF2 mitigates alcohol-induced hepatic steatosis by modulating lipolysis and PCSK9 pathway. Hepatol Commun 2025; 9:e0641. [PMID: 39969435 PMCID: PMC11841855 DOI: 10.1097/hc9.0000000000000641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/02/2024] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Chronic alcohol consumption leads to lipid accumulation, oxidative stress, cellular damage, and inflammation in the liver, collectively referred to as alcohol-associated liver disease (ALD). FAF2/UBXD8/ETEA (Fas-associated factor 2) is a ubiquitin ligase adaptor protein that plays a crucial role in the ubiquitin-mediated degradation of misfolded proteins in the endoplasmic reticulum. A recent genome-wide association study indicated an association between FAF2 and ALD; however, the exact contribution of FAF2 to ALD pathogenesis remains unclear. METHODS FAF2 was knocked down using AAV-delivered shRNA in C57/BL6 mice. Mice were subjected to a chronic-plus-single binge ethanol feeding (NIAAA) model. Nine hours after gavage, liver, blood, and other organs of interest were collected for gene expression and biochemical analyses. RESULTS We first observed a significant elevation in hepatic FAF2 protein expression in individuals with ALD and in mice subjected to an ethanol-binge model. Interestingly, knocking down FAF2 in the liver using adeno-associated virus serotype 8-delivered short hairpin RNA conferred a protective effect against alcohol-induced liver steatosis in ethanol-binged mice. Transcriptomic analysis revealed that differentially expressed genes were enriched in multiple lipid metabolism regulation pathways. Further analysis of transcription factors regulating these differentially expressed genes suggested potential regulation by SREBP1. Several SREBP1 target genes, including Fasn, Scd1, Lpin1, and Pcsk9 (proprotein convertase subtilisin/kexin type 9), were dysregulated in the livers of ethanol-fed FAF2 knockdown mice. Additionally, Pcsk9 could be regulated through the FOXO3-SIRT6 pathway in the livers of ethanol-fed FAF2 knockdown mice, leading to increased liver low-density lipoprotein receptor expression and reduced plasma LDL cholesterol levels. Furthermore, FAF2 knockdown in mouse liver enhanced adipose triglyceride lipase lipolytic activity by upregulating the adipose triglyceride lipase activator, comparative gene identification-58, and downregulating the adipose triglyceridelipase transport inhibitor, Elmod2, contributing to the alleviation of liver steatosis. CONCLUSIONS Our study uncovers a novel mechanism involving FAF2 in the pathogenesis of ALD.
Collapse
Affiliation(s)
- Nazmul Huda
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Praveen Kusumanchi
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yanchao Jiang
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hui Gao
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Themis Thoudam
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ge Zeng
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nicholas J. Skill
- Department of Surgery, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - Zhaoli Sun
- Department of Surgery, John Hopkins University, Baltimore, Maryland, USA
| | - Suthat Liangpunsakul
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Jing Ma
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zhihong Yang
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Zhu Y, Chen S, Su H, Meng Y, Zang C, Ning P, Hu L, Shao H. CPT1A-mediated MFF succinylation promotes stemness maintenance in ovarian cancer stem cells. Commun Biol 2025; 8:250. [PMID: 39956875 PMCID: PMC11830779 DOI: 10.1038/s42003-025-07720-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/11/2025] [Indexed: 02/18/2025] Open
Abstract
Cancer stem cells (CSCs) play crucial roles in cancer progression, immune evasion, drug resistance, and recurrence. Understanding the mechanisms behind CSCs generation and stemness maintenance is vital for early cancer diagnosis and treatment. Here, we unveil that carnitine palmitoyltransferase 1A (CPT1A) is highly expressed in ovarian cancer stem cells (OCSCs) and is essential for maintaining stemness by regulating lipid desaturation. Studies confirmed that CPT1A enhances SREBP1 activation, upregulating SCD1 expression, and promoting lipid desaturation in OCSCs. Mechanistic studies reveal that CPT1A promotes succinylation of mitochondrial fission factor (MFF) through its lysine succinyltransferase (LSTase) activity, crucial for mitochondria-associated membranes formation and SREBP1 activation. Inhibiting CPT1A's LSTase activity with Glyburide reduces OCSCs' stemness and enhances cisplatin's anti-tumor effects against ovarian cancer in vitro and in vivo. Together, our studies highlight the significance of CPT1A's LSTase activity in maintaining OCSCs' stemness, offering potential targets and therapeutic strategies for ovarian cancer treatment.
