1
|
Wei S, Li Y, Xu M, Wang T, Tu Y, Li B. Simultaneous modulation of Ni single atoms and NiO x clusters on TiO 2 for solar-driven CO 2 and H 2O conversion to CH 4. J Colloid Interface Sci 2025; 683:731-741. [PMID: 39708725 DOI: 10.1016/j.jcis.2024.12.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Construction of the photocatalysts with synergistic active sites holds great significance in enhancing the direct CO2 reduction coupled with H2O oxidation under solar irradiation. This work demonstrates the fabrication of a dual-active-site catalyst (NiSA-NiOx/TiO2) through in-situ formation and simultaneous modulation of Ni single atoms (NiSA) and NiOx clusters on porous TiO2. Both NiSA and NiOx are characterized by X-ray absorption fine structure (XAFS) analyses and diffuse reflectance infrared Fourier transform spectroscopy using CO as a probe molecule (CO-DRIFTS). The optimized NiSA-NiOx/TiO2 photocatalyst exhibits enhanced performance in the reduction of CO2 to CH4 using H2O as a hydrogen source. The deliberate modulation of NiSA and NiOx on TiO2 provides active sites for efficient activation of CO2 and H2O, synchronously promoting the two half-reactions of CO2 reduction and H2O oxidation. The photocatalytic mechanism is elucidated based on a series of control experiments and in situ characterizations. The results reveal that NiSA sites play a crucial role in CO2 adsorption and activation, while NiOx clusters facilitate H2O oxidation for proton provision. The synergistic effect of NiSA and NiOx greatly enhances the photocatalytic conversion of CO2 and H2O to CH4. This work showcases the rational design of semiconductor photocatalysts featuring synergistic active sites for efficient conversion of CO2 and H2O into hydrocarbons by utilizing solar energy.
Collapse
Affiliation(s)
- Shupeng Wei
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yi Li
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Mao Xu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ting Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yangpu Tu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Benxia Li
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
2
|
Zheng Y, Li W, Ju J, Jiang J, Zhang L, Jiang H, Hu Y, Li C. Oxygen vacancy mediated Pd-SA/TiO 2 single-atom catalyst created via ultra-fast one-step synthesis for enhanced CO 2 photoreduction. J Colloid Interface Sci 2025; 683:280-290. [PMID: 39675242 DOI: 10.1016/j.jcis.2024.12.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Single-atom catalysts (SACs) have garnered considerable interest in the field of heterogeneous catalysis. This study detail the synthesis of single-atom Pd catalysts supported on metal oxides using the Flame Spray Pyrolysis (FSP) method. This technique allows for the preparation of TiO2 with abundant oxygen vacancies by incorporating a hydrogen-rich atmosphere at high temperature (>2000 K) utilizing the quenching ring, which enhances the catalyst synthesis process. Additionally, the distribution and electronic structure of Pd were tailored in a hydrogen-rich atmosphere, which promoted the entrapment of Pd atoms within oxygen vacancies, preventing their aggregation into Pd nanoparticles and leading to the formation of Pd-SA/TiO2. Notably, Pd-SA/TiO2 achieves 92.51 % CO2-to-CO selectivity in the photocatalytic CO2 reduction reaction and exhibits an impressive catalytic activity of 56.84μmol g-1h-1. This research introduces a novel approach to modulate the anchoring process and optimize the microenvironment for single-atom metal synthesis, advancing the development of the-state-of-the-art SACs.
Collapse
Affiliation(s)
- Yaru Zheng
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Environmental, Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Li
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China.
| | - Jie Ju
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Environmental, Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiechao Jiang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Environmental, Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ling Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Environmental, Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Jiang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Environmental, Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanjie Hu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Environmental, Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Chunzhong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Environmental, Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Gao S, Zhao X, Zhang Q, Guo L, Li Z, Wang H, Zhang S, Wang J. Mimic metalloenzymes with atomically dispersed Fe sites in covalent organic framework membranes for enhanced CO 2 photoreduction. Chem Sci 2025; 16:1222-1232. [PMID: 39677933 PMCID: PMC11635630 DOI: 10.1039/d4sc05999a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
The massive CO2 emissions from continuous increases in fossil fuel consumption have caused disastrous environmental and ecological crises. Covalent organic frameworks (COFs) hold the potential to convert CO2 and water into value-added chemicals and O2 to mitigate this crisis. However, their activity and selectivity are very low under conditions close to natural photosynthesis. In this work, inspired by the photosynthesis process in natural leaves, we successfully anchored atomically dispersed Fe sites into interlayers of the photoactive triazine-based COF (Fe-COF) membrane to serve as a mimic metalloenzyme for the first time. It is found that under gas-solid conditions and no addition of any photosensitizer and sacrificial reagent, the highly crystalline Fe-COF membrane shows a record high CO2 photoreduction performance with a CO production of 3972 μmol g-1 in a 4 h reaction, ∼100% selectivity of CO, and excellent cycling stability (at least 10 cycles). In such a remarkable photocatalytic CO2 conversion, the atomically dispersed Fe sites with high catalytic activity significantly reduce the formation energy barrier of key *CO2 and *COOH intermediates, the high-density triazine moieties supply more electrons to the iron catalytic center to promote CO2 reduction, and the homogeneous COF membrane greatly improves the electron/mass transport. Thus, this work opens a new window for the design of highly efficient photocatalysts and provides new insights into their structure-activity relationship in CO2 photocatalytic reduction.
Collapse
Affiliation(s)
- Shuaiqi Gao
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Xiao Zhao
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology Xiangyang 441003 P. R. China
| | - Qian Zhang
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Linlin Guo
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Zhiyong Li
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Huiyong Wang
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Suojiang Zhang
- College of Chemistry and Molecular Sciences, Longzihu New Energy Laboratory, Henan University Zhengzhou Henan 450000 P. R. China
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jianji Wang
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
4
|
Li P, Liu Y, Yan D. Facts and Fictions About Photocatalytic CO 2 Reduction to C 2+ Products. CHEMSUSCHEM 2025; 18:e202401174. [PMID: 39183181 DOI: 10.1002/cssc.202401174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
In response to carbon neutrality, photocatalytic reduction of CO2 has been the subject of growing interest for researchers over the past few years. Multi-carbon products (C2+) with higher energy density and larger market value produced from photocatalytic reduction of CO2 are still very limited owing to the low photocatalytic productivity and poor selectivity of products. This review focuses on the recent progress on photocatalytic reduction of CO2 towards C2+ products from the perspective of performance evaluation and mechanistic understanding. We first provide a systematic description of the entire fundamental procedures of photocatalytic reduction of CO2. An in-depth strategy analysis for improving the selectivity of photocatalytic reduction of CO2 to C2+ products is then addressed. Then the focus was on summarizing the ways to improve C2+ selectivity. The intrinsic mechanisms of photocatalytic reduction of CO2 to C2+ products are summarized in the final. Combining the foundation of photocatalysis with promising catalyst strategies, this review will offer valuable guidance for the development of efficient photocatalytic systems for the synthesis of C2+ products.
Collapse
Affiliation(s)
- Pengyan Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Yumin Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
5
|
Chen G, Fu C, Zhang W, Gong W, Ma J, Ji X, Qian L, Feng X, Hu C, Long R, Xiong Y. Solar-driven production of renewable chemicals via biomass hydrogenation with green methanol. Nat Commun 2025; 16:665. [PMID: 39809823 PMCID: PMC11733029 DOI: 10.1038/s41467-025-56094-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Solar-driven, selective biomass hydrogenation is recognized as a promising route to renewable chemicals production, but remains challenging. Here, we report a TiO2 supported Cu single-atom catalyst with a four-coordinated Cu1-O4 structure, which can be universally applied for solar-driven production of various renewable chemicals from lignocellulosic biomass-derived platform molecules with good yields using green methanol as a hydrogen donor, to address this challenge. It is significant that the biomass upgrading driven by natural sunlight on a gram scale demonstrates the great practical potential. By combining in situ soft X-ray absorption spectroscopy with theoretical calculations, we successfully identify the dynamic evolution of Cu sites along with the biomass hydrogenation and methanol oxidation, where the tandem process is enabled by the photogenerated electrons and holes to complete a chemical cycle. The concept of solar-driven biomass hydrogenation proposed here provides an efficient and sustainable methodology for the sustainable production of renewable chemicals.
Collapse
Affiliation(s)
- Guangyu Chen
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Cenfeng Fu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Wenhua Zhang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Wanbing Gong
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China.
| | - Jun Ma
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, PR China
| | - Xiaomin Ji
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Lisheng Qian
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Xuefei Feng
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Chuansheng Hu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Ran Long
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China.
| | - Yujie Xiong
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, PR China.
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, PR China.
| |
Collapse
|
6
|
Zhou Y, Wang Y, Chen S, Yu H, Su Y, Quan X. Synergy of Copper Doping and Carbon Defect Engineering in Promoting C-C Coupling for Enhanced CO 2 Photoreduction to Ethanol Activity. ACS APPLIED MATERIALS & INTERFACES 2025; 17:969-979. [PMID: 39734255 DOI: 10.1021/acsami.4c16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Photocatalytic conversion of carbon dioxide (CO2) to fuel provides an ideal pathway to achieving carbon neutrality. One significant hindrance in achieving the reduction of CO2 to higher energy density multicarbon products (C2+) was the difficulty in coupling C-C bonds efficiently. Copper (Cu) is considered the most suitable metal catalyst for C-C coupling to form C2+ products in the CO2 reduction reaction (CO2RR), but it encounters challenges such as low product selectivity and slow catalytic efficiency. Herein, we constructed a carbon defect on Cu-doped carbon nitride (Cu-CvN), as an efficient catalyst for photocatalytic CO2RR. The optimized catalyst (Cu-CvN-550) with a carbon defect shows high photocatalytic activity for CO2 reduction to ethanol, with an ethanol production rate of 122.6 μmol g-1 h-1 and a selectivity of 93.7%. The yield was 4.5 times higher than that of the Cu-CN-550 without carbon defect. The ratio of Cu+/Cu0 in Cu species changes regularly with calcination temperature, which was linearly correlated with the selectivity of the liquid product of CO2RR. DFT calculations combined with experimental results revealed that Cu doping promoted CO2 activation, followed by enhanced *CO adsorption and weakened hydrogenation and desorption. Carbon defects lower the free energy and greatly accelerate the *CO transfer process by promoting the formation of a six-membered ring intermediate state, serving as an intramolecular catalyst for *CO dimerization. Synergistic thermodynamic and kinetic interactions were realized through Cu doping and the introduction of carbon defects, thereby enhancing the catalytic performance of photocatalytic reduction of CO2 for ethanol production.
Collapse
Affiliation(s)
- Yi Zhou
- Key Laboratory of Industrial Ecology and Environment Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Yaqi Wang
- Key Laboratory of Industrial Ecology and Environment Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environment Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environment Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environment Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
7
|
Hao P, Chi H, Li Z, Lu X, Yang Y, Zhang Y, Zou Z, Zhou Y. Crystal-facet modulated pathway of CO 2 photoreduction on Bi 4NbO 8Cl nanosheets boosting production of value-added solar fuels. Chem Commun (Camb) 2025; 61:548-551. [PMID: 39652395 DOI: 10.1039/d4cc05581k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Two nanosheets of Bi4NbO8Cl were successfully synthesized for photocatalytic conversion of CO2 into solar fuel, featuring differently exposed (001) and (201) facets. The exposure of these specific facets facilitates C-C coupling to generate ethanol, and (201) facet typically accelerates this process.
