1
|
Barber HM, Pater AA, Gagnon KT, Damha MJ, O'Reilly D. Chemical engineering of CRISPR-Cas systems for therapeutic application. Nat Rev Drug Discov 2024:10.1038/s41573-024-01086-0. [PMID: 39690326 DOI: 10.1038/s41573-024-01086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/19/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) technology has transformed molecular biology and the future of gene-targeted therapeutics. CRISPR systems comprise a CRISPR-associated (Cas) endonuclease and a guide RNA (gRNA) that can be programmed to guide sequence-specific binding, cleavage, or modification of complementary DNA or RNA. However, the application of CRISPR-based therapeutics is challenged by factors such as molecular size, prokaryotic or phage origins, and an essential gRNA cofactor requirement, which impact efficacy, delivery and safety. This Review focuses on chemical modification and engineering approaches for gRNAs to enhance or enable CRISPR-based therapeutics, emphasizing Cas9 and Cas12a as therapeutic paradigms. Issues that chemically modified gRNAs seek to address, including drug delivery, physiological stability, editing efficiency and off-target effects, as well as challenges that remain, are discussed.
Collapse
Affiliation(s)
- Halle M Barber
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Adrian A Pater
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Keith T Gagnon
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec, Canada.
| | - Daniel O'Reilly
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
2
|
Zmuda M, Sedlackova E, Pravdova B, Cizkova M, Dalecka M, Cerny O, Allsop TR, Grousl T, Malcova I, Kamanova J. The Bordetella effector protein BteA induces host cell death by disruption of calcium homeostasis. mBio 2024; 15:e0192524. [PMID: 39570047 PMCID: PMC11633230 DOI: 10.1128/mbio.01925-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
Bordetella pertussis is the causative agent of whooping cough in humans, a disease that has recently experienced a resurgence. In contrast, Bordetella bronchiseptica infects the respiratory tract of various mammalian species, causing a range of symptoms from asymptomatic chronic carriage to acute illness. Both pathogens utilize type III secretion system (T3SS) to deliver the effector protein BteA into host cells. Once injected, BteA triggers a cascade of events leading to caspase 1-independent necrosis through a mechanism that remains incompletely understood. We demonstrate that BteA-induced cell death is characterized by the fragmentation of the cellular endoplasmic reticulum and mitochondria, the formation of necrotic balloon-like protrusions, and plasma membrane permeabilization. Importantly, genome-wide CRISPR-Cas9 screen targeting 19,050 genes failed to identify any host factors required for BteA cytotoxicity, suggesting that BteA does not require a single nonessential host factor for its cytotoxicity. We further reveal that BteA triggers a rapid and sustained influx of calcium ions, which is associated with organelle fragmentation and plasma membrane permeabilization. The sustained elevation of cytosolic Ca2+ levels results in mitochondrial calcium overload, mitochondrial swelling, cristolysis, and loss of mitochondrial membrane potential. Inhibition of calcium channels with 2-APB delays both the Ca2+ influx and BteA-induced cell death. Our findings indicate that BteA exploits essential host processes and/or redundant pathways to disrupt calcium homeostasis and mitochondrial function, ultimately leading to host cell death.IMPORTANCEThe respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica exhibit cytotoxicity toward a variety of mammalian cells, which depends on the type III secretion effector BteA. Moreover, the increased virulence of B. bronchiseptica is associated with enhanced expression of T3SS and BteA. However, the molecular mechanism underlying BteA cytotoxicity is elusive. In this study, we performed a CRISPR-Cas9 screen, revealing that BteA-induced cell death depends on essential or redundant host processes. Additionally, we demonstrate that BteA disrupts calcium homeostasis, which leads to mitochondrial dysfunction and cell death. These findings contribute to closing the gap in our understanding of the signaling cascades targeted by BteA.