Collapse
Affiliation(s)
- Yaqin Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Shuting Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Hong Su
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yaning Meng
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Chen Zang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Panjiao Ning
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Lele Hu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Huanjie Shao
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Wang H, Fan S, Zhan Y, Xu Y, Du Y, Luo J, Zang H, Peng S, Wang W. Targeting EGFR-binding protein SLC7A11 enhancing antitumor immunity of T cells via inducing MHC-I antigen presentation in nasopharyngeal carcinoma. Cell Death Dis 2025; 16:21. [PMID: 39820491 PMCID: PMC11739652 DOI: 10.1038/s41419-024-07327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/08/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025]
Abstract
Approximately 80% of nasopharyngeal carcinoma (NPC) patients exhibit EGFR overexpression. The overexpression of EGFR has been linked to its potential role in modulating major histocompatibility complex class I (MHC-I) molecules. We discovered that EGFR, operating in a kinase-independent manner, played a role in stabilizing the expression of SLC7A11, which subsequently inhibited MHC-I antigen presentation. This mechanism, in turn, provided protection to NPC cells against T cell-mediated cytotoxicity. The underlying molecular processes revealed that the high and stable expression of SLC7A11 hindered the nuclear entry of GR, thereby suppressing TAP1 transcription and the presentation of MHC-I molecules. Additionally, elevated SLC7A11 expression led to an increase in FAF2 expression and triggered ERAD-dependent degradation of MHC-I, resulting in a reduction of MHC-I molecules on the cell membrane. The NPC patients exhibiting high EGFR and low MHC-I expression, combined with a scarcity of CD8+ T cells (EGFRhighMHC-IlowCD8few phenotype), experienced considerably shorter overall survival times compared to other situations. What is more, our study demonstrated that sorafenib had the capability to enhance the MHC-I antigen presentation process, thereby facilitating T cell-mediated killing of NPC cells via targeting SLC7A11. Consequently, targeting SLC7A11 with sorafenib emerges as a promising therapeutic strategy for the treatment of NPC.
Collapse
Affiliation(s)
- Haihua Wang
- Department of Pathology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, 570216, Haikou, Hainan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, 410011, Changsha, Hunan, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, 410011, Changsha, Hunan, China
| | - Yue Xu
- Department of Pathology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, 410011, Changsha, Hunan, China
| | - Yao Du
- Department of Pathology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, 410011, Changsha, Hunan, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, 410011, Changsha, Hunan, China
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, 410011, Changsha, Hunan, China
| | - Shuping Peng
- Cancer Research Institute, School of Basic Medical Science, Central South University, 410078, Changsha, Hunan, China
| | - Weiyuan Wang
- Department of Pathology, The Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
4
|
Domingues N, Pires J, Milosevic I, Raimundo N. Role of lipids in interorganelle communication. Trends Cell Biol 2025; 35:46-58. [PMID: 38866684 PMCID: PMC11632148 DOI: 10.1016/j.tcb.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Cell homeostasis and function rely on well-orchestrated communication between different organelles. This communication is ensured by signaling pathways and membrane contact sites between organelles. Many players involved in organelle crosstalk have been identified, predominantly proteins and ions. The role of lipids in interorganelle communication remains poorly understood. With the development and broader availability of methods to quantify lipids, as well as improved spatiotemporal resolution in detecting different lipid species, the contribution of lipids to organelle interactions starts to be evident. However, the specific roles of various lipid molecules in intracellular communication remain to be studied systematically. We summarize new insights in the interorganelle communication field from the perspective of organelles and discuss the roles played by lipids in these complex processes.