Collapse
Affiliation(s)
- Peiting Hao
- School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
| | - Haoqiang Chi
- School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
| | - Zhengdao Li
- Chemistry and Pharmaceutical Engineering College, Engineering Technology Research Center of Henan Province for Solar Catalysis, Nanyang Normal University, Nanyang, Henan 473061, P. R. China.
| | - Xinxin Lu
- PetroChina Shenzhen New Energy Research Institute, Shenzhen, Guangdong, 518052, P. R. China.
| | - Yong Yang
- Key Laboratory of Soft Chemistry and Functional Materials (MOE), Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, P. R. China
| | - Yongcai Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Zhigang Zou
- School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
- School of Science and Engineering, The Chinese University of Hongkong (Shenzhen), Shenzhen, Guangdong, 518172, P. R. China
| | - Yong Zhou
- School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
- School of Science and Engineering, The Chinese University of Hongkong (Shenzhen), Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
8
|
Huang F, Wang F, Liu Y, Guo L. Cu-ZnS Modulated Multi-Carbon Coupling Enables High Selectivity Photoreduction CO 2 to CH 3CH 2COOH. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2416708. [PMID: 39723696 DOI: 10.1002/adma.202416708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Indexed: 12/28/2024]
Abstract
The direct photocatalytic conversion of CO2 and H2O into high-value C3 chemicals holds great promise but remains challenging due to the intrinsic difficulty of C1-C1 and C2-C1 coupling processes and the lack of clarity regarding the underlying reaction mechanisms. Here, the design and synthesis of a Cu-ZnS photocatalyst featuring dispersed Cu single atoms are reported. These Cu single atoms are coordinated with S atoms, forming unique Cu-S-Zn active units with tunable charge distributions that interact favorably with surface-adsorbed intermediates. This configuration stabilizes the *COHCO intermediate and facilitates its subsequent coupling with *CO to form *COCOHCO both thermodynamically and kinetically favorable on the Cu-ZnS surface. Notably, multiple critical C3 intermediates, including *COCOHCO, *OCCCO, and *CHCHCO, are identified, providing a clear reaction pathway for CO2 to CH3CH2COOH conversion. The Cu-ZnS photocatalyst achieves a CO2 to CH3CH2COOH conversion rate of 0.45 µmol h-¹ with an electron selectivity of 91.2%. Remarkably, in the presence of triethanolamine, the production rate increases to 16.9 µmol h-¹ with a selectivity of 99.8%. These findings underscore the importance of modulating multicarbon coupling processes to enable the efficient photocatalytic transformation of CO2 into C3 products, paving the way for future advancements in sustainable chemical synthesis.
Collapse
Affiliation(s)
- Fuxia Huang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi, 710049, China
| | - Feng Wang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi, 710049, China
| | - Ya Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi, 710049, China
| | - Liejin Guo
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi, 710049, China
| |
Collapse
|
9
|
Huang X, Chen Y, Xie X, Song T. Covalent Organic Frameworks with Tunable Bridge Positions for Photocatalytic CO 2 Reduction to Propylene Under Visible Light Illumination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408817. [PMID: 39716857 DOI: 10.1002/smll.202408817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/18/2024] [Indexed: 12/25/2024]
Abstract
The use of sunlight to convert CO2 into multi-carbon fuels, particularly propylene, is considered a sustainable carbon cycle pathway, but propylene requires a multi-electron-coupled proton reaction process that has not been reported. Herein, two covalent organic frameworks (DA-COF and DP-COF) are prepared by varying the bridging positions of anthraquinone conjugated units. The experimental results show that the neighbouring bridge in DA-COF forms a unique cleavage structure like an enzyme catalyst, which can provide an efficient microenvironment for the reduction reaction to trap protons. At the same time, the neighbor bridging in DA-COF can form an electron donor-electron acceptor structure to accelerate the photogenerated carrier migration. As a result, DA-COF exhibits excellent visible light propylene production with a yield of 270.54 µmol g-1 and no C₃H₆ product is detected by the DP-COF during the reduction process. This study presents a novel avenue for the production of high value-added multi-carbon products using photocatalysis.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Intelligent Textile Institute of Innovation, Hunan Institute of Engineering, Xiangtan, 411104, P. R. China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yizheng Chen
- Intelligent Textile Institute of Innovation, Hunan Institute of Engineering, Xiangtan, 411104, P. R. China
| | - Xiangjing Xie
- Intelligent Textile Institute of Innovation, Hunan Institute of Engineering, Xiangtan, 411104, P. R. China
| | - Ting Song
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| |
Collapse
|
10
|
Feng C, Hu M, Zuo S, Luo J, Castaño P, Ren Y, Rueping M, Zhang H. Ru-O V Site-Mediated Product Selectivity Switch for Overall Photocatalytic CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411813. [PMID: 39659098 DOI: 10.1002/adma.202411813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/20/2024] [Indexed: 12/12/2024]
Abstract
The photocatalytic reduction of carbon dioxide (CO2) to methane (CH4) represents a sustainable route for directly converting greenhouse gases into chemicals but poses a significant challenge in achieving high selectivity due to thermodynamic and kinetic limitations during the reaction process. This work establishes Ru-OV active sites on the surface of TiO2 by anchoring coordination unsaturated Ru single-atoms, which stabilize crucial reaction intermediates and facilitate local mass transfer to achieve dual optimization of the thermodynamics and kinetics of the overall photocatalytic CO2 reduction. Combining operando spectroscopy with density functional theory (DFT) calculations indicates that oxygen vacancies (OV) inhibits the desorption of *CO, whereas Ru facilitates proton extraction. This configuration not only lowers the overall activation energy barrier but has also been engineered to serve as a selectivity switch, changing the reaction route to produce CH4 instead of CO. Consequently, the Ru-OV/TiO2 exhibits a 195.4-fold improvement in the CH4 yield compared to TiO2, accompanied by an increase in selectivity to 81%.
Collapse
Affiliation(s)
- Chengyang Feng
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Miao Hu
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Shouwei Zuo
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jun Luo
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Pedro Castaño
- KAUST Catalysis Center (KCC), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yuanfu Ren
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Huabin Zhang
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Dai Z, Giustino F. Identification of large polarons and exciton polarons in rutile and anatase polymorphs of titanium dioxide. Proc Natl Acad Sci U S A 2024; 121:e2414203121. [PMID: 39570310 PMCID: PMC11621470 DOI: 10.1073/pnas.2414203121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/25/2024] [Indexed: 11/22/2024] Open
Abstract
Titanium dioxide (TiO2) is a wide-gap semiconductor with numerous applications in photocatalysis, photovoltaics, and neuromorphic computing. The unique functional properties of this material critically depend on its ability to transport charge in the form of polarons, namely narrow electron wavepackets accompanied by local distortions of the crystal lattice. It is currently well established that the most important polymorphs of TiO2, the rutile and anatase phases, harbor small electron polarons and small hole polarons, respectively. However, whether additional polaronic species exist in TiO2, and under which conditions, remain open questions. Here, we provide definitive answers to these questions by exploring the rich landscape of polaron quasiparticles in TiO2 via recently developed ab initio techniques. In addition to the already known small polarons, we identify three species, namely a large hole polaron in rutile, a large quasi-two-dimensional electron polaron in anatase, and a large exciton polaron in anatase. These findings complete the puzzle on the polaron physics of TiO2 and pave the way for systematically probing and manipulating polarons in a broad class of complex oxides and quantum materials.
Collapse
Affiliation(s)
- Zhenbang Dai
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX78712
- Department of Physics, The University of Texas at Austin, Austin, TX78712
| | - Feliciano Giustino
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX78712
- Department of Physics, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
12
|
Pan R, Wang Q, Zhao Y, Feng Z, Xu Y, Wang Z, Li Y, Zhang X, Zhang H, Liu J, Gu XK, Zhang J, Weng Y, Zhang J. Bioinspired catalytic pocket promotes CO 2-to-ethanol photoconversion on colloidal quantum wells. SCIENCE ADVANCES 2024; 10:eadq2791. [PMID: 39565844 PMCID: PMC11578185 DOI: 10.1126/sciadv.adq2791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Sluggish surface reaction is a critical factor that strongly governs the efficiency of photocatalytic solar fuel production, particularly in CO2-to-ethanol photoconversion. Here, inspired by the principles underlying enzyme catalytic proficiency and specificity, we report a biomimetic photocatalyst that affords superior CO2-to-ethanol photoreduction efficiency (5.5 millimoles gram-1 hour-1 in average with 98.2% selectivity) distinctly surpassing the state of the art. The key is to create a class of catalytic pocket, which contains spatially organized NH2…Cu-Se(-Zn) multiple functionalities at close range, over ZnSe colloidal quantum wells. Such structure offers a platform to mimic the concerted cooperation between the active site and surrounding secondary/outer coordination spheres in enzyme catalysis. This is manifested by the chemical adsorption and activation of CO2 via a bent geometry, favorable stabilization toward a variety of important intermediates, promotion of multielectron/proton transfer processes, etc. These results highlight the potential of incorporating enzyme-like features into the design of photocatalysts to overcome the challenges in CO2 reduction.
Collapse
Affiliation(s)
- Rongrong Pan
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| | - Qi Wang
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Yan Zhao
- Science Center of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Zhendong Feng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjun Xu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory of Soft Matter Physics, National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhuan Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory of Soft Matter Physics, National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yapeng Li
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiuming Zhang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| | - Haoqing Zhang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| | - Jia Liu
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| | - Xiang-Kui Gu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Jiangwei Zhang
- Science Center of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Yuxiang Weng
- University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory of Soft Matter Physics, National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiatao Zhang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
13
|
Zi B, Zheng H, Zhou T, Zhang Y, Lu Q, Chen M, Sun H, Xiao B, Qiu Z, Zhao J, He T, Zhang J, Liu Q. Pr doping promotes the formation of Pt single atoms by regulating metal-support interaction for remarkable photocatalytic hydrogen production. J Colloid Interface Sci 2024; 680:298-306. [PMID: 39509778 DOI: 10.1016/j.jcis.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Since the metal-support interaction (MSI) has a great influence on the structure and properties of single atom catalysts (SACs), the activity and stability of SACs can be effectively regulated by adjusting the structure of the matrix. Herein, the morphology of surface supported Pt species can be controlled by doping to adjust the properties of TiO2 support. Specifically, under the same conditions, the Pt species on the Pr doped TiO2 surface are Pt SAs (PtSA/TiO2(Pr)), while on the pure TiO2 surface are particles (PtNP/TiO2). Experimental and theoretical studies demonstrate that Pr doping weakens the interaction of Ti-O bond, stabilizes the O-Pt unit site and Pt SAs. Impressively, PtSA/TiO2(Pr) shows superior photocatalytic hydrogen production performance (196.43 mmol g-1 h-1), far exceeding PtNP/TiO2 (91.96 mmol g-1 h-1). Additionally, Pr dopant modulates the electronic interaction between TiO2 support and Pt SAs, thus the adsorption/desorption behavior of H intermediates (H*) is balanced. Besides, the electron delocalization of O adjacent to Pt SAs can be adjusted by Pr doping, prompting the establishment of efficient Pt-O electron transfer channels and further enhances the utilization of photogenerated carriers. This study presents a promising strategy to prepare SACs with high activity for photocatalyst hydrogen production.
