1
|
Wang Y, Ai B, Jiang Y, Wang Z, Chen C, Xiao Z, Xiao G, Zhang G. Swiss roll nanoarrays for chiral plasmonic photocatalysis. J Colloid Interface Sci 2025; 678:818-826. [PMID: 39217697 DOI: 10.1016/j.jcis.2024.08.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/25/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Manipulating the chirality at nanoscale has drawn great attention among scientists, considering its pivotal role in various applications of current interest, including nano-optics, biomedicine, and photocatalysis. In this work, we delve into this arena by fabricating chiral Swiss roll nanoarray (SRNA) continuous films employing colloidal lithography. The technique permits the dimension of Swiss roll metamaterials to reduce to nanoscale, thus achieving chiroptical response (circular dichroism (CD)) in the visible region. The interplay between the CD signals and plasmon resonance modes is revealed through theoretical simulations, enabling a deep understanding of chiral plasmonic metamaterials. The polarization-sensitive photocatalytic activity of chiral SRNAs is investigated, noting a marked increase in the reaction rate when the chirality of SRNAs matches with the handedness of circularly polarized light (CPL). Notably, the SRNA continuous films based on substrate possess integration and reusability without complex recycling process, enhancing their practicality in applications like sensing and plasmonic nanochemistry, particularly toward polarization-dependent photocatalysis.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China; College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Bin Ai
- School of Microelectronics and Communication Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing University, Chongqing 400044, PR China
| | - Yun Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zengyao Wang
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Chong Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zifan Xiao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ge Xiao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Gang Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
2
|
Bian W, Zhu G, Ma F, Zhu T, Fang Y. Fano Resonance-Associated Plasmonic Circular Dichroism in a Multiple-Dipole Interaction Born-Kuhn Model. SENSORS (BASEL, SWITZERLAND) 2024; 24:7517. [PMID: 39686054 DOI: 10.3390/s24237517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Plasmon chirality has garnered significant interest in sensing application due to its strong electromagnetic field localization and highly tunable optical properties. Understanding the effects of mode coupling in chiral structures on chiral optical activity is particularly important for advancing this field. In this work, we numerically investigate the circular dichroism (CD) of elliptical nanodisk dimers arranged in an up-and-down configuration with a specific rotation angle. By adjusting the inter-particle distance and geometric parameters, we introduce the coupling between dipole and electric hexapole modes, forming an extended Born-Kuhn model that achieves strong CD. Our findings show that the coupling of dipole modes with electric hexapole modes in elliptical nanodisks can also show obvious Fano resonance and a strong CD effect, and the structure with the largest Fano asymmetry factor shows the highest CD. In addition, CD spectroscopy is highly sensitive to changes in the refractive index of the surrounding medium, especially in the visible and near-infrared regions, highlighting its potential for application in high-sensitivity refractive index sensors.
Collapse
Affiliation(s)
- Wanlu Bian
- School of Physics, Dalian University of Technology, Dalian 116024, China
- School of Physics and Electronic Information Engineering, Chifeng University, Chifeng 024000, China
| | - Guodong Zhu
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Fengcai Ma
- Department of Physics, Liaoning University, Shenyang 110036, China
| | - Tongtong Zhu
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Yurui Fang
- School of Physics, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Karmakar A, Brundavanam MM. Controlled generation of cylindrical vector vortex beams using an optically active material. OPTICS LETTERS 2024; 49:6145-6148. [PMID: 39485432 DOI: 10.1364/ol.539232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/01/2024] [Indexed: 11/03/2024]
Abstract
An efficient method for the generation of tunable cylindrical vector vortex beams is proposed and demonstrated experimentally using an optically active (OA) material. The uniqueness of the proposed methodology lies in the control over the tunability of the cylindrical vector vortex beams using different concentrations of the optically active material. The efficiency of the generated beams is enhanced by using a single low oblique incidence angle of the input beam on a spatial light modulator with a single-phase profile. Two global parameters are measured experimentally to show the quantitative tunability and efficiency of the generated beams. The proposed method can find applications in the fabrication of various kinds of spiral nanostructures.