Collapse
Affiliation(s)
- Martin Zmuda
- Laboratory of Infection Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Eliska Sedlackova
- Laboratory of Infection Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Barbora Pravdova
- Laboratory of Infection Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Monika Cizkova
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Marketa Dalecka
- Electron Microscopy Core Facility, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ondrej Cerny
- Laboratory of Infection Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Tania Romero Allsop
- Laboratory of Infection Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Grousl
- Laboratory of Cell Signalling, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Ivana Malcova
- Laboratory of Infection Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Kamanova
- Laboratory of Infection Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
3
|
McDonnell L, Evans S, Lu Z, Suchoronczak M, Leighton J, Ordeniza E, Ritchie B, Valado N, Walsh N, Antoney J, Wang C, Luna-Flores CH, Scott C, Speight R, Vickers CE, Peng B. Cyanamide-inducible expression of homing nuclease I- SceI for selectable marker removal and promoter characterisation in Saccharomyces cerevisiae. Synth Syst Biotechnol 2024; 9:820-827. [PMID: 39072146 PMCID: PMC11277796 DOI: 10.1016/j.synbio.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
In synthetic biology, microbial chassis including yeast Saccharomyces cerevisiae are iteratively engineered with increasing complexity and scale. Wet-lab genetic engineering tools are developed and optimised to facilitate strain construction but are often incompatible with each other due to shared regulatory elements, such as the galactose-inducible (GAL) promoter in S. cerevisiae. Here, we prototyped the cyanamide-induced I- SceI expression, which triggered double-strand DNA breaks (DSBs) for selectable marker removal. We further combined cyanamide-induced I- SceI-mediated DSB and maltose-induced MazF-mediated negative selection for plasmid-free in situ promoter substitution, which simplified the molecular cloning procedure for promoter characterisation. We then characterised three tetracycline-inducible promoters showing differential strength, a non-leaky β-estradiol-inducible promoter, cyanamide-inducible DDI2 promoter, bidirectional MAL32/MAL31 promoters, and five pairs of bidirectional GAL1/GAL10 promoters. Overall, alternative regulatory controls for genome engineering tools can be developed to facilitate genomic engineering for synthetic biology and metabolic engineering applications.
Collapse
Affiliation(s)
- Liam McDonnell
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Australia
| | - Samuel Evans
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Australia
| | - Zeyu Lu
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mitch Suchoronczak
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Jonah Leighton
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Eugene Ordeniza
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Blake Ritchie
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Nik Valado
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Niamh Walsh
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - James Antoney
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Australia
| | - Chengqiang Wang
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong Province, 271018, People's Republic of China
| | - Carlos Horacio Luna-Flores
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Colin Scott
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, 2601, Australia
| | - Robert Speight
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Australia
- Advanced Engineering Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, 2601, Australia
| | - Claudia E. Vickers
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Australia
| | - Bingyin Peng
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
4
|
Han X, Li S, Zeng Q, Sun P, Wu D, Wu J, Yu X, Lai Z, Milne RJ, Kang Z, Xie K, Li G. Genetic engineering, including genome editing, for enhancing broad-spectrum disease resistance in crops. PLANT COMMUNICATIONS 2024:101195. [PMID: 39568207 DOI: 10.1016/j.xplc.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
Plant diseases, caused by a wide range of pathogens, severely reduce crop yield and quality, posing a significant threat to global food security. Developing broad-spectrum resistance (BSR) in crops is a key strategy for controlling crop diseases and ensuring sustainable crop production. Cloning disease-resistance (R) genes and understanding their underlying molecular mechanisms provide new genetic resources and strategies for crop breeding. Novel genetic engineering and genome editing tools have accelerated the study and engineering of BSR genes in crops, which is the primary focus of this review. We first summarize recent advances in understanding the plant immune system, followed by an examination of the molecular mechanisms underlying BSR in crops. Finally, we highlight diverse strategies employed to achieve BSR, including gene stacking to combine multiple R genes, multiplexed genome editing of susceptibility genes and promoter regions of executor R genes, editing cis-regulatory elements to fine-tune gene expression, RNA interference, saturation mutagenesis, and precise genomic insertions. The genetic studies and engineering of BSR are accelerating the breeding of disease-resistant cultivars, contributing to crop improvement and enhancing global food security.
Collapse
Affiliation(s)
- Xinyu Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shumin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingdong Zeng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peng Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dousheng Wu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Jianguo Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibing Lai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ricky J Milne
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guotian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Rohatgi N, Fortin JP, Lau T, Ying Y, Zhang Y, Lee BL, Costa MR, Reja R. Seed sequences mediate off-target activity in the CRISPR-interference system. CELL GENOMICS 2024; 4:100693. [PMID: 39510079 PMCID: PMC11605690 DOI: 10.1016/j.xgen.2024.100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/21/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
The CRISPR interference (CRISPRi) system is a powerful tool for selectively and efficiently silencing genes in functional genomics research applications. However, its off-target activity has not been systematically investigated. Here, we utilized a genome-wide CRISPRi-Cas9 single-guide RNA (sgRNA) library to investigate the presence of off-target activity and its effects on gene expression. Our findings suggest that off-target effects in CRISPRi are quite pervasive and have direct and indirect impacts on gene expression. Most of the identified off-targets can be accounted for by complementarity of the protospacer adjacent motif (PAM)-proximal genomic sequence with the 3' half of the sgRNA spacer sequence, the seed sequence. We also report that while the stability of off-target binding is primarily driven by the PAM-proximal seed sequences, variations in the length of these seed sequences and the degree of mismatch tolerance at various positions can differ across different sgRNAs.