Collapse
Affiliation(s)
- Neuza Domingues
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Joana Pires
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Ira Milosevic
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nuno Raimundo
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal; Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA; Penn State Cancer Institute, Hershey, PA, USA.
| |
Collapse
|
5
|
Kim C, Gabriel KR, Boone D, Brown MR, Oppenheimer K, Kost-Alimova M, Pablo JLB, Greka A. FAF2 is a bifunctional regulator of peroxisomal homeostasis and saturated lipid responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628015. [PMID: 39763943 PMCID: PMC11702540 DOI: 10.1101/2024.12.12.628015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Exposure to saturated fatty acids (SFAs), such as palmitic acid, can lead to cellular metabolic dysfunction known as lipotoxicity. Although canonical adaptive metabolic processes like lipid storage or desaturation are known cellular responses to saturated fat exposure, the link between SFA metabolism and organellar biology remains an area of active inquiry. We performed a genome-wide CRISPR knockout screen in human epithelial cells to identify modulators of SFA toxicity. The screen revealed peroxisomal proteins, especially those that impact ether lipid synthesis, as important regulators of lipotoxicity. We identified Fas-associated factor family member 2 (FAF2) as a critical bifunctional co-regulator of peroxisomal and fatty acid biology. We further uncovered a new biological function for the ubiquitin-regulatory X (UBX) and UAS thioredoxin-like domains of FAF2, demonstrating their requirement for peroxisomal protein abundance and SFA-induced cellular stress. Our work highlights the role of FAF2 in regulating peroxisomal abundance and function, and the peroxisome as a key organelle in the cellular response to SFAs.
Collapse
Affiliation(s)
- Choah Kim
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Mass General Brigham, Boston, MA 02115, USA
| | - Katlyn R. Gabriel
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Medicine, Mass General Brigham, Boston, MA 02115, USA
| | - Dylan Boone
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Katherine Oppenheimer
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Mass General Brigham, Boston, MA 02115, USA
| | | | | | - Anna Greka
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Mass General Brigham, Boston, MA 02115, USA
| |
Collapse
|
6
|
Koyano F, Yamano K, Hoshina T, Kosako H, Fujiki Y, Tanaka K, Matsuda N. AAA+ ATPase chaperone p97/VCP FAF2 governs basal pexophagy. Nat Commun 2024; 15:9347. [PMID: 39472561 PMCID: PMC11522385 DOI: 10.1038/s41467-024-53558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Peroxisomes are organelles that are central to lipid metabolism and chemical detoxification. Despite advances in our understanding of peroxisome biogenesis, the mechanisms maintaining peroxisomal membrane proteins remain to be fully elucidated. We show here that mammalian FAF2/UBXD8, a membrane-associated cofactor of p97/VCP, maintains peroxisomal homeostasis by modulating the turnover of peroxisomal membrane proteins such as PMP70. In FAF2-deficient cells, PMP70 accumulation recruits the autophagy adaptor OPTN (Optineurin) to peroxisomes and promotes their autophagic clearance (pexophagy). Pexophagy is also induced by p97/VCP inhibition. FAF2 functions together with p97/VCP to negatively regulate pexophagy rather than as a factor for peroxisome biogenesis. Our results strongly suggest that p97/VCPFAF2-mediated extraction of ubiquitylated peroxisomal membrane proteins (e.g., PMP70) prevents peroxisomes from inducing nonessential autophagy under steady state conditions. These findings provide insight into molecular mechanisms underlying the regulation of peroxisomal integrity by p97/VCP and its associated cofactors.