Collapse
|
4
|
Lv X, Tian Y, Wu F, Luan X, Li F, Shen Z, Xu G, Liu K, Niu W. Chiral plasmonic-dielectric coupling enables strong near-infrared chiroptical responses from helicoidal core-shell nanoparticles. Nat Commun 2024; 15:9234. [PMID: 39455559 PMCID: PMC11511876 DOI: 10.1038/s41467-024-53705-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Helicoid plasmonic nanoparticles with intrinsic chirality are an emerging class of artificial chiral materials with tailorable properties. The ability to extend their chiroplasmonic responses to the near-infrared (NIR) range is critically important for biomedical and nanophotonic applications, yet the rational design of such materials remains challenging. Herein, a strategy employing chiral plasmon-dielectric coupling is proposed to manipulate the chiroptical responses into the NIR region with high optical anisotropy. Through this strategy, the helicoid Au@Cu2O nanoparticles with structural chirality are designed and synthesized with tunable and enriched NIR chiroptical responses. Specially, a high optical anisotropy (g-factor) with a value of 0.35 is achieved in the NIR region, and multi-band chiroptical behaviors are observed. Spectral and electromagnetic simulations elucidate that strong coupling between chiroplasmonic core and chiral dielectric shell with high refractive index contributes to the rich and strong chiroptical responses, which are related to the interplay between various emerged and enhanced electric and magnetic multipolar resonance modes proved by multipole expansion analysis. Moreover, the helicoid Au@Cu2O nanoparticles display greater polarization rotation capability than the helicoid Au nanoparticles. This work offers mechanistic insights into chiral plasmon-dielectric coupling and suggests a general approach of creating NIR chiroplasmonic materials.
Collapse
Affiliation(s)
- Xiali Lv
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Yu Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Xiaoxi Luan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Fenghua Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhili Shen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
5
|
Wang S, Gou X, Shi P, Lin M, Yang A, Du L, Yuan X. Unveiling the Loss Mode Enabled Tunable Plasmonic Chirality at Flat Metal Surface. ACS NANO 2024; 18:27503-27510. [PMID: 39324866 DOI: 10.1021/acsnano.4c08246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Plasmonic chirality has garnered significant interest in the past decade due to its enhanced chiral light-matter interactions. Current methods for achieving plasmonic chirality often rely on complex nanostructures or metamaterials, which are hampered by intricate fabrication processes. In this work, we present an approach to generate plasmonic chiral structured surface plasmon polariton (s-SPP) fields on a single, flat metal surface, bypassing elaborate fabrication techniques. The plasmonic chiral s-SPP fields are excited by the superposition of multiple differently oriented transverse magnetic polarized plane waves. We demonstrate, both theoretically and experimentally, the flexible tuning of chiral plasmonic patterns by adjusting the symmetry and phase differences of the incident waves. This method provides a facile mean to optically tailor plasmonic chiral properties on a subwavelength scale, offering potential applications in sensing, enantioselective reactions, imaging, and reconfigurable chiral switches.
Collapse
Affiliation(s)
- Shuangshuang Wang
- Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Xinxin Gou
- Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Peng Shi
- Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Min Lin
- Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Aiping Yang
- Research Institute of Interdisciplinary Sciences (RISE) and School of Materials Science & Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Luping Du
- Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Xiaocong Yuan
- Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Tan Y, Lu X, Ding T. Trace-Amount Detection of Chiral Molecules Based on Plasmonic Racemic Arrays Fabricated via Direct Laser Writing. ACS Sens 2024; 9:3290-3295. [PMID: 38832719 DOI: 10.1021/acssensors.4c00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Superchiral fields, supported by chiral plasmonic structures, have shown outstanding performance for chiral molecule sensing via enhanced chiral light-matter interaction. However, this sensing capability cannot fully reveal the chiral origin of the molecules as the chiroptic response of the molecules is intertwined with the chiroptic response of the chiral plasmonic nanostructures, which can potentially be excluded by using a plasmonic racemic mixture. Such a plasmonic racemic mixture is not easily attainable, as it normally requires complex fabrication and expensive instrumentation, whose structural fineness is limited by the fabrication precision. Here, we demonstrate trace-amount chiral molecule detection with plasmonic racemic arrays fabricated by direct laser writing with vector beams, which is facile, cost-effective, and highly controllable. The racemic arrays present no inherent circular differential scattering but a large local superchiral field, which reflects the intrinsic chiral features of the chiral molecules. They are further applied to discriminate enantiomers of phenylalanine with a limit of detection (LOD) of 10.0 ± 2.8 μM, which is an order of magnitude smaller than the LOD of conventional circular dichroism spectroscopy. The strong local superchiral field provided by the plasmonic racemic arrays enlightens the design of a superior sensing platform, which holds promising applications for biomedical detection and enantioselective drug development.
