1
|
Pan Y, Li L, Cao N, Liao J, Chen H, Zhang M. Advanced nano delivery system for stem cell therapy for Alzheimer's disease. Biomaterials 2025; 314:122852. [PMID: 39357149 DOI: 10.1016/j.biomaterials.2024.122852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Alzheimer's Disease (AD) represents one of the most significant neurodegenerative challenges of our time, with its increasing prevalence and the lack of curative treatments underscoring an urgent need for innovative therapeutic strategies. Stem cells (SCs) therapy emerges as a promising frontier, offering potential mechanisms for neuroregeneration, neuroprotection, and disease modification in AD. This article provides a comprehensive overview of the current landscape and future directions of stem cell therapy in AD treatment, addressing key aspects such as stem cell migration, differentiation, paracrine effects, and mitochondrial translocation. Despite the promising therapeutic mechanisms of SCs, translating these findings into clinical applications faces substantial hurdles, including production scalability, quality control, ethical concerns, immunogenicity, and regulatory challenges. Furthermore, we delve into emerging trends in stem cell modification and application, highlighting the roles of genetic engineering, biomaterials, and advanced delivery systems. Potential solutions to overcome translational barriers are discussed, emphasizing the importance of interdisciplinary collaboration, regulatory harmonization, and adaptive clinical trial designs. The article concludes with reflections on the future of stem cell therapy in AD, balancing optimism with a pragmatic recognition of the challenges ahead. As we navigate these complexities, the ultimate goal remains to translate stem cell research into safe, effective, and accessible treatments for AD, heralding a new era in the fight against this devastating disease.
Collapse
Affiliation(s)
- Yilong Pan
- Department of Cardiology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.
| | - Long Li
- Department of Neurosurgery, First Hospital of China Medical University, Liaoning, 110001, China.
| | - Ning Cao
- Army Medical University, Chongqing, 400000, China
| | - Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Huiyue Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110001, China.
| | - Meng Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Liaoning, 110004, China.
| |
Collapse
|
2
|
Liu Y, Gao X, Li Y, Gao A, Zheng Z, Wei J, Yang H, Ping H, Xie H, Wang H, Wang W, Fu Z. Intrafibrillar calcium carbonate mineralization of electrospinning polyvinyl alcohol/collagen films with improved mechanical and bioactive properties. J Mater Chem B 2024; 13:312-325. [PMID: 39540843 DOI: 10.1039/d4tb01472c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Collagen films play an essential role in guided bone-regeneration (GBR) techniques, which create space, promote cell adhesion, and induce osteogenic differentiation. It is therefore crucial to design appropriate GBR films to facilitate bone regeneration. However, current electrospun collagen scaffolds used as bioactive materials have limited clinical applications due to their poor mechanical properties. In this study, polyvinyl alcohol (PVA)/collagen (Col) films were electrospun by mixing PVA and type I collagen solution. For the first time, the intrafibrillar mineralization of aragonite nanocrystals within the PVA/Col fibrils was achieved, resulting in the formation of a hierarchical, bioactive film. The PVA/Col-CaCO3 film exhibited good mechanical properties, with hardness and Young's modulus values of 211.6 ± 0.1 MPa and 5.6 ± 1.7 GPa, respectively. Furthermore, bone marrow mesenchymal stem cells (BMSCs) inoculated onto the PVA/Col-CaCO3 film demonstrated robust adhesion and proliferation. The mineralized fibrils effectively stimulated the growth of BMSCs while suppressing cell apoptosis. Besides, the PVA/Col-CaCO3 film significantly induced the osteogenic differentiation of BMSCs, revealing its potential biomedical applications in hard tissue engineering.
Collapse
Affiliation(s)
- Yin Liu
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang, 441000, China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Xin Gao
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430070, China
| | - Yuqi Li
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Anqi Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhuozhi Zheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jingjiang Wei
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang, 441000, China.