Collapse
Affiliation(s)
- Baoye Zi
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China
| | - Hongshun Zheng
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China; Southwest United Graduate School, 650091 Kunming, China
| | - Tong Zhou
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China
| | - Yumin Zhang
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China
| | - Qingjie Lu
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China
| | - Mingpeng Chen
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China
| | - Huachuan Sun
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China
| | - Bin Xiao
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China
| | - Zhishi Qiu
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China
| | - Jianhong Zhao
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China
| | - Tianwei He
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China
| | - Jin Zhang
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China
| | - Qingju Liu
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China; Southwest United Graduate School, 650091 Kunming, China.
| |
Collapse
|
14
|
Fu W, Gao Q, Zhang C, Tan L, Jiang B, Xiao C, Liu M, Wang PP. Exploring Geometric Chirality in Nanocrystals for Boosting Solar-to-Hydrogen Conversion. Angew Chem Int Ed Engl 2024; 63:e202411871. [PMID: 39054405 DOI: 10.1002/anie.202411871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
Advancing catalyst design is pivotal for the enhancement of photocatalytic processes in renewable energy conversion. The incorporation of structural chirality into conventional inorganic solar hydrogen nanocatalysts promises a significant transformation in catalysis, a feature absent in this field. Here we unveil the unexplored potential of geometric chirality by creating a chiral composite that integrates geometric chiral Au nanoparticles (NPs) with two-dimensional C3N4 nanosheets, significantly boosting photocatalytic H2 evolution beyond the achiral counterparts. The superior performance is driven by the geometric chirality of Au NPs, which facilitates efficient charge carrier separation through the favorable C3N4-chiral Au NP interface and chiral induced spin polarization, and exploits high-activity facets within the concave surfaces of chiral Au NPs. The resulting synergistic effect leads to a remarkable increase in photocatalytic H2 evolution, with an apparent quantum yield of 44.64 % at 400 nm. Furthermore, we explore the selective polarized photo-induced carrier separation behavior, revealing a distinct chiral-dependent photocatalytic HER performance. Our work advances the design and utilization of chiral inorganic nanostructures for superior performance in energy conversion processes.
Collapse
Affiliation(s)
- Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Qi Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Chunyang Zhang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Lili Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Biao Jiang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Chengyu Xiao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Maochang Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Peng-Peng Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| |
Collapse
|
15
|
Yang K, Huang Y, Wang T, Li Y, Du Y, Ling J, Fan Z, Zhang C, Ma C. In-Situ Anchoring of Co Single-Atom Synergistically with Cd Vacancy of Cadmium Sulfide for Boosting Asymmetric Charge Distribution and Photocatalytic Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409832. [PMID: 39388450 DOI: 10.1002/adma.202409832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/08/2024] [Indexed: 10/12/2024]
Abstract
In the context of reshaping the energy pattern, designing and synthesizing high-performance noble metal-free photocatalysts with ultra-high atomic utilization for hydrogen evolution reaction (HER) still remains a challenge. In a streamlined synthesis process, in-situ single atom anchoring is performed in parallel with HER by irradiating a precursory defect-state CdS/Co suspension (Co-DCdS-Ss) system under simulated sunlight and the in-situ synthesizing single-atom Co photocatalyst (Co5:DCdS) exhibits further improved catalytic performance (60.10 mmol g-1 h-1) compared with Co-DCdS-Ss (18.09 mmol g-1 h-1), reaching an apparent quantum yield of 57.6% at 500 nm and a solar-chemical energy conversion efficiency (SCC) of 6.26% at AM 1.5G. In-depth characterization tests and density functional theory (DFT) calculations prove that the anchoring of Co single atom deepens the asymmetric charge distribution of the two-coordination S atom adjacent to the cadmium vacancy (VCd). The synergy between electron delocalization VCd and Co single atom on the catalyst surface is constructed, which bifunctional sites responsible for boosting water adsorption-dissociation and hydrogen evolution. This study advances the understanding of the underlying mechanisms of synergy between surface defects and metal single atoms and opens a new horizon for the development of advanced materials in the field of photocatalysis.
Collapse
Affiliation(s)
- Kaihua Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yicai Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yiming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yating Du
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Juan Ling
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Ziyi Fan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
16
|
Song W, Wang C, Liu Y, Chong KC, Zhang X, Wang T, Zhang Y, Li B, Tian J, Zhang X, Wang X, Yao B, Wang X, Xiao Y, Yao Y, Mao X, He Q, Lin Z, Zou Z, Liu B. Unlocking Copper-Free Interfacial Asymmetric C-C Coupling for Ethylene Photosynthesis from CO 2 and H 2O. J Am Chem Soc 2024; 146:29028-29039. [PMID: 39353154 DOI: 10.1021/jacs.4c10023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Solar-driven carbon dioxide (CO2) reduction into C2+ products such as ethylene represents an enticing route toward achieving carbon neutrality. However, due to sluggish electron transfer and intricate C-C coupling, it remains challenging to achieve highly efficient and selective ethylene production from CO2 and H2O beyond capitalizing on Cu-based catalysts. Herein, we report a judicious design to attain asymmetric C-C coupling through interfacial defect-rendered tandem catalytic centers within a sulfur-vacancy-rich MoSx/Fe2O3 photocatalyst sheet, enabling a robust CO2 photoreduction to ethylene without the need for copper, noble metals, and sacrificial agents. Specifically, interfacial S vacancies induce adjacent under-coordinated S atoms to form Fe-S bonds as a rapid electron-transfer pathway for yielding a Z-scheme band alignment. Moreover, these S vacancies further modulate the strong coupling interaction to generate a nitrogenase-analogous Mo-Fe heteronuclear unit and induce the upward shift of the d-band center. This bioinspired interface structure effectively suppresses electrostatic repulsion between neighboring *CO and *COH intermediates via d-p hybridization, ultimately facilitating an asymmetric C-C coupling to achieve a remarkable solar-to-chemical efficiency of 0.565% with a superior selectivity of 84.9% for ethylene production. Further strengthened by MoSx/WO3, our design unveils a promising platform for optimizing interfacial electron transfer and offers a new option for C2+ synthesis from CO2 and H2O using copper-free and noble metal-free catalysts.
Collapse
Affiliation(s)
- Wentao Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Cheng Wang
- Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing 210093, China
| | - Yong Liu
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Kok Chan Chong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xinyue Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Tie Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yuanming Zhang
- Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing 210093, China
| | - Bowen Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Jianwu Tian
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xianhe Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xinyun Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Bingqing Yao
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Xi Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yukun Xiao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yingfang Yao
- Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing 210093, China
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid-State Microstructures, Department of Physics, Nanjing University, No. 22 Hankou Road, Nanjing 210093, China
| | - Xianwen Mao
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Qian He
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Zhigang Zou
- Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing 210093, China
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid-State Microstructures, Department of Physics, Nanjing University, No. 22 Hankou Road, Nanjing 210093, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
17
|
Fang J, Li J, Chen Y, Cheng J, Zhu C, Mao J. Au Cluster-Nanoparticle Dual Coupling for Photocatalytic CO 2 Conversion. Inorg Chem 2024; 63:19375-19381. [PMID: 39344921 DOI: 10.1021/acs.inorgchem.4c03287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
CO2-selective photoreduction to value-added products is ideal, but its practical application suffers from weak photogenerated carrier separation and insufficient multielectron transport. Herein, we constructed the tricomponent AuNPs@SnO2-AuNCs hybrid by decorating Au nanoclusters (AuNCs) on the Au nanoparticle (AuNPs)@SnO2 core-shell structure. AuNC-NP dual coupling endowed AuNPs@SnO2-AuNCs with an excellent CO yield of 64.8 μmol g-1 h-1 during CO2 photoreduction, which was higher than the role of separate application of AuNCs (25.3 μmol g-1 h-1) and AuNPs (16.0 μmol g-1 h-1). It was mainly attributed that the coaction of AuNPs and AuNCs not only enhanced the visible light absorption capacity but also improved the photogenerated carrier separation/migration. As a result, the electron-rich AuNCs induced from plasmonic AuNPs and photoexcited SnO2 promoted the photocatalytic CO2-to-CO performance. This work provides a new perspective to design multicomponent photocatalysts for highly efficient CO2 conversion.
Collapse
Affiliation(s)
- Jiaojiao Fang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Jiaqi Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yukai Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jiale Cheng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Chengyang Zhu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
18
|
Liu H, Sun B, Li Z, Xiao D, Wang Z, Liu Y, Zheng Z, Wang P, Dai Y, Cheng H, Huang B. Plasmon-Driven Highly Selective CO 2 Photoreduction to C 2H 4 on Ionic Liquid-Mediated Copper Nanowires. Angew Chem Int Ed Engl 2024; 63:e202410596. [PMID: 39031951 DOI: 10.1002/anie.202410596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
Selective CO2 photoreduction to value-added multi-carbon (C2+) feedstocks, such as C2H4, holds great promise in direct solar-to-chemical conversion for a carbon-neutral future. Nevertheless, the performance is largely inhibited by the high energy barrier of C-C coupling process, thereby leading to C2+ products with low selectivity. Here we report that through facile surface immobilization of a 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4) ionic liquid, plasmonic Cu nanowires could enable highly selective CO2 photoreduction to C2H4 product. At an optimal condition, the resultant plasmonic photocatalyst exhibits C2H4 production with selectivity up to 96.7 % under 450 nm monochromatic light irradiation, greatly surpassing its pristine Cu counterpart. Combined in situ spectroscopies and computational calculations unravel that the addition of EMIM-BF4 ionic liquid modulates the local electronic structure of Cu, resulting in its enhanced adsorption strength of *CO intermediate and significantly reduced energy barrier of C-C coupling process. This work paves new path for Cu surface plasmons in selective artificial photosynthesis to targeted products.
Collapse
Affiliation(s)
- Hongli Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Bin Sun
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zaiqi Li
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Difei Xiao
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan, 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
19
|
Huang Z, Wang L, Li T, Venkatraman K, He Y, Polo-Garzon F, Smith J, Du Y, Hu L, Wu Z, Jiang DE, Chi M. Atomic Scale Responses of High Entropy Oxides to Redox Environments. NANO LETTERS 2024; 24:11537-11543. [PMID: 39236216 DOI: 10.1021/acs.nanolett.4c02985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The potential of high entropy oxides (HEOs) as high-performance energy storage materials and catalysts has been mainly understood through their bulk structures. However, the importance of their surfaces, which may play an even more critical role, remains largely unknown. In this study, we employed advanced scanning transmission electron microscopy to investigate the atomic-scale structural and chemical responses of CeYLaHfTiZrOx HEOs to high-temperature redox environments. Our observations reveal dynamic elemental and structural reconstructions in the surface of HEOs under different gas environments, contrasting with the high stability of the bulk structure. Notably, the surfaces of HEO particles consistently exhibit abundant oxygen vacancies, regardless of the redox environment. These findings indicate that HEOs offer distinct advantages in facilitating chemical and electrochemical reactions, relying on oxygen vacancies. Our results also suggest that the exceptional performance of HEOs in energy storage applications arises from surface structural and chemical adaptability.