Collapse
Affiliation(s)
- Fumika Koyano
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU) (Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Koji Yamano
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU) (Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Tomoyuki Hoshina
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU) (Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Institute of Rheological Functions of Food-Kyushu University Collaboration Program, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Institute for Advanced Study, Kyushu University, Fukuoka, 816-8580, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Noriyuki Matsuda
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU) (Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
7
|
Montes ID, Amirthagunanathan S, Joshi AS, Raman M. The p97-UBXD8 complex maintains peroxisome abundance by suppressing pexophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614749. [PMID: 39386596 PMCID: PMC11463529 DOI: 10.1101/2024.09.24.614749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Peroxisomes are vital organelles involved in key metabolic functions in eukaryotic cells. Their significance is highlighted by peroxisome biogenesis disorders; severe childhood diseases marked by disrupted lipid metabolism. One mechanism regulating peroxisome abundance is through selective ubiquitylation of peroxisomal membrane proteins that triggers peroxisome degradation via selective autophagy (pexophagy). However, the mechanisms regulating pexophagy remain poorly understood in mammalian cells. Here we show that the evolutionarily conserved AAA-ATPase p97 and its membrane embedded adaptor UBXD8 are essential for maintaining peroxisome abundance. From quantitative proteomic studies we reveal that loss of UBXD8 affects many peroxisomal proteins. We find depletion of UBXD8 results in a loss of peroxisomes in a manner that is independent of the known role of UBXD8 in ER associated degradation (ERAD). Loss of UBXD8 or inhibition of p97 increases peroxisomal turnover through autophagy and can be rescued by depleting key autophagy proteins or overexpressing the deubiquitylating enzyme USP30. Furthermore, we find increased ubiquitylation of the peroxisomal membrane protein PMP70 in cells lacking UBXD8 or p97. Collectively, our findings identify a new role for the p97-UBXD8 complex in regulating peroxisome abundance by suppressing pexophagy.
Collapse
Affiliation(s)
- Iris D. Montes
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston MA
| | | | - Amit S. Joshi
- Department of Biochemistry & Cell and Molecular Biology, University of Tennessee, Knoxville, TN
| | - Malavika Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston MA
| |
Collapse
|
8
|
Tan Q, Chu H, Wei J, Yan S, Sun X, Wang J, Zhu L, Yang F. Astaxanthin Alleviates Hepatic Lipid Metabolic Dysregulation Induced by Microcystin-LR. Toxins (Basel) 2024; 16:401. [PMID: 39330859 PMCID: PMC11435617 DOI: 10.3390/toxins16090401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Microcystin-LR (MC-LR), frequently generated by cyanobacteria, has been demonstrated to raise the likelihood of liver disease. Few previous studies have explored the potential antagonist against MC-LR. Astaxanthin (ASX) has been shown to possess various beneficial effects in regulating lipid metabolism in the liver. However, whether ASX could alleviate MC-LR-induced hepatic lipid metabolic dysregulation is as yet unclear. In this work, the important roles and mechanisms of ASX in countering MC-LR-induced liver damage and lipid metabolic dysregulation were explored for the first time. The findings revealed that ASX not only prevented weight loss but also enhanced liver health after MC-LR exposure. Moreover, ASX effectively decreased triglyceride, total cholesterol, aspartate transaminase, and alanine aminotransferase contents in mice that were elevated by MC-LR. Histological observation showed that ASX significantly alleviated lipid accumulation and inflammation induced by MC-LR. Mechanically, ASX could significantly diminish the expression of genes responsible for lipid generation (Srebp-1c, Fasn, Cd36, Scd1, Dgat1, and Pparg), which probably reduced lipid accumulation induced by MC-LR. Analogously, MC-LR increased intracellular lipid deposition in THLE-3 cells, while ASX decreased these symptoms by down-regulating the expression of key genes in the lipid synthesis pathway. Our results implied that ASX played a crucial part in lipid synthesis and effectively alleviated MC-LR-induced lipid metabolism dysregulation. ASX might be developed as a novel protectant against hepatic impairment and lipid metabolic dysregulation associated with MC-LR. This study offers new insights for further management of MC-LR-related metabolic diseases.