Collapse
Affiliation(s)
- Neha Rohatgi
- Genentech Computational Sciences, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; Roche Informatics, Hoffman-La Roche Canada, 7070 Mississauga Road, Mississauga, ON, Canada
| | - Jean-Philippe Fortin
- Genentech Computational Sciences, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ted Lau
- Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yi Ying
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yue Zhang
- Genentech Computational Sciences, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Bettina L Lee
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Michael R Costa
- Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Rohit Reja
- Genentech Computational Sciences, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
6
|
Lauerer AM, Caravia XM, Maier LS, Chemello F, Lebek S. Gene editing in common cardiovascular diseases. Pharmacol Ther 2024; 263:108720. [PMID: 39284367 DOI: 10.1016/j.pharmthera.2024.108720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/29/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024]
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality worldwide, highlighting the high socioeconomic impact. Current treatment strategies like compound-based drugs or surgeries are often limited. On the one hand, systemic administration of substances is frequently associated with adverse side effects; on the other hand, they typically provide only short-time effects requiring daily intake. Thus, new therapeutic approaches and concepts are urgently needed. The advent of CRISPR-Cas9 genome editing offers great promise for the correction of disease-causing hereditary mutations. As such mutations are often very rare, gene editing strategies to correct them are not broadly applicable to many patients. Notably, there is recent evidence that gene editing technology can also be deployed to disrupt common pathogenic signaling cascades in a targeted, specific, and efficient manner, which offers a more generalizable approach. However, several challenges remain to be addressed ranging from the optimization of the editing strategy itself to a suitable delivery strategy up to potential immune responses to the editing components. This review article discusses important CRISPR-Cas9-based gene editing approaches with their advantages and drawbacks and outlines opportunities in their application for treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Anna-Maria Lauerer
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Xurde M Caravia
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lars S Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Francesco Chemello
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Simon Lebek
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
7
|
Qi Q, Liu X, Xiong W, Zhang K, Shen W, Zhang Y, Xu X, Zhong C, Zhang Y, Tian T, Zhou X. Reducing CRISPR-Cas9 off-target effects by optically controlled chemical modifications of guide RNA. Cell Chem Biol 2024; 31:1839-1851.e8. [PMID: 39383877 DOI: 10.1016/j.chembiol.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/14/2024] [Accepted: 09/18/2024] [Indexed: 10/11/2024]
Abstract
A photocatalytic click chemistry approach, offering a significant advancement over conventional methods in RNA function modulation is described. This innovative method, utilizing light-activated small molecules, provides a high level of precision and control in RNA regulation, particularly effective in intricate cellular processes. By applying this strategy to CRISPR-Cas9 gene editing, we demonstrate its effectiveness in enhancing gene editing specificity and markedly reducing off-target effects. Our approach employs a vinyl ether modification in RNA, which activated under visible light with a phenanthrenequinone derivative, creating a CRISPR-OFF switch that precisely regulates CRISPR system activity. This method not only represents an advancement in genomic interventions but also offers broad applications in gene regulation, paving the way for safer and more reliable gene editing in therapeutic genomics.
Collapse
Affiliation(s)
- Qianqian Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Xingyu Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Wei Xiong
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Kaisong Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Wei Shen
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Yuanyuan Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Xinyan Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Cheng Zhong
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Tian Tian
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China.
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| |
Collapse
|
8
|
Li YJ, Chien SH, Huang R, Herrmann A, Zhao Q, Li PC, Zhang C, Martincuks A, Santiago NL, Zong K, Swiderski P, Okimoto RA, Song M, Rodriguez L, Forman SJ, Wang X, Yu H. A platform to deliver single and bi-specific Cas9/guide RNA to perturb genes in vitro and in vivo. Mol Ther 2024; 32:3629-3649. [PMID: 39091030 PMCID: PMC11489542 DOI: 10.1016/j.ymthe.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/20/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Although CRISPR-Cas9 technology is poised to revolutionize the treatment of diseases with underlying genetic mutations, it faces some significant issues limiting clinical entry. They include low-efficiency in vivo systemic delivery and undesired off-target effects. Here, we demonstrate, by modifying Cas9 with phosphorothioate-DNA oligos (PSs), that one can efficiently deliver single and bi-specific CRISPR-Cas9/guide RNA (gRNA) dimers in vitro and in vivo with reduced off-target effects. We show that PS-Cas9/gRNA-mediated gene knockout preserves chimeric antigen receptor T cell viability and expansion in vitro and in vivo. PS-Cas9/gRNA mediates gene perturbation in patient-derived tumor organoids and mouse xenograft tumors, leading to potent tumor antitumor effects. Further, HER2 antibody-PS-Cas9/gRNA conjugate selectively perturbs targeted genes in HER2+ ovarian cancer xenografts in vivo. Moreover, we created bi-specific PS-Cas9 with two gRNAs to target two adjacent sequences of the same gene, leading to efficient targeted gene disruption ex vivo and in vivo with markedly reduced unintended gene perturbation. Thus, the cell-penetrating PS-Cas9/gRNA can achieve efficient systemic delivery and precision in gene disruption.