Collapse
Affiliation(s)
- Zhennan Huang
- Center of Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Lu Wang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Tangyuan Li
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Kartik Venkatraman
- Center of Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yang He
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Felipe Polo-Garzon
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jacob Smith
- Center of Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yiheng Du
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Zili Wu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Miaofang Chi
- Center of Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
20
|
Yang Q, Liu H, Lin Y, Su D, Tang Y, Chen L. Atomically Dispersed Metal Catalysts for the Conversion of CO 2 into High-Value C 2+ Chemicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310912. [PMID: 38762777 DOI: 10.1002/adma.202310912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/12/2024] [Indexed: 05/20/2024]
Abstract
The conversion of carbon dioxide (CO2) into value-added chemicals with two or more carbons (C2+) is a promising strategy that cannot only mitigate anthropogenic CO2 emissions but also reduce the excessive dependence on fossil feedstocks. In recent years, atomically dispersed metal catalysts (ADCs), including single-atom catalysts (SACs), dual-atom catalysts (DACs), and single-cluster catalysts (SCCs), emerged as attractive candidates for CO2 fixation reactions due to their unique properties, such as the maximum utilization of active sites, tunable electronic structure, the efficient elucidation of catalytic mechanism, etc. This review provides an overview of significant progress in the synthesis and characterization of ADCs utilized in photocatalytic, electrocatalytic, and thermocatalytic conversion of CO2 toward high-value C2+ compounds. To provide insights for designing efficient ADCs toward the C2+ chemical synthesis originating from CO2, the key factors that influence the catalytic activity and selectivity are highlighted. Finally, the relevant challenges and opportunities are discussed to inspire new ideas for the generation of CO2-based C2+ products over ADCs.
Collapse
Affiliation(s)
- Qihao Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hao Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Desheng Su
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Yulong Tang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
21
|
Di J, Chen C, Zhu C, Cao X, Xiong J, Long R, Li S, Jiang W, Liu Z. General Synthesis of Metal Indium Sulfide Atomic Layers for Photocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402808. [PMID: 38764281 DOI: 10.1002/smll.202402808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/29/2024] [Indexed: 05/21/2024]
Abstract
The metal indium sulfides have attracted extensive research interest in photocatalysis due to regulable atomic configuration and excellent optoelectronic properties. However, the synthesis of metal indium sulfide atomic layers is still challenging since intrinsic non-van-der-Waals layered structures of some components. Here, a surfactant self-assembly growth mechanism is proposed to controllably synthesize metal indium sulfide atomic layers. Eleven types of atomic layers with tunable compositions, thickness, and defect concentrations are successfully achieved namely In2S3, MgIn2S4, CaIn2S4, MnIn2S4, FeIn2S4, ZnIn2S4, Zn2In2S5, Zn4In16S33, CuInS2, CuIn5S8, and CdIn2S4. The typical CaIn2S4 shows a defect-dependence activity for CO2 photoreduction. The designed S vacancies in CaIn2S4 can serve as catalytic centers to activate CO2 molecules via localized electrons for π-back-donation. The engineered S vacancies tune the non-covalent interaction with CO2 and intermediates, manages to tune the free energy, and lower the reaction energy barrier. As a result, the defect-rich CaIn2S4 displays 2.82× improved reduction rate than defect-poor CaIn2S4. Meantime, other components also display promising photocatalytic performance, such as Zn2In2S5 with a H2O2 photosynthesis rate of 292 µmol g-1 h-1 and CuInS2 with N2-NH4 + conversion rate of 54 µmol g-1 h-1. This work paves the way for the multidisciplinary exploration of metal indium sulfide atomic layers with unique photocatalysis properties.
Collapse
Affiliation(s)
- Jun Di
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Chao Chen
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chao Zhu
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xun Cao
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jun Xiong
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Ran Long
- National Synchrotron Radiation Laboratory, State Key Laboratory of Particle Detection and Electronics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shuzhou Li
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zheng Liu
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
22
|
Jia G, Zhang Y, Yu JC, Guo Z. Asymmetric Atomic Dual-Sites for Photocatalytic CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403153. [PMID: 39039977 DOI: 10.1002/adma.202403153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/25/2024] [Indexed: 07/24/2024]
Abstract
Atomically dispersed active sites in a photocatalyst offer unique advantages such as locally tuned electronic structures, quantum size effects, and maximum utilization of atomic species. Among these, asymmetric atomic dual-sites are of particular interest because their asymmetric charge distribution generates a local built-in electric potential to enhance charge separation and transfer. Moreover, the dual sites provide flexibility for tuning complex multielectron and multireaction pathways, such as CO2 reduction reactions. The coordination of dual sites opens new possibilities for engineering the structure-activity-selectivity relationship. This comprehensive overview discusses efficient and sustainable photocatalysis processes in photocatalytic CO2 reduction, focusing on strategic active-site design and future challenges. It serves as a timely reference for the design and development of photocatalytic conversion processes, specifically exploring the utilization of asymmetric atomic dual-sites for complex photocatalytic conversion pathways, here exemplified by the conversion of CO2 into valuable chemicals.
Collapse
Affiliation(s)
- Guangri Jia
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Yingchuan Zhang
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, P. R. China
| | - Zhengxiao Guo
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
23
|
Li D, Li Q, Zhou Y, Zhang Q, Ye Q, Yang R, Jiang D. Shaping and Doping Metal-Organic Framework-Derived TiO 2 to Steer the Selectivity of Photocatalytic CO 2 Reduction toward CH 4. Inorg Chem 2024; 63:15398-15408. [PMID: 39096309 DOI: 10.1021/acs.inorgchem.4c02407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Steering selectivity in photocatalytic conversion of CO2, especially toward deep reduction products, is vital to energy and environmental goals yet remains a great challenge. In this work, we demonstrate a facet-dependent photocatalytic selective reduction of CO2 to CH4 in Cu-doped TiO2 catalysts exposed with different facets synthesized by a topological transformation from MIL-125 (Ti) precursors. The optimized round cake-like Cu/TiO2 photocatalyst mainly exposed with the (001) facet exhibited a high photocatalytic CO2 reduction performance with a CH4 yield of 40.36 μmol g-1 h-1 with a selectivity of 94.1%, which are significantly higher than those of TiO2 (001) (4.70 μmol g-1 h-1 and 52.6%, respectively), Cu/TiO2 (001 + 101) (18.95 μmol g-1 h-1 and 69.6%, respectively), and Cu/TiO2 (101) (14.73 μmol g-1 h-1 and 78.9%, respectively). The results of experimental and theoretical calculations demonstrate that the Cu doping dominating the promoted separation and migration efficiencies of photogenerated charges and the preferential adsorption on (001) facets synergistically contribute to the selective reduction of CO2 to CH4. This work highlights the significance of synergy between facet engineering and ion doping in the design of high-performance photocatalysts with respect to selective reduction of CO2 to multielectron products.
Collapse
Affiliation(s)
- Di Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Qin Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Yimeng Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhangjiang 212013, China
| | - Qiong Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Qianjin Ye
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhangjiang 212013, China
| | - Ran Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhangjiang 212013, China
| | - Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhangjiang 212013, China
| |
Collapse
|
24
|
Gao W, Li H, Hu J, Yang Y, Xiong Y, Ye J, Zou Z, Zhou Y. Recent advances of metal active sites in photocatalytic CO 2 reduction. Chem Sci 2024:d4sc01978d. [PMID: 39156936 PMCID: PMC11326468 DOI: 10.1039/d4sc01978d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Photocatalytic CO2 reduction captures solar energy to convert CO2 into hydrocarbon fuels, thus shifting the dependence on rapidly depleting fossil fuels. Among the various proposed photocatalysts, systems containing metal active sites (MASs) possess obvious advantages, such as effective photogenerated carrier separation, suitable adsorption and activation of intermediates, and achievable C-C coupling to generate multi-carbon (C2+) products. The present review aims to summarize the typical photocatalytic materials with MAS, highlighting the critical role of different formulations of MAS in CO2 photoreduction, especially for C2+ product generation. State-of-the-art progress in the characterization and theoretical calculations for MAS-containing photocatalysts is also emphasized. Finally, the challenges and prospects of catalytic systems involving MAS for solar-driven CO2 conversion are outlined, providing inspiration for the future design of materials for efficient photocatalytic energy conversion.
Collapse
Affiliation(s)
- Wa Gao
- School of Physical Science and Technology, Tiangong University Tianjin 300387 P. R. China
| | - Haonan Li
- School of Physical Science and Technology, Tiangong University Tianjin 300387 P. R. China
| | - Jianqiang Hu
- Jiangxi Normal Univ., Inst. Adv. Mat. IAM, Coll. Chem. & Chem. Engn. Nanchang 330022 P. R. China
| | - Yong Yang
- Key Laboratory of Soft Chemistry and Functional Materials (MOE), Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Yujie Xiong
- School of Chemistry and Materials Science, University of Science and Technology of China Hefei 230036 Anhui P. R. China
| | - Jinhua Ye
- National Institute for Materials Science (NIMS), International Center Materials Nanoarchitecture MANA 1-1 Namiki, Tsukuba Ibaraki 305-0044 Japan
| | - Zhigang Zou
- School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210093 P. R. China
- School of Science and Engineering, The Chinese University of Hongkong (Shenzhen) Shenzhen Guangdong 518172 P. R. China
| | - Yong Zhou
- School of Chemical and Environmental Engineering, Anhui Polytechnic University Wuhu 241000 P. R. China
- School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210093 P. R. China
- School of Science and Engineering, The Chinese University of Hongkong (Shenzhen) Shenzhen Guangdong 518172 P. R. China
| |
Collapse
|
25
|
Li J, Xiang T, Liu X, Ghazzal MN, Liu ZQ. Structure-Function Relationship of p-Block Bismuth for Selective Photocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202407287. [PMID: 38806408 DOI: 10.1002/anie.202407287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
Selective photocatalytic reduction of CO2 to value-added fuels, such as CH4, is highly desirable due to its high mass-energy density. Nevertheless, achieving selective CH4 with higher production yield on p-block materials is hindered by non-ideal adsorption of *CHO key intermediate and an unclear structure-function relationship. Herein, we unlock the key reaction steps of CO2 and found a volcano-type structure-function relationship for photocatalytic CO2-to-CH4 conversion by gradual reduction of the p-band center of the p-block Bi element leading to formation of Bi-oxygen vacancy heterosites. The selectivity of CH4 is also positive correlation with adsorption energy of *CHO. The Bi-oxygen vacancy heterosites with an appropriate filled Bi-6p orbital electrons and p band center (-0.64) enhance the coupling between C-2p of *CHO and Bi-6p orbitals, thereby resulting in high selectivity (95.2 %) and productivity (17.4 μmol g-1 h-1) towards CH4. Further studies indicate that the synergistic effect between Bi-oxygen vacancy heterosites reduces Gibbs free energy for *CO-*CHO process, activates the C-H and C=O bonds of *CHO, and facilitates the enrichment of photoexcited electrons at active sites for multielectron photocatalytic CO2-to-CH4 conversion. This work provides a new perspective on developing p-block elements for selective photocatalytic CO2 conversion.