Collapse
Affiliation(s)
- Qinmei Tan
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; (Q.T.); (S.Y.); (X.S.)
| | - Hanyu Chu
- Hengyang Maternal and Child Health Hospital, Hengyang 421001, China;
| | - Jia Wei
- Xiangya School of Public Health, Central South University, Changsha 410078, China;
| | - Sisi Yan
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; (Q.T.); (S.Y.); (X.S.)
| | - Xiaoya Sun
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; (Q.T.); (S.Y.); (X.S.)
| | - Jiangping Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China;
| | - Lemei Zhu
- School of Public Health, Changsha Medical University, Changsha 410219, China;
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; (Q.T.); (S.Y.); (X.S.)
- Affiliated Nanhua Hospital University of South China, Hengyang 421000, China
| |
Collapse
|
9
|
Li JJ, Xin N, Yang C, Tavizon LA, Hong R, Park J, Moore TI, Tharyan RG, Antebi A, Kim HE. Unveiling the Intercompartmental Signaling Axis: Mitochondrial to ER Stress Response (MERSR) and its Impact on Proteostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.07.556674. [PMID: 38187690 PMCID: PMC10769184 DOI: 10.1101/2023.09.07.556674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Maintaining protein homeostasis is essential for cellular health. Our previous research uncovered a cross-compartmental Mitochondrial to Cytosolic Stress Response, activated by the perturbation of mitochondrial proteostasis, which ultimately results in the improvement of proteostasis in the cytosol. Here, we found that this signaling axis also influences the unfolded protein response of the endoplasmic reticulum (UPR ER ), suggesting the presence of a Mitochondria to ER Stress Response (MERSR). During MERSR, the IRE1 branch of UPR ER is inhibited, introducing a previously unknown regulatory component of MCSR. Moreover, proteostasis is enhanced through the upregulation of the PERK-eIF2α signaling pathway, increasing phosphorylation of eIF2α and improving the ER's ability to handle proteostasis. MERSR activation in both polyglutamine and amyloid-beta peptide-expressing C. elegans disease models also led to improvement in both aggregate burden and overall disease outcome. These findings shed light on the coordination between the mitochondria and the ER in maintaining cellular proteostasis and provide further evidence for the importance of intercompartmental signaling.
Collapse
|
10
|
Barbuti PA. A-Syn(ful) MAM: A Fresh Perspective on a Converging Domain in Parkinson's Disease. Int J Mol Sci 2024; 25:6525. [PMID: 38928232 PMCID: PMC11203789 DOI: 10.3390/ijms25126525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is a disease of an unknown origin. Despite that, decades of research have provided considerable evidence that alpha-synuclein (αSyn) is central to the pathogenesis of disease. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are functional domains formed at contact sites between the ER and mitochondria, with a well-established function of MAMs being the control of lipid homeostasis within the cell. Additionally, there are numerous proteins localized or enriched at MAMs that have regulatory roles in several different molecular signaling pathways required for cellular homeostasis, such as autophagy and neuroinflammation. Alterations in several of these signaling pathways that are functionally associated with MAMs are found in PD. Taken together with studies that find αSyn localized at MAMs, this has implicated MAM (dys)function as a converging domain relevant to PD. This review will highlight the many functions of MAMs and provide an overview of the literature that finds αSyn, in addition to several other PD-related proteins, localized there. This review will also detail the direct interaction of αSyn and αSyn-interacting partners with specific MAM-resident proteins. In addition, recent studies exploring new methods to investigate MAMs will be discussed, along with some of the controversies regarding αSyn, including its several conformations and subcellular localizations. The goal of this review is to highlight and provide insight on a domain that is incompletely understood and, from a PD perspective, highlight those complex interactions that may hold the key to understanding the pathomechanisms underlying PD, which may lead to the targeted development of new therapeutic strategies.