Collapse
Affiliation(s)
- Yi-Jia Li
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA.
| | - Sheng-Hsuan Chien
- Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, and Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 11201, Taiwan
| | - Rui Huang
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA
| | - Andreas Herrmann
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA
| | - Qianqian Zhao
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA
| | - Pei-Chuan Li
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA
| | - Chunyan Zhang
- Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Antons Martincuks
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA
| | - Nicole Lugo Santiago
- Department of Surgery, Division of Gynecologic Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Katherine Zong
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA
| | - Piotr Swiderski
- DNA/RNA Synthesis Laboratory, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Ross A Okimoto
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Mihae Song
- Department of Surgery, Division of Gynecologic Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lorna Rodriguez
- Department of Surgery, Division of Gynecologic Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Stephen J Forman
- Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Xiuli Wang
- Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
9
|
Van den Berghe L, Masschelein J, Pinheiro VB. From competition to cure: the development of live biotherapeutic products for anticancer therapy in the iGEM competition. Front Bioeng Biotechnol 2024; 12:1447176. [PMID: 39351063 PMCID: PMC11439766 DOI: 10.3389/fbioe.2024.1447176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
Cancer is a leading cause of mortality globally, often diagnosed at advanced stages with metastases already present, complicating treatment efficacy. Traditional treatments like chemotherapy and radiotherapy face challenges such as lack of specificity and drug resistance. The hallmarks of cancer, as defined by Hanahan and Weinberg, describe tumors as complex entities capable of evolving traits that promote malignancy, including sustained proliferation, resistance to cell death, and metastasis. Emerging research highlights the significant role of the microbiome in cancer development and treatment, influencing tumor progression and immune responses. This review explores the potential of live biotherapeutic products (LBPs) for cancer diagnosis and therapy, focusing on projects from the International Genetically Engineered Machines (iGEM) competition that aim to innovate LBPs for cancer treatment. Analyzing 77 projects from 2022, we highlight the progress and ongoing challenges within this research field.
Collapse
Affiliation(s)
- Luka Van den Berghe
- Laboratory for Biomolecular Discovery and Engineering, Department of Biology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Joleen Masschelein
- Laboratory for Biomolecular Discovery and Engineering, Department of Biology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Vitor B Pinheiro
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Mao C, Zheng H, Chen Y, Yuan P, Sun D. Development of a Type I-E CRISPR-Based Programmable Repression System for Fine-Tuning Metabolic Flux toward D-Pantothenic Acid in Bacillus subtilis. ACS Synth Biol 2024; 13:2480-2491. [PMID: 39083228 DOI: 10.1021/acssynbio.4c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The CRISPR-based regulation tools enable fine-tuning of gene transcription, showing potential in areas of biomanufacturing and live therapeutics. However, the cell toxicity and PAM specificity of existing CRISPR-based regulation systems limit their broad application. The development of new and less-toxic CRISPR-controlled expression systems remains highly desirable for expanding the application scope of CRISPR-based tools. Here, we reconstituted the type I CRISPR-Cas system from Escherichia coli to finely tune gene expression in Bacillus subtilis. Through engineering the 5' untranslated region (UTR) of mRNAs of cas genes, we remarkably improved the efficacy of the type I CRISPRi system. The improved type I CRISPRi system was applied in engineering the D-pantothenic acid (DPA)-producing B. subtilis, which was generated by strengthening the metabolic flux toward β-alanine and (R)-pantoate via enhancing expression of key enzymes at both transcriptional and translational levels. Through controlling the expression of pdhA with the CRISPRi system for fine-tuning the metabolic flux toward DPA and the TCA cycle, we elevated the DPA titer to 0.88 g/L in shake flasks and 12.81 g/L in fed-batch fermentations without the addition of the precursor β-alanine. The type I CRISPRi system and the strategy for fine-tuning metabolic flux reported here not only enrich the CRISPR toolbox in B. subtilis and facilitate DPA production through microbial fermentation but also provide a paradigm for programming important organisms to produce value-added chemicals with cheap raw materials.