Collapse
Affiliation(s)
- Jingwei Li
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, 510006, P. R. China
| | - Tianci Xiang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, 510006, P. R. China
| | - Xiang Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, 510006, P. R. China
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Mohamed Nawfal Ghazzal
- Université Paris-Saclay, Institut de Chimie Physique, UMR 8000 CNRS, Orsay, 91405, France
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, 510006, P. R. China
| |
Collapse
|
26
|
Yan Y, Fu N, Shao W, Wang T, Liu Y, Niu Y, Zhang Y, Peng M, Yang Z. Pinpointing the Cl Coordination Effect on Mn-N 3-Cl Moiety Toward Boosting Reaction Kinetics and Suppressing Shuttle Effect in Li-S Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311799. [PMID: 38545998 DOI: 10.1002/smll.202311799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Indexed: 08/17/2024]
Abstract
Single atom catalysts (SACs) are highly favored in Li-S batteries due to their excellent performance in promoting the conversion of lithium polysulfides (LiPSs) and inhibiting their shuttling. However, the intricate and interrelated microstructures pose a challenge in deciphering the correlation between the chemical environment surrounding the active site and its catalytic activity. Here, a novel SAC featuring a distinctive Mn-N3-Cl moiety anchored on B, N co-doped carbon nanotubes (MnN3Cl@BNC) is synthesized. Subsequently, the selective removal of the Cl ligands while inheriting other microstructures is performed to elucidate the effect of Cl coordination on catalytic activity. The Cl coordination effectively enhances the electron cloud density of the Mn-N3-Cl moiety, reducing the band gap and increasing the adsorption capacity and redox kinetics of LiPSs. As a modified separator for Li-S batteries, MnN3Cl@BNC exhibits high capacities of 1384.1 and 743 mAh g-1 at 0.1 and 3C, with a decay rate of only 0.06% per cycle over 700 cycles at 1 C, which is much better than that of MnN3OH@BNC. This study reveals that Cl coordination positively contributes to improving the catalytic activity of the Mn-N3-Cl moiety, providing a fresh perspective for the design of high-performance SACs.
Collapse
Affiliation(s)
- Yurong Yan
- Shanghai Key Laboratory of D & A for Metal-Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Ning Fu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China
| | - Wei Shao
- Shanghai Key Laboratory of D & A for Metal-Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Tiantian Wang
- Shanghai Key Laboratory of D & A for Metal-Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Ying Liu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China
| | - Yongsheng Niu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China
| | - Yanwei Zhang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China
| | - Mao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Zhenglong Yang
- Shanghai Key Laboratory of D & A for Metal-Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
27
|
Zhang W, Deng C, Wang W, Sheng H, Zhao J. Achieving Almost 100% Selectivity in Photocatalytic CO 2 Reduction to Methane via In-Situ Atmosphere Regulation Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405825. [PMID: 39003622 DOI: 10.1002/adma.202405825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/25/2024] [Indexed: 07/15/2024]
Abstract
Artificial photosynthesis, harnessing solar energy to convert CO2 into hydrocarbons, presents a promising solution for climate change and energy scarcity. However, photocatalytic CO2 reduction often terminates at the CO stage due to limited electron transfer capacity, hindering the formation of higher-energy hydrocarbons such as CH4. This study introduces, for the first time, an in-situ atmosphere regulation strategy, refined from molecular imprinting methodologies, using dynamically reacting molecules to precisely engineer photocatalytic surface sites for selective *CO adsorption and hydrogenation in CO2-to-CH4 conversion. Specifically, the single-atom Cu catalyst (Cu-SA-CO) is prepared by anchoring single-atom Cu onto defective TiO2 substrates (Cu-SA-CO) under a CO reduction atmosphere. Under illumination, the catalyst exhibited outstanding CH4 selectivity (almost 100%) and productivity (58.5 µmol g-1 h-1). Mechanistic investigations reveal that the coordination environment of the Cu single atoms is significantly affected by dynamically reacting molecules (CO and *CHxO) during synthesis, leading to a Ti-Cu-O structure. The structure, with the synergistic interaction between Cu single atoms and oxygen defects, significantly enhances *CO adsorption and hydrogenation, thereby promoting the formation of methane. This work pioneers the use of dynamically reactive molecules as imprinted templates to tune photocatalytic CO2 reduction selectivity, providing a novel avenue for designing efficient photocatalysts.
Collapse
Affiliation(s)
- Wanyi Zhang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 10049, P. R. China
| | - Chaoyuan Deng
- New Energy Materials Laboratory, Sichuan Changhong Electronic (Group) Co., Ltd., Chengdu, 610041, P. R. China
| | - Wei Wang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 10049, P. R. China
| | - Hua Sheng
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 10049, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 10049, P. R. China
| |
Collapse
|
28
|
Shi H, Liang Y, Hou J, Wang H, Jia Z, Wu J, Song F, Yang H, Guo X. Boosting Solar-Driven CO 2 Conversion to Ethanol via Single-Atom Catalyst with Defected Low-Coordination Cu-N 2 Motif. Angew Chem Int Ed Engl 2024; 63:e202404884. [PMID: 38760322 DOI: 10.1002/anie.202404884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
Cu-based catalysts have been shown to selectively catalyze CO2 photoreduction to C2+ solar fuels. However, they still suffer from poor activity and low selectivity. Herein, we report a high-performance carbon nitride supported Cu single-atom catalyst featuring defected low-coordination Cu-N2 motif (Cu-N2-V). Lead many recently reported photocatalysts and its Cu-N3 and Cu-N4 counterparts, Cu-N2-V exhibits superior photocatalytic activity for CO2 reduction to ethanol and delivers 69.8 μmol g-1 h-1 ethanol production rate, 97.8 % electron-based ethanol selectivity, and a yield of ~10 times higher than Cu-N3 and Cu-N4. Revealed by the extensive experimental investigation combined with DFT calculations, the superior photoactivity of Cu-N2-V stems from its defected Cu-N2 configuration, in which the Cu sites are electron enriched and enhance electron delocalization. Importantly, Cu in Cu-N2-V exist in both Cu+ and Cu2+ valence states, although predominantly as Cu+. The Cu+ sites support the CO2 activation, while the co-existence of Cu+/Cu2+ sites are highly conducive for strong *CO adsorption and subsequent *CO-*CO dimerization enabling C-C coupling. Furthermore, the hollow microstructure of the catalyst also promotes light adsorption and charge separation efficiency. Collectively, these make Cu-N2-V an effective and high-performance catalyst for the solar-driven CO2 conversion to ethanol. This study also elucidates the C-C coupling reaction path via *CO-*CO to *COCOH and rate-determining step, and reveals the valence state change of partial Cu species from Cu+ to Cu2+ in Cu-N2-V during CO2 photoreduction reaction.
Collapse
Affiliation(s)
- Hainan Shi
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Yan Liang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| | - Haozhi Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Zhenghao Jia
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
- Division of Energy Research Resources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Jiaming Wu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| | - Fei Song
- Shanghai Synchrotron Radiation Faciality, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Hong Yang
- School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
29
|
Xu SY, Shi W, Huang JR, Yao S, Wang C, Lu TB, Zhang ZM. Single-cluster Functionalized TiO 2 Nanotube Array for Boosting Water Oxidation and CO 2 Photoreduction to CH 3OH. Angew Chem Int Ed Engl 2024; 63:e202406223. [PMID: 38664197 DOI: 10.1002/anie.202406223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Indexed: 06/05/2024]
Abstract
Solar-driven CO2 reduction and water oxidation to liquid fuels represents a promising solution to alleviate energy crisis and climate issue, but it remains a great challenge for generating CH3OH and CH3CH2OH dominated by multi-electron transfer. Single-cluster catalysts with super electron acceptance, accurate molecular structure, customizable electronic structure and multiple adsorption sites, have led to greater potential in catalyzing various challenging reactions. However, accurately controlling the number and arrangement of clusters on functional supports still faces great challenge. Herein, we develop a facile electrosynthesis method to uniformly disperse Wells-Dawson- and Keggin-type polyoxometalates on TiO2 nanotube arrays, resulting in a series of single-cluster functionalized catalysts P2M18O62@TiO2 and PM12O40@TiO2 (M=Mo or W). The single polyoxometalate cluster can be distinctly identified and serves as electronic sponge to accept electrons from excited TiO2 for enhancing surface-hole concentration and promote water oxidation. Among these samples, P2Mo18O62@TiO2-1 exhibits the highest electron consumption rate of 1260 μmol g-1 for CO2-to-CH3OH conversion with H2O as the electron source, which is 11 times higher than that of isolated TiO2 nanotube arrays. This work supplied a simple synthesis method to realize the single-dispersion of molecular cluster to enrich surface-reaching holes on TiO2, thereby facilitating water oxidation and CO2 reduction.
Collapse
Affiliation(s)
- Shen-Yue Xu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Juan-Ru Huang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Shuang Yao
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Cheng Wang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
30
|
Wang J, Sheng R, Xiao J, Lu L, Peng Y, Gu D, Xiao W. Matched Redox Kinetics on Triazine-Based Carbon Nitride/Ni(OH) 2 for Stoichiometric Overall Photocatalytic CO 2 Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309707. [PMID: 38386245 DOI: 10.1002/smll.202309707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Indexed: 02/23/2024]
Abstract
Mismatched reaction kinetics of CO2 reduction and H2O oxidation is the main obstacle limiting the overall photocatalytic CO2 conversion. Here, a molten salt strategy is used to construct tubular triazine-based carbon nitride (TCN) with more adsorption sites and stronger activation capability. Ni(OH)2 nanosheets are then grown over the TCN to trigger a proton-coupled electron transfer for a stoichiometric overall photocatalytic CO2 conversion via "3CO2 + 2H2O = CH4 + 2CO + 3O2." TCN reduces the energy barrier of H2O dissociation to promote H2O oxidation to O2 and supply sufficient protons to Ni(OH)2, whereby the CO2 conversion is accelerated due to the enhanced proton-coupled electron transfer process enabled by the sufficient proton supply from TCN. This work highlights the importance of matching the reaction kinetics of CO2 reduction and H2O oxidation by proton-coupled electron transfer on stoichiometric overall photocatalytic CO2 conversion.
Collapse
Affiliation(s)
- Jing Wang
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Ren Sheng
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Juanxiu Xiao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, School of Marine Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Li Lu
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401123, P. R. China
| | - Yuhao Peng
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Dong Gu
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei Xiao
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
31
|
Mao Y, Zhang M, Zhai G, Si S, Liu D, Song K, Liu Y, Wang Z, Zheng Z, Wang P, Dai Y, Cheng H, Huang B. Asymmetric Cu(I)─W Dual-Atomic Sites Enable C─C Coupling for Selective Photocatalytic CO 2 Reduction to C 2H 4. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401933. [PMID: 38666482 PMCID: PMC11267401 DOI: 10.1002/advs.202401933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/10/2024] [Indexed: 07/25/2024]
Abstract
Solar-driven CO2 reduction into value-added C2+ chemical fuels, such as C2H4, is promising in meeting the carbon-neutral future, yet the performance is usually hindered by the high energy barrier of the C─C coupling process. Here, an efficient and stabilized Cu(I) single atoms-modified W18O49 nanowires (Cu1/W18O49) photocatalyst with asymmetric Cu─W dual sites is reported for selective photocatalytic CO2 reduction to C2H4. The interconversion between W(V) and W(VI) in W18O49 ensures the stability of Cu(I) during the photocatalytic process. Under light irradiation, the optimal Cu1/W18O49 (3.6-Cu1/W18O49) catalyst exhibits concurrent high activity and selectivity toward C2H4 production, reaching a corresponding yield rate of 4.9 µmol g-1 h-1 and selectivity as high as 72.8%, respectively. Combined in situ spectroscopies and computational calculations reveal that Cu(I) single atoms stabilize the *CO intermediate, and the asymmetric Cu─W dual sites effectively reduce the energy barrier for the C─C coupling of two neighboring CO intermediates, enabling the highly selective C2H4 generation from CO2 photoreduction. This work demonstrates leveraging stabilized atomically-dispersed Cu(I) in asymmetric dual-sites for selective CO2-to-C2H4 conversion and can provide new insight into photocatalytic CO2 reduction to other targeted C2+ products through rational construction of active sites for C─C coupling.