Collapse
Affiliation(s)
- Peter A Barbuti
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
11
|
Zhu Y, Akkaya KC, Ruta J, Yokoyama N, Wang C, Ruwolt M, Lima DB, Lehmann M, Liu F. Cross-link assisted spatial proteomics to map sub-organelle proteomes and membrane protein topologies. Nat Commun 2024; 15:3290. [PMID: 38632225 PMCID: PMC11024108 DOI: 10.1038/s41467-024-47569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
The functions of cellular organelles and sub-compartments depend on their protein content, which can be characterized by spatial proteomics approaches. However, many spatial proteomics methods are limited in their ability to resolve organellar sub-compartments, profile multiple sub-compartments in parallel, and/or characterize membrane-associated proteomes. Here, we develop a cross-link assisted spatial proteomics (CLASP) strategy that addresses these shortcomings. Using human mitochondria as a model system, we show that CLASP can elucidate spatial proteomes of all mitochondrial sub-compartments and provide topological insight into the mitochondrial membrane proteome. Biochemical and imaging-based follow-up studies confirm that CLASP allows discovering mitochondria-associated proteins and revising previous protein sub-compartment localization and membrane topology data. We also validate the CLASP concept in synaptic vesicles, demonstrating its applicability to different sub-cellular compartments. This study extends the scope of cross-linking mass spectrometry beyond protein structure and interaction analysis towards spatial proteomics, and establishes a method for concomitant profiling of sub-organelle and membrane proteomes.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
| | - Kerem Can Akkaya
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
- Department of Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
| | - Julia Ruta
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
| | - Nanako Yokoyama
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
| | - Cong Wang
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
| | - Max Ruwolt
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
| | - Diogo Borges Lima
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
| | - Martin Lehmann
- Department of Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
| | - Fan Liu
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Charitépl. 1, 10117, Berlin, Germany.
| |
Collapse
|
12
|
Sharma J, Khan S, Singh NC, Sahu S, Raj D, Prakash S, Bandyopadhyay P, Sarkar K, Bhosale V, Chandra T, Kumaravelu J, Barthwal MK, Gupta SK, Srivastava M, Guha R, Ammanathan V, Ghoshal UC, Mitra K, Lahiri A. ORMDL3 regulates NLRP3 inflammasome activation by maintaining ER-mitochondria contacts in human macrophages and dictates ulcerative colitis patient outcome. J Biol Chem 2024; 300:107120. [PMID: 38417794 PMCID: PMC11065740 DOI: 10.1016/j.jbc.2024.107120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024] Open
Abstract
Genome-wide association studies in inflammatory bowel disease have identified risk loci in the orosomucoid-like protein 3/ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3) gene to confer susceptibility to ulcerative colitis (UC), but the underlying functional relevance remains unexplored. Here, we found that a subpopulation of the UC patients who had higher disease activity shows enhanced expression of ORMDL3 compared to the patients with lower disease activity and the non-UC controls. We also found that the patients showing high ORMDL3 mRNA expression have elevated interleukin-1β cytokine levels indicating positive correlation. Further, knockdown of ORMDL3 in the human monocyte-derived macrophages resulted in significantly reduced interleukin-1β release. Mechanistically, we report for the first time that ORMDL3 contributes to a mounting inflammatory response via modulating mitochondrial morphology and activation of the NLRP3 inflammasome. Specifically, we observed an increased fragmentation of mitochondria and enhanced contacts with the endoplasmic reticulum (ER) during ORMDL3 over-expression, enabling efficient NLRP3 inflammasome activation. We show that ORMDL3 that was previously known to be localized in the ER also becomes localized to mitochondria-associated membranes and mitochondria during inflammatory conditions. Additionally, ORMDL3 interacts with mitochondrial dynamic regulating protein Fis-1 present in the mitochondria-associated membrane. Accordingly, knockdown of ORMDL3 in a dextran sodium sulfate -induced colitis mouse model showed reduced colitis severity. Taken together, we have uncovered a functional role for ORMDL3 in mounting inflammation during UC pathogenesis by modulating ER-mitochondrial contact and dynamics.