Collapse
Affiliation(s)
- Chengyao Mao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Han Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yifeng Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Panhong Yuan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
11
|
Li T, Li S, Kang Y, Zhou J, Yi M. Harnessing the evolving CRISPR/Cas9 for precision oncology. J Transl Med 2024; 22:749. [PMID: 39118151 PMCID: PMC11312220 DOI: 10.1186/s12967-024-05570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 system, a groundbreaking innovation in genetic engineering, has revolutionized our approach to surmounting complex diseases, culminating in CASGEVY™ approved for sickle cell anemia. Derived from a microbial immune defense mechanism, CRISPR/Cas9, characterized as precision, maneuverability and universality in gene editing, has been harnessed as a versatile tool for precisely manipulating DNA in mammals. In the process of applying it to practice, the consecutive exploitation of novel orthologs and variants never ceases. It's conducive to understanding the essentialities of diseases, particularly cancer, which is crucial for diagnosis, prevention, and treatment. CRISPR/Cas9 is used not only to investigate tumorous genes functioning but also to model disparate cancers, providing valuable insights into tumor biology, resistance, and immune evasion. Upon cancer therapy, CRISPR/Cas9 is instrumental in developing individual and precise cancer therapies that can selectively activate or deactivate genes within tumor cells, aiming to cripple tumor growth and invasion and sensitize cancer cells to treatments. Furthermore, it facilitates the development of innovative treatments, enhancing the targeting efficiency of reprogrammed immune cells, exemplified by advancements in CAR-T regimen. Beyond therapy, it is a potent tool for screening susceptible genes, offering the possibility of intervening before the tumor initiative or progresses. However, despite its vast potential, the application of CRISPR/Cas9 in cancer research and therapy is accompanied by significant efficacy, efficiency, technical, and safety considerations. Escalating technology innovations are warranted to address these issues. The CRISPR/Cas9 system is revolutionizing cancer research and treatment, opening up new avenues for advancements in our understanding and management of cancers. The integration of this evolving technology into clinical practice promises a new era of precision oncology, with targeted, personalized, and potentially curative therapies for cancer patients.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310000, People's Republic of China
| | - Shuiquan Li
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Yue Kang
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310000, People's Republic of China.
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
12
|
Xu L, Liu Y. Identification, Design, and Application of Noncoding Cis-Regulatory Elements. Biomolecules 2024; 14:945. [PMID: 39199333 PMCID: PMC11352686 DOI: 10.3390/biom14080945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Cis-regulatory elements (CREs) play a pivotal role in orchestrating interactions with trans-regulatory factors such as transcription factors, RNA-binding proteins, and noncoding RNAs. These interactions are fundamental to the molecular architecture underpinning complex and diverse biological functions in living organisms, facilitating a myriad of sophisticated and dynamic processes. The rapid advancement in the identification and characterization of these regulatory elements has been marked by initiatives such as the Encyclopedia of DNA Elements (ENCODE) project, which represents a significant milestone in the field. Concurrently, the development of CRE detection technologies, exemplified by massively parallel reporter assays, has progressed at an impressive pace, providing powerful tools for CRE discovery. The exponential growth of multimodal functional genomic data has necessitated the application of advanced analytical methods. Deep learning algorithms, particularly large language models, have emerged as invaluable tools for deconstructing the intricate nucleotide sequences governing CRE function. These advancements facilitate precise predictions of CRE activity and enable the de novo design of CREs. A deeper understanding of CRE operational dynamics is crucial for harnessing their versatile regulatory properties. Such insights are instrumental in refining gene therapy techniques, enhancing the efficacy of selective breeding programs, pushing the boundaries of genetic innovation, and opening new possibilities in microbial synthetic biology.
Collapse
Affiliation(s)
- Lingna Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528226, China
| |
Collapse
|
13
|
Yun S, Noh M, Yu J, Kim HJ, Hui CC, Lee H, Son JE. Unlocking biological mechanisms with integrative functional genomics approaches. Mol Cells 2024; 47:100092. [PMID: 39019219 PMCID: PMC11345568 DOI: 10.1016/j.mocell.2024.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Reverse genetics offers precise functional insights into genes through the targeted manipulation of gene expression followed by phenotypic assessment. While these approaches have proven effective in model organisms such as Saccharomyces cerevisiae, large-scale genetic manipulations in human cells were historically unfeasible due to methodological limitations. However, recent advancements in functional genomics, particularly clustered regularly interspaced short palindromic repeats (CRISPR)-based screening technologies and next-generation sequencing platforms, have enabled pooled screening technologies that allow massively parallel, unbiased assessments of biological phenomena in human cells. This review provides a comprehensive overview of cutting-edge functional genomic screening technologies applicable to human cells, ranging from short hairpin RNA screens to modern CRISPR screens. Additionally, we explore the integration of CRISPR platforms with single-cell approaches to monitor gene expression, chromatin accessibility, epigenetic regulation, and chromatin architecture following genetic perturbations at the omics level. By offering an in-depth understanding of these genomic screening methods, this review aims to provide insights into more targeted and effective strategies for genomic research and personalized medicine.
Collapse
Affiliation(s)
- Sehee Yun
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Minsoo Noh
- Department of Life Sciences, Korea University, Seoul 02841, Korea; Department of Internal Medicine and Laboratory of Genomics and Translational Medicine, Gachon University College of Medicine, Incheon 21565, Korea
| | - Jivin Yu
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Hyeon-Jai Kim
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Chi-Chung Hui
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Hunsang Lee
- Department of Life Sciences, Korea University, Seoul 02841, Korea.
| | - Joe Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
14
|
Clark T, Waller MA, Loo L, Moreno CL, Denes CE, Neely GG. CRISPR activation screens: navigating technologies and applications. Trends Biotechnol 2024; 42:1017-1034. [PMID: 38493051 DOI: 10.1016/j.tibtech.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/18/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) activation (CRISPRa) has become an integral part of the molecular biology toolkit. CRISPRa genetic screens are an exciting high-throughput means of identifying genes the upregulation of which is sufficient to elicit a given phenotype. Activation machinery is continually under development to achieve greater, more robust, and more consistent activation. In this review, we offer a succinct technological overview of available CRISPRa architectures and a comprehensive summary of pooled CRISPRa screens. Furthermore, we discuss contemporary applications of CRISPRa across broad fields of research, with the aim of presenting a view of exciting emerging applications for CRISPRa screening.