Collapse
Affiliation(s)
- Yuyin Mao
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Minghui Zhang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Guangyao Zhai
- School of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaHefei230026China
| | - Shenghe Si
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Dong Liu
- School of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaHefei230026China
| | - Kepeng Song
- School of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Zeyan Wang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Peng Wang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Ying Dai
- School of PhysicsShandong UniversityJinan250100China
| | - Hefeng Cheng
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Baibiao Huang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| |
Collapse
|
32
|
Zi B, Zheng H, Zhou T, Lu Q, Chen M, Xiao B, Zhang Y, Qiu Z, Sun H, Zhao J, Luo Z, He T, Zhang J, Zhao Z, Liu Q. Changeable Active Sites by Pr Doping CuSA-TiO 2 Photocatalyst for Excellent Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305779. [PMID: 38764279 DOI: 10.1002/smll.202305779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/19/2023] [Indexed: 05/21/2024]
Abstract
Photocatalytic water splitting for clean hydrogen production has been a very attractive research field for decades. However, the insightful understanding of the actual active sites and their impact on catalytic performance is still ambiguous. Herein, a Pr-doped TiO2-supported Cu single atom (SA) photocatalyst is successfully synthesized (noted as Cu/Pr-TiO2). It is found that Pr dopants passivate the formation of oxygen vacancies, promoting the density of photogenerated electrons on the CuSAs, and optimizing the electronic structure and H* adsorption behavior on the CuSA active sites. The photocatalytic hydrogen evolution rate of the obtained Cu/Pr-TiO2 catalyst reaches 32.88 mmol g-1 h-1, 2.3 times higher than the Cu/TiO2. Innovatively, the excellent catalytic activity and performance is attributed to the active sites change from O atoms to CuSAs after Pr doping is found. This work provides new insight for understanding the accurate roles of single atoms in photocatalytic water splitting.
Collapse
Affiliation(s)
- Baoye Zi
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Hongshun Zheng
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Tong Zhou
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Qingjie Lu
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Mingpeng Chen
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Bin Xiao
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Yumin Zhang
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Zhishi Qiu
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Huachuan Sun
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Jianhong Zhao
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Zhongge Luo
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Tianwei He
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Jin Zhang
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Zongyan Zhao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Qingju Liu
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| |
Collapse
|
33
|
Ren Z, Li Y, Ren Q, Zhang X, Fan X, Liu X, Fan J, Shen S, Tang Z, Xue Y. Unveiling the Role of Sulfur Vacancies in Enhanced Photocatalytic Activity of Hybrids Photocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1009. [PMID: 38921884 PMCID: PMC11207092 DOI: 10.3390/nano14121009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Photocatalysis represents a sustainable strategy for addressing energy shortages and global warming. The main challenges in the photocatalytic process include limited light absorption, rapid recombination of photo-induced carriers, and poor surface catalytic activity for reactant molecules. Defect engineering in photocatalysts has been proven to be an efficient approach for improving solar-to-chemical energy conversion. Sulfur vacancies can adjust the electron structure, act as electron reservoirs, and provide abundant adsorption and activate sites, leading to enhanced photocatalytic activity. In this work, we aim to elucidate the role of sulfur vacancies in photocatalytic reactions and provide valuable insights for engineering high-efficiency photocatalysts with abundant sulfur vacancies in the future. First, we delve into the fundamental understanding of photocatalysis. Subsequently, various strategies for fabricating sulfur vacancies in photocatalysts are summarized, along with the corresponding characterization techniques. More importantly, the enhanced photocatalytic mechanism, focusing on three key factors, including electron structure, charge transfer, and the surface catalytic reaction, is discussed in detail. Finally, the future opportunities and challenges in sulfur vacancy engineering for photocatalysis are identified.
Collapse
Affiliation(s)
- Zhenxing Ren
- Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China; (Z.R.)
| | - Yang Li
- Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China; (Z.R.)
| | - Qiuyu Ren
- Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China; (Z.R.)
| | - Xiaojie Zhang
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223003, China
| | - Xiaofan Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China (J.F.)
| | - Xinjuan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China (J.F.)
| | - Jinchen Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China (J.F.)
| | - Shuling Shen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China (J.F.)
| | - Zhihong Tang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China (J.F.)
| | - Yuhua Xue
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China (J.F.)
| |
Collapse
|
34
|
Lv L, Tan H, Kong Y, Tang B, Ji Q, Liu Y, Wang C, Zhuang Z, Wang H, Ge M, Fan M, Wang D, Yan W. Breaking the Scaling Relationship in C-N Coupling via the Doping Effects for Efficient Urea Electrosynthesis. Angew Chem Int Ed Engl 2024; 63:e202401943. [PMID: 38594205 DOI: 10.1002/anie.202401943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Electrochemical C-N coupling reaction based on carbon dioxide and nitrate have been emerged as a new "green synthetic strategy" for the synthesis of urea, but the catalytic efficiency is seriously restricted by the inherent scaling relations of adsorption energies of the active sites, the improvement of catalytic activity is frequently accompanied by the decrease in selectivity. Herein, a doping engineering strategy was proposed to break the scaling relationship of intermediate binding and minimize the kinetic barrier of C-N coupling. A thus designed SrCo0.39Ru0.61O3-δ catalyst achieves a urea yield rate of 1522 μg h-1 mgcat. -1 and faradic efficiency of 34.1 % at -0.7 V versus reversible hydrogen electrode. A series of characterizations revealed that Co doping not only induces lattice distortion but also creates rich oxygen vacancies (OV) in the SrRuO3. The oxygen vacancies weaken the adsorption of *CO and *NH2 intermediates on the Co and Ru sites respectively, and the strain effects over the Co-Ru dual sites promoting the occurrence of C-N coupling of the two monomers instead of selective hydrogenating to form by-products. This work presents an insight into molecular coupling reactions towards urea synthesis via the doping engineering on SrRuO3.
Collapse
Affiliation(s)
- Liyang Lv
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hao Tan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yuan Kong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical, Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Bing Tang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qianqian Ji
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yuying Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Huijuan Wang
- Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Min Ge
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Minghui Fan
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
35
|
Dai Z, Yang K, Yang T, Guo Y, Huang J. CO 2 Photoreduction over Semiconducting 2D Materials with Supported Single Atoms: Recent Progress and Challenges. Chemistry 2024; 30:e202400548. [PMID: 38536390 DOI: 10.1002/chem.202400548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Indexed: 04/26/2024]
Abstract
In the face of the growing energy crisis and environmental challenges, substantial efforts are now directed toward sustainable clean energy as a replacement for traditional fossil fuels. CO2 photoreduction into value-added chemicals and fuels is widely recognized as a promising approach to mitigate current energy and environmental concerns. Photocatalysts comprising single atoms (SAs) supported on two-dimensional (2D) semiconducting materials (SAs-2DSemi) have emerged as a novel frontier due to the combined merits of SA catalysts and 2D materials. In this study, we review advancements in metal SAs confined on 2DSemi substrates, categorized into four groups: (1) metal oxide-based, (2) g-C3N4-based, (3) emerging, and (4) hybridized 2DSemi, for photocatalytic CO2 conversion over the past few years. With a particular focus on highlighting the distinct advantages of SAs-2DSemi, we delve into the synthesis of state-of-the-art catalysts, their catalytic performances, and mechanistic elucidation facilitated by experimental characterizations and theoretical calculations. Following this, we outline the challenges in this field and offer perspectives on harnessing the potential of SAs-2DSemi as promising photocatalysts. This comprehensive review aims to provide valuable insights for the future development of 2D photocatalytic materials involving SAs for CO2 reduction.
Collapse
Affiliation(s)
- Zhangben Dai
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Institute of Advanced Interdisciplinary Studies, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044), China
| | - Kejun Yang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Institute of Advanced Interdisciplinary Studies, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044), China
| | - Tianyi Yang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Institute of Advanced Interdisciplinary Studies, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044), China
| | - Yalin Guo
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Institute of Advanced Interdisciplinary Studies, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044), China
| | - Jianfeng Huang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Institute of Advanced Interdisciplinary Studies, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044), China
| |
Collapse
|
36
|
Diab GAA, da Silva MAR, Rocha GFSR, Noleto LFG, Rogolino A, de Mesquita JP, Jiménez‐Calvo P, Teixeira IF. A Solar to Chemical Strategy: Green Hydrogen as a Means, Not an End. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300185. [PMID: 38868607 PMCID: PMC11165522 DOI: 10.1002/gch2.202300185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/24/2023] [Indexed: 06/14/2024]
Abstract
Green hydrogen is the key to the chemical industry achieving net zero emissions. The chemical industry is responsible for almost 2% of all CO2 emissions, with half of it coming from the production of simple commodity chemicals, such as NH3, H2O2, methanol, and aniline. Despite electrolysis driven by renewable power sources emerging as the most promising way to supply all the green hydrogen required in the production chain of these chemicals, in this review, it is worth noting that the photocatalytic route may be underestimated and can hold a bright future for this topic. In fact, the production of H2 by photocatalysis still faces important challenges in terms of activity, engineering, and economic feasibility. However, photocatalytic systems can be tailored to directly convert sunlight and water (or other renewable proton sources) directly into chemicals, enabling a solar-to-chemical strategy. Here, a series of recent examples are presented, demonstrating that photocatalysis can be successfully employed to produce the most important commodity chemicals, especially on NH3, H2O2, and chemicals produced by reduction reactions. The replacement of fossil-derived H2 in the synthesis of these chemicals can be disruptive, essentially safeguarding the transition of the chemical industry to a low-carbon economy.
Collapse
Affiliation(s)
- Gabriel A. A. Diab
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Marcos A. R. da Silva
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Guilherme F. S. R. Rocha
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Luis F. G. Noleto
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Andrea Rogolino
- Cavendish LaboratoryUniversity of CambridgeCambridgeCB3 0HEUK
| | - João P. de Mesquita
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
- Departamento de QuímicaUniversidade Federal dos Vales Jequitinhonha e MucuriRodovia MGT 367 – Km 583, n° 5000, Alto da JacubaDiamantinaMG39100Brazil
| | - Pablo Jiménez‐Calvo
- Department for Materials SciencesFriedrich‐Alexander‐Universität Erlangen‐NürnbergMartensstrasse 7D‐91058ErlangenGermany
- Chemistry of Thin Film MaterialsFriedrich‐Alexander‐Universität Erlangen‐NürnbergIZNF, Cauerstraße 3D‐91058ErlangenGermany
| | - Ivo F. Teixeira
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| |
Collapse
|
37
|
Di J, Chen C, Wu Y, Chen H, Xiong J, Long R, Li S, Song L, Jiang W, Liu Z. Asymmetric Electron Redistribution in Niobic-Oxygen Vacancy Associates to Tune Noncovalent Interaction in CO 2 Photoreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401914. [PMID: 38436110 DOI: 10.1002/adma.202401914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Indexed: 03/05/2024]
Abstract
The role of vacancy associates in photocatalytic CO2 reduction is an open question. Herein, the Nb─O vacancy associates (VNb─O) are engineered into niobic acid (NA) atomic layers to tailor the CO2 photoreduction performance. The intrinsic charge compensation from O to Nb around Nb─O vacancy associates can manipulate the active electronic states, leading to the asymmetric electron redistribution. These local symmetry breaking sites show a charge density gradient, forming a localized polarization field to polarize nonpolar CO2 molecules and tune the noncovalent interaction of reaction intermediates. This unique configuration contributes to the 9.3 times increased activity for photocatalytic CO2 reduction. Meantime, this VNb─O NA also shows excellent photocatalytic activity for NO3 --NH4 + synthesis, with NH4 + formation rate up to 3442 µmol g-1 h-1. This work supplies fresh insights into the vacancy associate design for electron redistribution and noncovalent interaction tuning in photocatalysis.