Collapse
Affiliation(s)
- Jyotsna Sharma
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shaziya Khan
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nishakumari C Singh
- Sophisticated Analytical Instrument Facility and Research Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shikha Sahu
- Department of Gastroenterology, Sanjay Gandhi postgraduate institute of medical sciences, Lucknow, India
| | - Desh Raj
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shakti Prakash
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Kabita Sarkar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Vivek Bhosale
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Tulika Chandra
- Department of Transfusion Medicine, Kings George Medical University, Lucknow, India
| | - Jagavelu Kumaravelu
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manoj Kumar Barthwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shashi Kumar Gupta
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mrigank Srivastava
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India; Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rajdeep Guha
- Lab Animal Facility, CSIR-Central Drug Research Institute, Lucknow, India
| | - Veena Ammanathan
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi postgraduate institute of medical sciences, Lucknow, India
| | - Kalyan Mitra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India; Sophisticated Analytical Instrument Facility and Research Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amit Lahiri
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
13
|
Klickstein JA, Johnson MA, Antonoudiou P, Maguire J, Paulo JA, Gygi SP, Weihl C, Raman M. ALS-related p97 R155H mutation disrupts lysophagy in iPSC-derived motor neurons. Stem Cell Reports 2024; 19:366-382. [PMID: 38335961 PMCID: PMC10937112 DOI: 10.1016/j.stemcr.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
Mutations in the AAA+ ATPase p97 cause multisystem proteinopathy 1, which includes amyotrophic lateral sclerosis; however, the pathogenic mechanisms that contribute to motor neuron loss remain obscure. Here, we use two induced pluripotent stem cell models differentiated into spinal motor neurons to investigate how p97 mutations perturb the motor neuron proteome. Using quantitative proteomics, we find that motor neurons harboring the p97 R155H mutation have deficits in the selective autophagy of lysosomes (lysophagy). p97 R155H motor neurons are unable to clear damaged lysosomes and have reduced viability. Lysosomes in mutant motor neurons have increased pH compared with wild-type cells. The clearance of damaged lysosomes involves UBXD1-p97 interaction, which is disrupted in mutant motor neurons. Finally, inhibition of the ATPase activity of p97 using the inhibitor CB-5083 rescues lysophagy defects in mutant motor neurons. These results add to the evidence that endo-lysosomal dysfunction is a key aspect of disease pathogenesis in p97-related disorders.
Collapse
Affiliation(s)
- Jacob A Klickstein
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA
| | - Michelle A Johnson
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA
| | | | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Chris Weihl
- Department of Neurology, Washington University at St. Louis, St. Louis, MO
| | - Malavika Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA.
| |
Collapse
|
14
|
Ahlstedt BA, Ganji R, Mukkavalli S, Paulo JA, Gygi SP, Raman M. UBXN1 maintains ER proteostasis and represses UPR activation by modulating translation. EMBO Rep 2024; 25:672-703. [PMID: 38177917 PMCID: PMC10897191 DOI: 10.1038/s44319-023-00027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
ER protein homeostasis (proteostasis) is essential for proper folding and maturation of proteins in the secretory pathway. Loss of ER proteostasis can lead to the accumulation of misfolded or aberrant proteins in the ER and triggers the unfolded protein response (UPR). In this study, we find that the p97 adaptor UBXN1 is an important negative regulator of the UPR. Loss of UBXN1 sensitizes cells to ER stress and activates the UPR. This leads to widespread upregulation of the ER stress transcriptional program. Using comparative, quantitative proteomics we show that deletion of UBXN1 results in a significant enrichment of proteins involved in ER-quality control processes including those involved in protein folding and import. Notably, we find that loss of UBXN1 does not perturb p97-dependent ER-associated degradation (ERAD). Our studies indicate that loss of UBXN1 increases translation in both resting and ER-stressed cells. Surprisingly, this process is independent of p97 function. Taken together, our studies have identified a new role for UBXN1 in repressing translation and maintaining ER proteostasis in a p97 independent manner.