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Hongye Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430070, China
| | - Hang Ping
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang, 441000, China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Hao Xie
- School of Chemistry, Chemical Engineering, and Life Science Wuhan University of Technology, Wuhan, 430070, China
| | - Hao Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Weimin Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhengyi Fu
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang, 441000, China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
3
|
Zhu JY, Guo L. Exercise-regulated lipolysis: Its role and mechanism in health and diseases. J Adv Res 2024:S2090-1232(24)00550-2. [PMID: 39613256 DOI: 10.1016/j.jare.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Abstract
Exercise has received considerable attention because of its importance not just in regulating physiological function, but also in ameliorating multiple pathological processes. Among these processes, lipolysis may play an important role in exercise-induced benefits. It is generally accepted that active lipolysis contributes to breakdown of fats, leading to the release of free fatty acids (FFAs) that serve as an energy source for muscles and other tissues during exercise. However, the significance of lipolysis in the context of exercise has not been fully understood. This review comprehensively outlines the potential regulatory mechanisms by which exercise stimulates lipolysis. The potential roles of exercise-mediated lipolysis in various physiological and pathological processes are also summarized. Additionally, we also discussed the potential non-classical effects of key lipolytic effectors induced by exercise. This will enhance our understanding of how exercise improves lipolytic function to bring about beneficial effects, offering new insights into potential therapeutic avenues for promoting health and alleviating diseases.
Collapse
Affiliation(s)
- Jie-Ying Zhu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China 200438; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China 200438; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China 200438
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China 200438; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China 200438; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China 200438.
| |
Collapse
|
4
|
Li S, Cao X, Zou T, Wang Z, Chen X, Chen J, You J. Integrated transcriptomics and untargeted metabolomics reveal bone development and metabolism of newly weaned mice in response to dietary calcium and boron levels. Food Funct 2024; 15:10853-10869. [PMID: 39405052 DOI: 10.1039/d4fo03657c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Epidemiological and animal studies have indicated that calcium and boron are essential for bone development and metabolism. However, limited information is available regarding the effects of boron supplementation on bone development and metabolism in newly weaned infants with either calcium deficiency or calcium sufficiency. This study assessed the effects of dietary boron supplementation (0 and 3 mg kg-1) on bone development and metabolism, in a newly weaned mouse model, under both calcium deficiency and sufficiency feeding conditions. The results show that mice fed a calcium sufficient diet exhibited lower fat percentage and final body weight than those fed a calcium deficient diet. Boron supplementation reduced the serum high-density lipoprotein cholesterol level and up-regulated the mRNA levels of FABP3, PPAR-γ, and CaMK in the intestinal mucosa. Importantly, boron supplementation increased the tibial weight in mice on a calcium-sufficient diet and enhanced the tibial volume in those on a calcium-deficient diet. Metabolomic analysis highlighted calcium and boron's impact on metabolites like carboxylic acids and derivatives, fatty acyls, steroids and steroid derivatives, benzene and substituted derivatives, organonitrogen compounds, organooxygen compounds, and phenols, and were related to lipid metabolism and the neural signaling pathway. Transcriptomic analysis corroborated the role of calcium and boron in modulating bone metabolism via the JAK-STAT, calcium signaling, lipid metabolism, and inflammatory pathways. Multi-omics analysis indicated a strong correlation between calcium signaling pathways, lipid metabolism signaling, and dietary calcium and boron contents. This research provides insights into these complex mechanisms, potentially paving the way for novel interventions against calcium and boron deficiencies and bone metabolism abnormalities in clinical settings.
Collapse
Affiliation(s)
- Shuo Li
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Xuehai Cao
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Tiande Zou
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Zirui Wang
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Xingping Chen
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Jun Chen
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Jinming You
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
5
|
Chen KH, Chen CY, Wang WR, Lee YB, Chen CH, Wong PC. Development and evaluation of an injectable ChitHCl-MgSO 4-DDA hydrogel for bone regeneration: In vitro and in vivo studies on cell migration and osteogenesis enhancement. BIOMATERIALS ADVANCES 2024; 163:213963. [PMID: 39024862 DOI: 10.1016/j.bioadv.2024.213963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Nonunion and delayed union of the bone are situations in orthopedic surgery that can occur even if the bone alignment is correct and there is sufficient mechanical stability. Surgeons usually apply artificial bone grafts in bone fracture gaps or in bone defect sites for osteogenesis to improve bone healing; however, these bone graft materials have no osteoinductive or osteogenic properties, and fit the morphology of the fracture gap with difficulty. In this study, we developed an injectable chitosan-based hydrogel with MgSO4 and dextran oxidative, with the purpose to improve bone healing through introducing an engineered chitosan-based hydrogel. The developed hydrogel can gelate and fit with any morphology or shape, has good biocompatibility, can enhance the cell-migration capacity, and can improve extracellular calcium deposition. Moreover, the amount of new bone formed by injecting the hydrogel in the bone tunnel was assessed by an in vivo test. We believe this injectable chitosan-based hydrogel has great potential for application in the orthopedic field to improve fracture gap healing.