Collapse
Affiliation(s)
- Teleri Clark
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Matthew A Waller
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Lipin Loo
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Cesar L Moreno
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Christopher E Denes
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - G Gregory Neely
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia.
| |
Collapse
|
15
|
Gao J, Gunasekar S, Xia ZJ, Shalin K, Jiang C, Chen H, Lee D, Lee S, Pisal ND, Luo JN, Griciuc A, Karp JM, Tanzi R, Joshi N. Gene therapy for CNS disorders: modalities, delivery and translational challenges. Nat Rev Neurosci 2024; 25:553-572. [PMID: 38898231 DOI: 10.1038/s41583-024-00829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Gene therapy is emerging as a powerful tool to modulate abnormal gene expression, a hallmark of most CNS disorders. The transformative potentials of recently approved gene therapies for the treatment of spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and active cerebral adrenoleukodystrophy are encouraging further development of this approach. However, most attempts to translate gene therapy to the clinic have failed to make it to market. There is an urgent need not only to tailor the genes that are targeted to the pathology of interest but to also address delivery challenges and thereby maximize the utility of genetic tools. In this Review, we provide an overview of gene therapy modalities for CNS diseases, emphasizing the interconnectedness of different delivery strategies and routes of administration. Important gaps in understanding that could accelerate the clinical translatability of CNS genetic interventions are addressed, and we present lessons learned from failed clinical trials that may guide the future development of gene therapies for the treatment and management of CNS disorders.
Collapse
Affiliation(s)
- Jingjing Gao
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Swetharajan Gunasekar
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ziting Judy Xia
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kiruba Shalin
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Christopher Jiang
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Hao Chen
- Marine College, Shandong University, Weihai, China
| | - Dongtak Lee
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sohyung Lee
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nishkal D Pisal
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - James N Luo
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Ana Griciuc
- Harvard Medical School, Boston, MA, USA.
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Jeffrey M Karp
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Rudolph Tanzi
- Harvard Medical School, Boston, MA, USA.
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Nitin Joshi
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Chen SS. Mouse models of CLL: In vivo modeling of disease initiation, progression, and transformation. Semin Hematol 2024; 61:201-207. [PMID: 38755077 DOI: 10.1053/j.seminhematol.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 05/18/2024]
Abstract
Chronic lymphocytic leukemia (CLL) is a highly complex disease characterized by the proliferation of CD5+ B cells in lymphoid tissues. Current modern treatments have brought significant clinical benefits to CLL patients. However, there are still unmet needs. Patients relapse on Bruton's tyrosine kinase inhibitors and BCL2 inhibitors and often develop more aggressive diseases including Richter transformation (RT), an incurable complication of up to ∼10% patients. This evidence underscores the need for improved immunotherapies, combination treatment strategies, and predictive biomarkers. A mouse model that can recapitulate human CLL disease and certain components of the tumor immune microenvironment represents a promising preclinical tool for such purposes. In this review, we provide an overview of CRISPR-engineered and xenograft mouse models utilizing either cell lines, or primary CLL cells suitable for studies of key events driving the disease onset, progression and transformation of CLL. We also review how CRISPR/Cas9 established mouse models carrying loss-of-function lesions allow one to study key mutations driving disease progression. Finally, we discuss how next generation humanized mice might improve to generation of faithful xenograft mouse models of human CLL.
Collapse
MESH Headings
- Animals
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Humans
- Mice
- Disease Models, Animal
- Disease Progression
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/metabolism
- Tumor Microenvironment/immunology
- CRISPR-Cas Systems
Collapse
Affiliation(s)
- Shih-Shih Chen
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York.