Collapse
Affiliation(s)
- Jun Di
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Chao Chen
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, P. R. China
| | - Yao Wu
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Hao Chen
- National Synchrotron Radiation Laboratory, State Key Laboratory of Particle Detection and Electronics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jun Xiong
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Ran Long
- National Synchrotron Radiation Laboratory, State Key Laboratory of Particle Detection and Electronics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shuzhou Li
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Li Song
- National Synchrotron Radiation Laboratory, State Key Laboratory of Particle Detection and Electronics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zheng Liu
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
38
|
Ren Y, Wang J, Zhang M, Wang Y, Cao Y, Kim DH, Liu Y, Lin Z. Strategies Toward High Selectivity, Activity, and Stability of Single-Atom Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308213. [PMID: 38183335 DOI: 10.1002/smll.202308213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Indexed: 01/08/2024]
Abstract
Single-atom catalysts (SACs) hold immense promise in facilitating the rational use of metal resources and achieving atomic economy due to their exceptional atom-utilization efficiency and distinct characteristics. Despite the growing interest in SACs, only limited reviews have holistically summarized their advancements centering on performance metrics. In this review, first, a thorough overview on the research progress in SACs is presented from a performance perspective and the strategies, advancements, and intriguing approaches employed to enhance the critical attributes in SACs are discussed. Subsequently, a comprehensive summary and critical analysis of the electrochemical applications of SACs are provided, with a particular focus on their efficacy in the oxygen reduction reaction , oxygen evolution reaction, hydrogen evolution reaction , CO2 reduction reaction, and N2 reduction reaction . Finally, the outline future research directions on SACs by concentrating on performance-driven investigation, where potential areas for improvement are identified and promising avenues for further study are highlighted, addressing challenges to unlock the full potential of SACs as high-performance catalysts.
Collapse
Affiliation(s)
- Yujing Ren
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jinyong Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Mingyue Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yuqing Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yuan Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Dong Ha Kim
- Department of Chemistry and NanoScience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Yan Liu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- Department of Chemistry and NanoScience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| |
Collapse
|
39
|
Zhong K, Sun P, Xu H. Advances in Defect Engineering of Metal Oxides for Photocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2310677. [PMID: 38686700 DOI: 10.1002/smll.202310677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Indexed: 05/02/2024]
Abstract
Photocatalytic CO2 reduction technology, capable of converting low-density solar energy into high-density chemical energy, stands as a promising approach to alleviate the energy crisis and achieve carbon neutrality. Semiconductor metal oxides, characterized by their abundant reserves, good stability, and easily tunable structures, have found extensive applications in the field of photocatalysis. However, the wide bandgap inherent in metal oxides contributes to their poor efficiency in photocatalytic CO2 reduction. Defect engineering presents an effective strategy to address these challenges. This paper reviews the research progress in defect engineering to enhance the photocatalytic CO2 reduction performance of metal oxides, summarizing defect classifications, preparation methods, and characterization techniques. The focus is on defect engineering, represented by vacancies and doping, for improving the performance of metal oxide photocatalysts. This includes advancements in expanding the photoresponse range, enhancing photogenerated charge separation, and promoting CO2 molecule activation. Finally, the paper provides a summary of the current issues and challenges faced by defect engineering, along with a prospective outlook on the future development of photocatalytic CO2 reduction technology.
Collapse
Affiliation(s)
- Kang Zhong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Peipei Sun
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Hui Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| |
Collapse
|
40
|
Zhang M, Zhang D, Jing X, Xu B, Duan C. Engineering NH 2-Cu-NH 2 Triple-atom Sites in Defective MOFs for Selective Overall Photoreduction of CO 2 into CH 3COCH 3. Angew Chem Int Ed Engl 2024; 63:e202402755. [PMID: 38462995 DOI: 10.1002/anie.202402755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/12/2024]
Abstract
Selective photoreduction of CO2 to multicarbon products, is an important but challenging task, due to high CO2 activation barriers and insufficient catalytic sites for C-C coupling. Herein, a defect engineering strategy for incorporating copper sites into the connected nodes of defective metal-organic framework UiO-66-NH2 for selective overall photo-reduction of CO2 into acetone. The Cu2+ site in well-modified CuN2O2 units served as a trapping site to capture electrons via efficient electron-hole separation, forming the active Cu+ site for CO2 reduction. Two NH2 groups in CuN2O2 unit adsorb CO2 and cooperated with copper ion to functionalize as a triple atom catalytic site, each interacting with one CO2 molecule to strengthen the binding of *CO intermediate to the catalytic site. The deoxygenated *CO attached to the Cu site interacted with *CH3 fixed at one amino group to form the key intermediate CO*-CH3, which interacted with the third reduction intermediate on another amino group to produce acetone. Our photocatalyst realizes efficient overall CO2 reduction to C3 product acetone CH3COCH3 with an evolution rate of 70.9 μmol gcat -1 h-1 and a selectivity up to 97 % without any adducts, offering a promising avenue for designing triple-atomic sites to producing C3 product from photosynthesis with water.
Collapse
Affiliation(s)
- Mengrui Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Dan Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xu Jing
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Baijie Xu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Chunying Duan
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
41
|
Wu J, Zhong H, Huang ZF, Zou JJ, Zhang X, Zhang YC, Pan L. Research progress of dual-atom site catalysts for photocatalysis. NANOSCALE 2024. [PMID: 38639199 DOI: 10.1039/d3nr06386k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Dual-atom site catalysts (DASCs) have sparked considerable interest in heterogeneous photocatalysis as they possess the advantages of excellent photoelectronic activity, photostability, and high carrier separation efficiency and mobility. The DASCs involved in these important photocatalytic processes, especially in the photocatalytic hydrogen evolution reaction (HER), CO2 reduction reaction (CO2RR), N2/nitrate reduction, etc., have been extensively investigated in the past few years. In this review, we highlight the recent progress in DASCs that provides fundamental insights into the photocatalytic conversion of small molecules. The controllable preparation and characterization methods of various DASCs are discussed. Subsequently, the reaction mechanisms of the formation of several important molecules (hydrogen, hydrocarbons and ammonia) on DASCs are introduced in detail, in order to probe the relationship between DASCs's structure and photocatalytic activity. Finally, some challenges and outlooks of DASCs in the photocatalytic conversion of small molecules are summarized and prospected. We hope that this review can provide guidance for in-depth understanding and aid in the design of efficient DASCs for photocatalysis.
Collapse
Affiliation(s)
- Jinting Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Haoming Zhong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhen-Feng Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Yong-Chao Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
42
|
Yu Y, Zhu Z, Huang H. Surface Engineered Single-atom Systems for Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311148. [PMID: 38197471 DOI: 10.1002/adma.202311148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/17/2023] [Indexed: 01/11/2024]
Abstract
Single-atom catalysts (SACs) are demonstrated to show exceptional reactivity and selectivity in catalytic reactions by effectively utilizing metal species, making them a favorable choice among the different active materials for energy conversion. However, SACs are still in the early stages of energy conversion, and problems like agglomeration and low energy conversion efficiency are hampering their practical applications. Substantial research focus on support modifications, which are vital for SAC reactivity and stability due to the intimate relationship between metal atoms and support. In this review, a category of supports and a variety of surface engineering strategies employed in SA systems are summarized, including surface site engineering (heteroatom doping, vacancy introducing, surface groups grafting, and coordination tunning) and surface structure engineering (size/morphology control, cocatalyst deposition, facet engineering, and crystallinity control). Also, the merits of support surface engineering in single-atom systems are systematically introduced. Highlights are the comprehensive summary and discussions on the utilization of surface-engineered SACs in diversified energy conversion applications including photocatalysis, electrocatalysis, thermocatalysis, and energy conversion devices. At the end of this review, the potential and obstacles of using surface-engineered SACs in the field of energy conversion are discussed. This review aims to guide the rational design and manipulation of SACs for target-specific applications by capitalizing on the characteristic benefits of support surface engineering.
Collapse
Affiliation(s)
- Yutang Yu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Zijian Zhu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hongwei Huang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
43
|
Ruan X, Li S, Huang C, Zheng W, Cui X, Ravi SK. Catalyzing Artificial Photosynthesis with TiO 2 Heterostructures and Hybrids: Emerging Trends in a Classical yet Contemporary Photocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305285. [PMID: 37818725 DOI: 10.1002/adma.202305285] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Titanium dioxide (TiO2) stands out as a versatile transition-metal oxide with applications ranging from energy conversion/storage and environmental remediation to sensors and optoelectronics. While extensively researched for these emerging applications, TiO2 has also achieved commercial success in various fields including paints, inks, pharmaceuticals, food additives, and advanced medicine. Thanks to the tunability of their structural, morphological, optical, and electronic characteristics, TiO2 nanomaterials are among the most researched engineering materials. Besides these inherent advantages, the low cost, low toxicity, and biocompatibility of TiO2 nanomaterials position them as a sustainable choice of functional materials for energy conversion. Although TiO2 is a classical photocatalyst well-known for its structural stability and high surface activity, TiO2-based photocatalysis is still an active area of research particularly in the context of catalyzing artificial photosynthesis. This review provides a comprehensive overview of the latest developments and emerging trends in TiO2 heterostructures and hybrids for artificial photosynthesis. It begins by discussing the common synthesis methods for TiO2 nanomaterials, including hydrothermal synthesis and sol-gel synthesis. It then delves into TiO2 nanomaterials and their photocatalytic mechanisms, highlighting the key advancements that have been made in recent years. The strategies to enhance the photocatalytic efficiency of TiO2, including surface modification, doping modulation, heterojunction construction, and synergy of composite materials, with a specific emphasis on their applications in artificial photosynthesis, are discussed. TiO2-based heterostructures and hybrids present exciting opportunities for catalyzing solar fuel production, organic degradation, and CO2 reduction via artificial photosynthesis. This review offers an overview of the latest trends and advancements, while also highlighting the ongoing challenges and prospects for future developments in this classical yet rapidly evolving field.