Collapse
Affiliation(s)
- Yong Tan
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiaolin Lu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
7
|
Chen XG, Lin L, Huang GY, Chen XM, Li XZ, Zhou YK, Zou Y, Fu T, Li P, Li Z, Sun HB. Optofluidic crystallithography for directed growth of single-crystalline halide perovskites. Nat Commun 2024; 15:3677. [PMID: 38693167 PMCID: PMC11063063 DOI: 10.1038/s41467-024-48110-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
Crystallization is a fundamental phenomenon which describes how the atomic building blocks such as atoms and molecules are arranged into ordered or quasi-ordered structure and form solid-state materials. While numerous studies have focused on the nucleation behavior, the precise and spatiotemporal control of growth kinetics, which dictates the defect density, the micromorphology, as well as the properties of the grown materials, remains elusive so far. Herein, we propose an optical strategy, termed optofluidic crystallithography (OCL), to solve this fundamental problem. Taking halide perovskites as an example, we use a laser beam to manipulate the molecular motion in the native precursor environment and create inhomogeneous spatial distribution of the molecular species. Harnessing the coordinated effect of laser-controlled local supersaturation and interfacial energy, we precisely steer the ionic reaction at the growth interface and directly print arbitrary single crystals of halide perovskites of high surface quality, crystallinity, and uniformity at a high printing speed of 102 μm s-1. The OCL technique can be potentially extended to the fabrication of single-crystal structures beyond halide perovskites, once crystallization can be triggered under the laser-directed local supersaturation.
Collapse
Affiliation(s)
- Xue-Guang Chen
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Haidian, Beijing, 100084, China
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing, 100084, China
| | - Linhan Lin
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing, 100084, China.
| | - Guan-Yao Huang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Tsinghua University, Beijing, 100084, China
| | - Xiao-Mei Chen
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing, 100084, China
| | - Xiao-Ze Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing, 100084, China
| | - Yun-Ke Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing, 100084, China
| | - Yixuan Zou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing, 100084, China
| | - Tairan Fu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Tsinghua University, Beijing, 100084, China
| | - Peng Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing, 100084, China
| | - Zhengcao Li
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Haidian, Beijing, 100084, China.
| | - Hong-Bo Sun
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing, 100084, China.
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| |
Collapse
|
8
|
Gieseler N, Moench S, Beutel D, Pfeifer WG, Domínguez CM, Niemeyer CM, Rockstuhl C. Chiral plasmonic metasurface assembled by DNA origami. OPTICS EXPRESS 2024; 32:16040-16051. [PMID: 38859241 DOI: 10.1364/oe.520522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/18/2024] [Indexed: 06/12/2024]
Abstract
Chiral materials are essential to perceive photonic devices that control the helicity of light. However, the chirality of natural materials is rather weak, and relatively thick films are needed for noticeable effects. To overcome this limitation, artificial photonic materials were suggested to affect the chiral response in a much more substantial manner. Ideally, a single layer of such a material, a metasurface, should already be sufficient. While various structures fabricated with top-down nanofabrication technologies have already been reported, here we propose to utilize scaffolded DNA origami technology, a scalable bottom-up approach for metamolecule production, to fabricate a chiral metasurface. We introduce a chiral plasmonic metamolecule in the shape of a tripod and simulate its optical properties. By fixing the metamolecule to a rectangular planar origami, the tripods can be assembled into a 2D DNA origami crystal that forms a chiral metasurface. We simulate the optical properties but also fabricate selected devices to assess the experimental feasibility of the suggested approach critically.