| |
Collapse
|
17
|
Maroc L, Shaker H, Shapiro RS. Functional genetic characterization of stress tolerance and biofilm formation in Nakaseomyces ( Candida) glabrata via a novel CRISPR activation system. mSphere 2024; 9:e0076123. [PMID: 38265239 PMCID: PMC10900893 DOI: 10.1128/msphere.00761-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
The overexpression of genes frequently arises in Nakaseomyces (formerly Candida) glabrata via gain-of-function mutations, gene duplication, or aneuploidies, with important consequences on pathogenesis traits and antifungal drug resistance. This highlights the need to develop specific genetic tools to mimic and study genetic amplification in this important fungal pathogen. Here, we report the development, validation, and applications of the first clustered regularly interspaced short palindromic repeats (CRISPR) activation (CRISPRa) system in N. glabrata for targeted genetic overexpression. Using this system, we demonstrate the ability of CRISPRa to drive high levels of gene expression in N. glabrata, and further assess optimal guide RNA targeting for robust overexpression. We demonstrate the applications of CRISPRa to overexpress genes involved in fungal pathogenesis and drug resistance and detect corresponding phenotypic alterations in these key traits, including the characterization of novel phenotypes. Finally, we capture strain variation using our CRISPRa system in two commonly used N. glabrata genetic backgrounds. Together, this tool will expand our capacity for functional genetic overexpression in this pathogen, with numerous possibilities for future applications.IMPORTANCENakaseomyces (formerly Candida) glabrata is an important fungal pathogen that is now the second leading cause of candidiasis infections. A common strategy that this pathogen employs to resist antifungal treatment is through the upregulation of gene expression, but we have limited tools available to study this phenomenon. Here, we develop, optimize, and apply the use of CRISPRa as a means to overexpress genes in N. glabrata. We demonstrate the utility of this system to overexpress key genes involved in antifungal susceptibility, stress tolerance, and biofilm growth. This tool will be an important contribution to our ability to study the biology of this important fungal pathogen.
Collapse
Affiliation(s)
- Laetitia Maroc
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Hajer Shaker
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| |
Collapse
|
18
|
Ravichandran M, Maddalo D. Applications of CRISPR-Cas9 for advancing precision medicine in oncology: from target discovery to disease modeling. Front Genet 2023; 14:1273994. [PMID: 37908590 PMCID: PMC10613999 DOI: 10.3389/fgene.2023.1273994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) system is a powerful tool that enables precise and efficient gene manipulation. In a relatively short time, CRISPR has risen to become the preferred gene-editing system due to its high efficiency, simplicity, and programmability at low costs. Furthermore, in the recent years, the CRISPR toolkit has been rapidly expanding, and the emerging advancements have shown tremendous potential in uncovering molecular mechanisms and new therapeutic strategies for human diseases. In this review, we provide our perspectives on the recent advancements in CRISPR technology and its impact on precision medicine, ranging from target identification, disease modeling, and diagnostics. We also discuss the impact of novel approaches such as epigenome, base, and prime editing on preclinical cancer drug discovery.
Collapse
Affiliation(s)
- Mirunalini Ravichandran
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA, United States
| | - Danilo Maddalo
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA, United States
| |
Collapse
|
19
|
Cao X, Zhang L, Islam MK, Zhao M, He C, Zhang K, Liu S, Sha Q, Wei H. TGPred: efficient methods for predicting target genes of a transcription factor by integrating statistics, machine learning and optimization. NAR Genom Bioinform 2023; 5:lqad083. [PMID: 37711605 PMCID: PMC10498345 DOI: 10.1093/nargab/lqad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/30/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Four statistical selection methods for inferring transcription factor (TF)-target gene (TG) pairs were developed by coupling mean squared error (MSE) or Huber loss function, with elastic net (ENET) or least absolute shrinkage and selection operator (Lasso) penalty. Two methods were also developed for inferring pathway gene regulatory networks (GRNs) by combining Huber or MSE loss function with a network (Net)-based penalty. To solve these regressions, we ameliorated an accelerated proximal gradient descent (APGD) algorithm to optimize parameter selection processes, resulting in an equally effective but much faster algorithm than the commonly used convex optimization solver. The synthetic data generated in a general setting was used to test four TF-TG identification methods, ENET-based methods performed better than Lasso-based methods. Synthetic data generated from two network settings was used to test Huber-Net and MSE-Net, which outperformed all other methods. The TF-TG identification methods were also tested with SND1 and gl3 overexpression transcriptomic data, Huber-ENET and MSE-ENET outperformed all other methods when genome-wide predictions were performed. The TF-TG identification methods fill the gap of lacking a method for genome-wide TG prediction of a TF, and potential for validating ChIP/DAP-seq results, while the two Net-based methods are instrumental for predicting pathway GRNs.