Collapse
Affiliation(s)
- Xiaowen Ruan
- School of Energy and Environment, City Universitsy of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Shijie Li
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Chengxiang Huang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Weitao Zheng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Sai Kishore Ravi
- School of Energy and Environment, City Universitsy of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
44
|
Huang JR, Shi WX, Xu SY, Luo H, Zhang J, Lu TB, Zhang ZM. Water-Mediated Selectivity Control of CH 3 OH versus CO/CH 4 in CO 2 Photoreduction on Single-Atom Implanted Nanotube Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306906. [PMID: 37937695 DOI: 10.1002/adma.202306906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/29/2023] [Indexed: 11/09/2023]
Abstract
Controllable methanol production in artificial photosynthesis is highly desirable due to its high energy density and ease of storage. Herein, single atom Fe is implanted into TiO2 /SrTiO3 (TSr) nanotube arrays by two-step anodization and Sr-induced crystallization. The resulting Fe-TSr with both single Fe reduction centers and dominant oxidation facets (001) contributes to efficient CO2 photoreduction and water oxidation for controlled production of CH3 OH and CO/CH4 . The methanol yield can reach to 154.20 µmol gcat -1 h-1 with 98.90% selectivity by immersing all the catalyst in pure water, and the yield of CO/CH4 is 147.48 µmol gcat -1 h-1 with >99.99% selectivity when the catalyst completely outside water. This CH3 OH yield is 50 and 3 times higher than that of TiO2 and TSr and stands among all the state-of-the-art catalysts. The facile gas-solid and gas-liquid-solid phase switch can selectively control CH3 OH production from ≈0% (above H2 O) to 98.90% (in H2 O) via slowly immersing the catalyst into water, where abundant •OH and H2 O around Fe sites play important role in selective CH3 OH production. This work highlights a new insight for water-mediated CO2 photoreduction to controllably produce CH3 OH.
Collapse
Affiliation(s)
- Juan-Ru Huang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Wen-Xiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Shen-Yue Xu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Hao Luo
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jiangwei Zhang
- Science Center of Energy Material and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
45
|
Chen R, Zu X, Zhu J, Zhao Y, Li Y, Hu Z, Wang S, Fan M, Zhu S, Zhang H, Ye B, Sun Y, Xie Y. Dynamically Reconstructed Triple-Copper-Vacancy Associates Confined in Cu Nanowires Enabling High-Rate and Selective CO 2 Electroreduction to C 2+ Products. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2314209. [PMID: 38331431 DOI: 10.1002/adma.202314209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Electrochemically reconstructed Cu-based catalysts always exhibit enhanced CO2 electroreduction performance; however, it still remains ambiguous whether the reconstructed Cu vacancies have a substantial impact on CO2 -to-C2+ reactivity. Herein, Cu vacancies are first constructed through electrochemical reduction of Cu-based nanowires, in which high-angle annular dark-field scanning transmission electron microscopy image manifests the formation of triple-copper-vacancy associates with different concentrations, confirmed by positron annihilation lifetime spectroscopy. In situ attenuated total reflection-surface enhanced infrared absorption spectroscopy discloses the triple-copper-vacancy associates favor *CO adsorption and fast *CO dimerization. Moreover, density-functional-theory calculations unravel the triple-copper-vacancy associates endow the nearby Cu sites with enriched and disparate local charge density, which enhances the *CO adsorption and reduces the CO-CO coupling barrier, affirmed by the decreased *CO dimerization energy barrier by 0.4 eV. As a result, the triple-copper-vacancy associates confined in Cu nanowires achieve a high Faradaic efficiency of over 80% for C2+ products in a wide current density range of 400-800 mA cm-2 , outperforming most reported Cu-based electrocatalysts.
Collapse
Affiliation(s)
- Runhua Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaolong Zu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Juncheng Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yuan Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yuhuan Li
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zexun Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shumin Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Minghui Fan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shan Zhu
- State Grid Anhui Electric Power Research Institute, Hefei, Anhui, 230601, P. R. China
| | - Hongjun Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Bangjiao Ye
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yongfu Sun
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
46
|
Ran J, Talebian-Kiakalaieh A, Zhang S, Hashem EM, Guo M, Qiao SZ. Recent advancement on photocatalytic plastic upcycling. Chem Sci 2024; 15:1611-1637. [PMID: 38303948 PMCID: PMC10829029 DOI: 10.1039/d3sc05555h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024] Open
Abstract
More than 8 billion tons of plastics have been generated since 1950. About 80% of these plastics have been dumped in landfills or went into natural environments, resulting in ever-worsening contamination. Among various strategies for waste plastics processing (e.g., incineration, mechanical recycling, thermochemical conversion and electrocatalytic/photocatalytic techniques), photocatalysis stands out as a cost-effective, environmentally benign and clean technique to upcycle plastic waste at ambient temperature and pressure using solar light. The mild reaction conditions for photocatalysis enable the highly selective conversion of plastic waste into targeted value-added chemicals/fuels. Here, we for the first time summarize the recent development of photocatalytic plastic upcycling based on the chemical composition of photocatalysts (e.g., metal oxides, metal sulfides, non-metals and composites). The pros and cons of various photocatalysts have been critically discussed and summarized. At last, the future challenges and opportunities in this area are presented in this review.
Collapse
Affiliation(s)
- Jingrun Ran
- School of Chemical Engineering, University of Adelaide Adelaide SA 5005 Australia
| | | | - Shuai Zhang
- School of Chemical Engineering, University of Adelaide Adelaide SA 5005 Australia
| | - Elhussein M Hashem
- School of Chemical Engineering, University of Adelaide Adelaide SA 5005 Australia
| | - Meijun Guo
- School of Chemical Engineering, University of Adelaide Adelaide SA 5005 Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
47
|
Rhimi B, Zhou M, Yan Z, Cai X, Jiang Z. Cu-Based Materials for Enhanced C 2+ Product Selectivity in Photo-/Electro-Catalytic CO 2 Reduction: Challenges and Prospects. NANO-MICRO LETTERS 2024; 16:64. [PMID: 38175306 PMCID: PMC10766933 DOI: 10.1007/s40820-023-01276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 01/05/2024]
Abstract
Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for catalytic reduction of CO2, Cu-based materials are highly advantageous owing to their widespread availability, cost-effectiveness, and environmental sustainability. Furthermore, Cu-based materials demonstrate interesting abilities in the adsorption and activation of carbon dioxide, allowing the formation of C2+ compounds through C-C coupling process. Herein, the basic principles of photocatalytic CO2 reduction reactions (PCO2RR) and electrocatalytic CO2 reduction reaction (ECO2RR) and the pathways for the generation C2+ products are introduced. This review categorizes Cu-based materials into different groups including Cu metal, Cu oxides, Cu alloys, and Cu SACs, Cu heterojunctions based on their catalytic applications. The relationship between the Cu surfaces and their efficiency in both PCO2RR and ECO2RR is emphasized. Through a review of recent studies on PCO2RR and ECO2RR using Cu-based catalysts, the focus is on understanding the underlying reasons for the enhanced selectivity toward C2+ products. Finally, the opportunities and challenges associated with Cu-based materials in the CO2 catalytic reduction applications are presented, along with research directions that can guide for the design of highly active and selective Cu-based materials for CO2 reduction processes in the future.
Collapse
Affiliation(s)
- Baker Rhimi
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Min Zhou
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Zaoxue Yan
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Xiaoyan Cai
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, People's Republic of China.
| | - Zhifeng Jiang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
48
|
Ren C, Li Q, Ling C, Wang J. Mechanism-Guided Design of Photocatalysts for CO 2 Reduction toward Multicarbon Products. J Am Chem Soc 2023; 145:28276-28283. [PMID: 38095164 DOI: 10.1021/jacs.3c11972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Photocatalytic reduction of CO2 to high value-added multicarbon (C2+) products is an important way to achieve sustainable production of green energy but limited by the low efficiency of catalysts. One fundamental issue lies in the high complexity of catalyst structure and reaction process, making the rational catalyst design and targeted performance optimization a grand challenge. Herein, we performed a mechanism-guided design of photocatalysts for CO2 reduction by using the experimentally reported Cu doped TiO2 (Cu-TiO2) with high C3H8 selectivity and well-defined structure as the prototype. Our mechanistic study highlights three key factors for C3H8 formation, i.e., formation of double O vacancies (Vdi-O) for selectivity, C-C coupling for activity, and Vdi-O recovery for durability. More importantly, Vdi-O formation/recovery and C-C coupling are negatively correlated, indicating that ideal candidates should achieve a balance between oxygen vacancy (VO) formation and C-C coupling. On this basis, TiO2 with the doping of two adjacent Cu atoms (Cu-Cu-TiO2) was designed with enhanced performance for CO2 photoreduction toward C3H8. Furthermore, a simple descriptor (Nμ, "effective d electron number") based on inherent atomic properties was constructed to uncover the underlying causes of the performance variation of different systems. These results provide new insights into the "structure-performance" relation of metal oxide-based photocatalysts, thus offering useful strategies for the rational design of excellent catalysts for CO2 photoreduction.
Collapse
Affiliation(s)
- Chunjin Ren
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 21189, China
| | - Qiang Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 21189, China
| | - Chongyi Ling
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 21189, China
| | - Jinlan Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 21189, China
| |
Collapse
|
49
|
Yao X, Huang L, Halpren E, Chen L, Chen Z, Singh CV. Structural Self-Regulation-Promoted NO Electroreduction on Single Atoms. J Am Chem Soc 2023; 145:26249-26256. [PMID: 37983260 DOI: 10.1021/jacs.3c08936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Simultaneously elevating loading and activity of single atoms (SAs) is desirable for SA-containing catalysts, including single-atom catalysts (SACs). However, the fast self-nucleation of SAs limits the loading, and the activity is confined by the adsorption-energy scaling relationships on monotonous SAs. Here, we theoretically design a novel type of SA-containing catalyst generated by two-step structural self-regulation. In the thermodynamic self-regulation step, divacancies in graphene spontaneously pull up SAs from transition metal supports (dv-g/TM; TM = fcc Co, hcp Co, Ni, Cu), leading to the expectably high loading of SAs. The subsequent kinetic self-regulation step involving an adsorbate-assisted and reversible vacancy migration dynamically alters coordination environments of SAs, helping circumvent the scaling relationships, and consequently, the as-designed dv-g/Ni can catalyze NO-to-NH3 conversion at a low limiting potential of -0.25 V vs RHE.
Collapse
Affiliation(s)
- Xue Yao
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Linke Huang
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Ethan Halpren
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Lixin Chen
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Zhiwen Chen
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Chandra Veer Singh
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
50
|
Chen X, Guan S, Zhou J, Shang H, Zhang J, Lv F, Yu H, Li H, Bian Z. Photocatalytic Free Radical-Controlled Synthesis of High-Performance Single-Atom Catalysts. Angew Chem Int Ed Engl 2023; 62:e202312734. [PMID: 37735738 DOI: 10.1002/anie.202312734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
Single-atom catalysts (SACs) have emerged as crucial players in catalysis research, prompting extensive investigation and application. The precise control of metal atom nucleation and growth has garnered significant attention. In this study, we present a straightforward approach for preparing SACs utilizing a photocatalytic radical control strategy. Notably, we demonstrate for the first time that radicals generated during the photochemical process effectively hinder the aggregation of individual atoms. By leveraging the cooperative anchoring of nitrogen atoms and crystal lattice oxygen on the support, we successfully stabilize the single atom. Our Pd1 /TiO2 catalysts exhibit remarkable catalytic activity and stability in the Suzuki-Miyaura cross-coupling reaction, which was 43 times higher than Pd/C. Furthermore, we successfully depose Pd atoms onto various substrates, including TiO2 , CeO2 , and WO3 . The photocatalytic radical control strategy can be extended to other single-atom catalysts, such as Ir, Pt, Rh, and Ru, underscoring its broad applicability.
Collapse
Affiliation(s)
- Xiang Chen
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Shuhui Guan
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Jianjiang Zhou
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Hengjun Shang
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Jingyuan Zhang
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Fujian Lv
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655400, China
| | - Han Yu
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Hexing Li
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
- Shanghai University of Electric Power, 2588 Changyang Rd., Shanghai, 200090, China
| | - Zhenfeng Bian
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|