Collapse
Affiliation(s)
- Brittany A Ahlstedt
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
- ALPCA diagnostics, Salem, NH, USA
| | - Rakesh Ganji
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Sirisha Mukkavalli
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
- Dana Farber Cancer Research Institute, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology Harvard Medical School, Boston, MA, USA
| | - Steve P Gygi
- Department of Cell Biology Harvard Medical School, Boston, MA, USA
| | - Malavika Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
15
|
Area-Gomez E, Schon EA. Towards a Unitary Hypothesis of Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2024; 98:1243-1275. [PMID: 38578892 DOI: 10.3233/jad-231318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The "amyloid cascade" hypothesis of Alzheimer's disease (AD) pathogenesis invokes the accumulation in the brain of plaques (containing the amyloid-β protein precursor [AβPP] cleavage product amyloid-β [Aβ]) and tangles (containing hyperphosphorylated tau) as drivers of pathogenesis. However, the poor track record of clinical trials based on this hypothesis suggests that the accumulation of these peptides is not the only cause of AD. Here, an alternative hypothesis is proposed in which the AβPP cleavage product C99, not Aβ, is the main culprit, via its role as a regulator of cholesterol metabolism. C99, which is a cholesterol sensor, promotes the formation of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a cholesterol-rich lipid raft-like subdomain of the ER that communicates, both physically and biochemically, with mitochondria. We propose that in early-onset AD (EOAD), MAM-localized C99 is elevated above normal levels, resulting in increased transport of cholesterol from the plasma membrane to membranes of intracellular organelles, such as ER/endosomes, thereby upregulating MAM function and driving pathology. By the same token, late-onset AD (LOAD) is triggered by any genetic variant that increases the accumulation of intracellular cholesterol that, in turn, boosts the levels of C99 and again upregulates MAM function. Thus, the functional cause of AD is upregulated MAM function that, in turn, causes the hallmark disease phenotypes, including the plaques and tangles. Accordingly, the MAM hypothesis invokes two key interrelated elements, C99 and cholesterol, that converge at the MAM to drive AD pathogenesis. From this perspective, AD is, at bottom, a lipid disorder.
Collapse
Affiliation(s)
- Estela Area-Gomez
- Department of Neurology, Columbia University, New York, NY, USA
- Centro de Investigaciones Biológicas "Margarita Salas", Spanish National Research Council, Madrid, Spain
| | - Eric A Schon
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Genetics and Development>, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Shen S, Shen M, Kuang L, Yang K, Wu S, Liu X, Wang Y, Wang Y. SIRT1/SREBPs-mediated regulation of lipid metabolism. Pharmacol Res 2024; 199:107037. [PMID: 38070792 DOI: 10.1016/j.phrs.2023.107037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Sirtuins, also called silent information regulator 2, are enzymes that rely on nicotinamide adenine dinucleotide (NAD+) to function as histone deacetylases. Further investigation is warranted to explore the advantageous impacts of Sirtuin 1 (SIRT1), a constituent of the sirtuin group, on lipid metabolism, in addition to its well-researched involvement in extending lifespan. The regulation of gene expression has been extensively linked to SIRT1. Sterol regulatory element-binding protein (SREBP) is a substrate of SIRT1 that has attracted significant interest due to its role in multiple cellular processes including cell cycle regulation, DNA damage repair, and metabolic functions. Hence, the objective of this analysis was to investigate and elucidate the correlation between SIRT1 and SREBPs, as well as assess the contribution of SIRT1/SREBPs in mitigating lipid metabolism dysfunction. The objective of this research was to investigate whether SIRT1 and SREBPs could be utilized as viable targets for therapeutic intervention in managing complications associated with diabetes.
Collapse
Affiliation(s)
- Shan Shen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Mingyang Shen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Lirun Kuang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Keyu Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Shiran Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xinde Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yuting Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|