Collapse
Affiliation(s)
- Xuewei Cao
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Ling Zhang
- Computational Science and Engineering Program, Michigan Technological University, Houghton, MI 49931, USA
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Md Khairul Islam
- Computational Science and Engineering Program, Michigan Technological University, Houghton, MI 49931, USA
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Mingxia Zhao
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Cheng He
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Kui Zhang
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Qiuying Sha
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Hairong Wei
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, USA
- Computational Science and Engineering Program, Michigan Technological University, Houghton, MI 49931, USA
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
20
|
Wilton-Clark H, Al-aghbari A, Yang J, Yokota T. Advancing Epidemiology and Genetic Approaches for the Treatment of Spinal and Bulbar Muscular Atrophy: Focus on Prevalence in the Indigenous Population of Western Canada. Genes (Basel) 2023; 14:1634. [PMID: 37628685 PMCID: PMC10454234 DOI: 10.3390/genes14081634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy's disease, is a debilitating neuromuscular disease characterized by progressive muscular weakness and neuronal degeneration, affecting 1-2 individuals per 100,000 globally. While SBMA is relatively rare, recent studies have shown a significantly higher prevalence of the disease among the indigenous population of Western Canada compared to the general population. The disease is caused by a pathogenic expansion of polyglutamine residues in the androgen receptor protein, which acts as a key transcriptional regulator for numerous genes. SBMA has no cure, and current treatments are primarily supportive and focused on symptom management. Recently, a form of precision medicine known as antisense therapy has gained traction as a promising therapeutic option for numerous neuromuscular diseases. Antisense therapy uses small synthetic oligonucleotides to confer therapeutic benefit by acting on pathogenic mRNA molecules, serving to either degrade pathogenic mRNA transcripts or helping to modulate splicing. Recent studies have explored the suitability of antisense therapy for the treatment of SBMA, primarily focused on gene therapy and antisense-mediated mRNA knockdown approaches. Advancements in understanding the pathogenesis of SBMA and the development of targeted therapies offer hope for improved quality of life for individuals affected by this debilitating condition. Continued research is essential to optimize these genetic approaches, ensuring their safety and efficacy.
Collapse
Affiliation(s)
- Harry Wilton-Clark
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Ammar Al-aghbari
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Jessica Yang
- Department of Immunology, Department of Pharmacology and Toxicology, Faculty of Arts and Science, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| |
Collapse
|
21
|
Reddy D, Wickman JR, Ajit SK. Epigenetic regulation in opioid induced hyperalgesia. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100146. [PMID: 38099284 PMCID: PMC10719581 DOI: 10.1016/j.ynpai.2023.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
About 25 million American adults experience pain daily and one of the most commonly prescribed drugs to treat pain are opioids. Prolonged opioid usage and dose escalations can cause a paradoxical response where patients experience enhanced pain sensitivity. This opioid induced hyperalgesia (OIH) is a major hurdle when treating pain in the clinic because its underlying mechanisms are still not fully understood. OIH is also commonly overlooked and lacks guidelines to prevent its onset. Research on pain disorders and opioid usage have recognized potential epigenetic drivers of disease including DNA methylation, histone modifications, miRNA regulation, but their involvement in OIH has not been well studied. This article discusses epigenetic changes that may contribute to pathogenesis, with an emphasis on miRNA alterations in OIH. There is a crucial gap in knowledge including how multiple epigenetic modulators contribute to OIH. Elucidating the epigenetic changes underlying OIH and the crosstalk among these mechanisms could lead to the development of novel targets for the prevention and treatment of this painful phenomena.
Collapse
Affiliation(s)
- Deepa Reddy
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Jason R. Wickman
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Seena K. Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| |
Collapse
|
22
|
Kervadec A, Kezos J, Ni H, Yu M, Marchant J, Spiering S, Kannan S, Kwon C, Andersen P, Bodmer R, Grandi E, Ocorr K, Colas AR. Multiplatform modeling of atrial fibrillation identifies phospholamban as a central regulator of cardiac rhythm. Dis Model Mech 2023; 16:dmm049962. [PMID: 37293707 PMCID: PMC10387351 DOI: 10.1242/dmm.049962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
Atrial fibrillation (AF) is a common and genetically inheritable form of cardiac arrhythmia; however, it is currently not known how these genetic predispositions contribute to the initiation and/or maintenance of AF-associated phenotypes. One major barrier to progress is the lack of experimental systems to investigate the effects of gene function on rhythm parameters in models with human atrial and whole-organ relevance. Here, we assembled a multi-model platform enabling high-throughput characterization of the effects of gene function on action potential duration and rhythm parameters using human induced pluripotent stem cell-derived atrial-like cardiomyocytes and a Drosophila heart model, and validation of the findings using computational models of human adult atrial myocytes and tissue. As proof of concept, we screened 20 AF-associated genes and identified phospholamban loss of function as a top conserved hit that shortens action potential duration and increases the incidence of arrhythmia phenotypes upon stress. Mechanistically, our study reveals that phospholamban regulates rhythm homeostasis by functionally interacting with L-type Ca2+ channels and NCX. In summary, our study illustrates how a multi-model system approach paves the way for the discovery and molecular delineation of gene regulatory networks controlling atrial rhythm with application to AF.
Collapse
Affiliation(s)
- Anaïs Kervadec
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - James Kezos
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Haibo Ni
- Department of Pharmacology, UC Davis, Davis, CA 95616, USA
| | - Michael Yu
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - James Marchant
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Sean Spiering
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Suraj Kannan
- Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chulan Kwon
- Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Rolf Bodmer
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Karen Ocorr
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Alexandre R. Colas
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|