Collapse
|
9
|
Yang Z, Jaiswal A, Yin Q, Lin X, Liu L, Li J, Liu X, Xu Z, Li JJ, Yong KT. Chiral nanomaterials in tissue engineering. NANOSCALE 2024; 16:5014-5041. [PMID: 38323627 DOI: 10.1039/d3nr05003c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Addressing significant medical challenges arising from tissue damage and organ failure, the field of tissue engineering has evolved to provide revolutionary approaches for regenerating functional tissues and organs. This involves employing various techniques, including the development and application of novel nanomaterials. Among them, chiral nanomaterials comprising non-superimposable nanostructures with their mirror images have recently emerged as innovative biomaterial candidates to guide tissue regeneration due to their unique characteristics. Chiral nanomaterials including chiral fibre supramolecular hydrogels, polymer-based chiral materials, self-assembling peptides, chiral-patterned surfaces, and the recently developed intrinsically chiroptical nanoparticles have demonstrated remarkable ability to regulate biological processes through routes such as enantioselective catalysis and enhanced antibacterial activity. Despite several recent reviews on chiral nanomaterials, limited attention has been given to the specific potential of these materials in facilitating tissue regeneration processes. Thus, this timely review aims to fill this gap by exploring the fundamental characteristics of chiral nanomaterials, including their chiroptical activities and analytical techniques. Also, the recent advancements in incorporating these materials in tissue engineering applications are highlighted. The review concludes by critically discussing the outlook of utilizing chiral nanomaterials in guiding future strategies for tissue engineering design.
Collapse
Affiliation(s)
- Zhenxu Yang
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Arun Jaiswal
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Qiankun Yin
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xiaoqi Lin
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Lu Liu
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Jiarong Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Xiaochen Liu
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhejun Xu
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Ken-Tye Yong
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
10
|
Zhang YH, Liu SJ, Chen P, Zhu D, Chen W, Ge SJ, Wang Y, Zhang ZF, Lu YQ. Logical rotation of non-separable states via uniformly self-assembled chiral superstructures. Nat Commun 2024; 15:1108. [PMID: 38321000 PMCID: PMC10847456 DOI: 10.1038/s41467-024-45299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The next generation of high-capacity, multi-task optical informatics requires sophisticated manipulation of multiple degrees of freedom (DoFs) of light, especially when they are coupled in a non-separable way. Vector beam, as a typical non-separable state between the spin and orbital angular momentum DoFs, mathematically akin to entangled qubits, has inspired multifarious theories and applications in both quantum and classical regimes. Although qubit rotation is a vital and ubiquitous operation in quantum informatics, its classical analogue is rarely studied. Here, we demonstrate the logical rotation of vectorial non-separable states via the uniform self-assembled chiral superstructures, with favorable controllability, high compactness and exemption from formidable alignment. Photonic band engineering of such 1D chiral photonic crystal renders the incident-angle-dependent evolution of the spatially-variant polarizations. The logical rotation angle of a non-separable state can be tuned in a wide range over 4π by this single homogeneous device, flexibly providing a set of distinguished logic gates. Potential applications, including angular motion tracking and proof-of-principle logic network, are demonstrated by specific configuration. This work brings important insight into soft matter photonics and present an elegant strategy to harness high-dimensional photonic states.
Collapse
Affiliation(s)
- Yi-Heng Zhang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Si-Jia Liu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Peng Chen
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China.
| | - Dong Zhu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Wen Chen
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Shi-Jun Ge
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Yu Wang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Zhi-Feng Zhang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Yan-Qing Lu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China.
| |
Collapse
|
11
|
Liu T, Chan HK, Wan D. Chiral photonic crystals from sphere packing. SOFT MATTER 2023; 19:7313-7322. [PMID: 37697926 DOI: 10.1039/d3sm00680h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Inspired by recent developments in self-assembled chiral nanostructures, we have explored the possibility of using spherical particles packed in cylinders as building blocks for chiral photonic crystals. In particular, we focused on an array of parallel cylinders arranged in a perfect triangular lattice, each containing an identical densest sphere packing structure. Despite the non-chirality of both the spheres and cylinders, the self-assembled system can exhibit chirality due to spontaneous symmetry breaking during the assembly process. We have investigated the circular dichroism effects of the system and have found that, for both perfect electric conductor and dielectric spheres, the system can display dual-polarization photonic band gaps for circularly polarized light at normal incidence along the axis of the helix. We have also examined how the polarization band gap size depends on the dielectric constant of the spheres and the packing fraction of the cylinders. Furthermore, we have explored the effects of non-ideality and found that the polarization gap persists even in the presence of imperfections and heterogeneity. Our study suggests that a cluster formed by spheres self-assembling inside parallel cylinders with appropriate material parameters can be a promising approach to creating chiral photonic crystals.
Collapse
Affiliation(s)
- Tao Liu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Ho-Kei Chan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Duanduan Wan
- School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
12
|
Fu W, Tan L, Wang PP. Chiral Inorganic Nanomaterials for Photo(electro)catalytic Conversion. ACS NANO 2023; 17:16326-16347. [PMID: 37540624 DOI: 10.1021/acsnano.3c04337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Chiral inorganic nanomaterials due to their unique asymmetric nanostructures have gradually demonstrated intriguing chirality-dependent performance in photo(electro)catalytic conversion, such as water splitting. However, understanding the correlation between chiral inorganic characteristics and the photo(electro)catalytic process remains challenging. In this perspective, we first highlight the chirality source of inorganic nanomaterials and briefly introduce photo(electro)catalysis systems. Then, we delve into an in-depth discussion of chiral effects exerted by chiral nanostructures and their photo-electrochemistry properties, while emphasizing the emerging chiral inorganic nanomaterials for photo(electro)catalytic conversion. Finally, the challenges and opportunities of chiral inorganic nanomaterials for photo(electro)catalytic conversion are prospected. This perspective provides a comprehensive overview of chiral inorganic nanomaterials and their potential in photo(electro)catalytic conversion, which is beneficial for further research in this area.
Collapse
Affiliation(s)
- Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Lili Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Peng-Peng Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
13
|
Zhu J, Sun W, Dong Z. Directionally duplexed all-dielectric metalens for multifunctional structured light generation. OPTICS LETTERS 2023; 48:4013-4016. [PMID: 37527106 DOI: 10.1364/ol.495014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
Directionally duplexed metalenses manipulated by the geometric phase of a silicon nano-bar are theoretically designed to generate multifunctional structured light. It is numerically demonstrated that incident light with different linear and circular polarization states, along forward and backward propagation directions, can be differentially converted into multiple focusing structured beams of arbitrary topological charges, either of vector light with azimuthally variant polarizations or of vortex light with helical phases. Due to the all-silicon and nonresonant metastructural design, the resultant high working efficiencies of our proposed metalens are promising for applications such as optical communication, nanoparticle manipulation, and other direction-duplexed multifunctional optical meta-devices.
Collapse
|
14
|
Li X, Xie W. Efficient ultrafast laser writing with appropriate polarization. LIGHT, SCIENCE & APPLICATIONS 2023; 12:112. [PMID: 37156761 PMCID: PMC10167214 DOI: 10.1038/s41377-023-01161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Appropriate polarization utilization makes the electric field vector direction and the statistically oriented localized states suitable for enhancing light-matter interactions so as to improve the efficiency of ultrafast laser writing, which will remarkably reduce the pulse energy and increase the processing speed for high density optical data storage, as well as manufacturing three-dimensional integrated optics and geometric phase optical elements.
Collapse
Affiliation(s)
- Xiujian Li
- College of Sciences, National University of Defense Technology, Changsha, 410073, China.
- Tiansun National Lab, Changsha, 410073, China.
| | - Wenke Xie
- School of Physics and Electronics, Central South University, Changsha, 410083, China
| |
Collapse
|