Collapse
Affiliation(s)
- Kuan-Hao Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei 23561, Taiwan
| | - Chieh-Ying Chen
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Ru Wang
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu Bin Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Chih-Hwa Chen
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei 23561, Taiwan; School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University 11031, Taipei, Taiwan
| | - Pei-Chun Wong
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
6
|
Fang X, Liu C, Wei K, Shu Z, Zou Y, Zhang Z, Ding Q, Jing S, Li W, Wang T, Li H, Wu H, Liu C, Ma T. Low frequency sinusoidal electromagnetic fields promote the osteogenic differentiation of rat bone marrow mesenchymal stem cells by modulating miR-34b-5p/STAC2. Commun Biol 2024; 7:1156. [PMID: 39284881 PMCID: PMC11405519 DOI: 10.1038/s42003-024-06866-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
Electromagnetic fields (EMFs) have emerged as an effective treatment for osteoporosis. However, the specific mechanism underlying their therapeutic efficacy remains controversial. Herein, we confirm the pro-osteogenic effects of 15 Hz and 0.4-1 mT low-frequency sinusoidal EMFs (SEMFs) on rat bone marrow mesenchymal stem cells (BMSCs). Subsequent miRNA sequencing reveal that miR-34b-5p is downregulated in both the 0.4 mT and 1 mT SEMFs-stimulated groups. To clarify the role of miR-34b-5p in osteogenesis, BMSCs are transfected separately with miR-34b-5p mimic and inhibitor. The results indicate that miR-34b-5p mimic transfection suppress osteogenic differentiation, whereas inhibition of miR-34b-5p promote osteogenic differentiation of BMSCs. In vivo assessments using microcomputed tomography, H&E staining, and Masson staining show that miR-34b-5p inhibitor injections alleviate bone mass loss and trabecular microstructure deterioration in ovariectomy (OVX) rats. Further validation demonstrates that miR-34b-5p exerts its effects by regulating STAC2 expression. Modulating the miR-34b-5p/STAC2 axis attenuate the pro-osteogenic effects of low-frequency SEMFs on BMSCs. These studies indicate that the pro-osteogenic effect of SEMFs is partly due to the regulation of the miR-34b-5p/STAC2 pathway, which provides a potential therapeutic candidate for osteoporosis.
Collapse
Affiliation(s)
- Xuan Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changyu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Wei
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zixing Shu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Zhang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Ding
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoze Jing
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Weigang Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianqi Wang
- Departments of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hao Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoxu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tian Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Qian D, Zhang Q, He CX, Guo J, Huang XT, Zhao J, Zhang H, Xu C, Peng W. Hai-Honghua medicinal liquor is a reliable remedy for fracture by promotion of osteogenic differentiation via activation of PI3K/Akt pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118234. [PMID: 38670404 DOI: 10.1016/j.jep.2024.118234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/19/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hai-Honghua medicinal liquor (HHML), an external Chinese herbal formula preparation, is often applied to treat freshly closed tibia/fibular fractures, ankle fractures, and other bone-related disorders, but the related molecular mechanism is unclear. AIM OF THE STUDY To evaluate the therapeutic effect of HHML in patients with tibial/fibular and ankle fractures, and to explore its related possible mechanism. METHODS AND MATERIALS A total of 182 patients with tibia/fibular fractures and 183 patients with ankle fractures were enrolled in this study. A randomized, controlled, unblinded clinical trial was designed to evaluate the therapeutic effect of HHML on tibial/fibular and ankle fractures. The chemical compositions of HHML were analyzed by the HPLC-Q-Extractive MS/MS. Furthermore, a rat tibial fracture model was established to evaluate the therapeutic effects of HHML in promoting fracture healing, and the mouse embryonic osteoblasts cell line of MC3T3-E1 was further carried out to explore the mechanisms of HHML on osteoblast differentiation. RESULTS In the clinical evaluation, HHML treatment significantly shortened the time for pain and swelling in patients with tibial/fibular fractures (P < 0.01) and ankle fractures (P < 0.01), and the incidence of complications was significantly reduced as well. Subsequently, 116 constituents were identified from HHML via HPLC-Q-TOF-MS/MS analysis. In vivo, no obvious changes in weight were observed in HHML-treated rats. Moreover, the levels of bone formation markers (including osteocalcin (OCN), N-terminal propeptide of type I procollagen (PINP), alkaline phosphatase (ALP), calcium (Ca) and substance P) in rat serum were significantly increased in HHML-treated rats compared with model rats (P < 0.05). Micro-CT analysis showed bone mineral density (BMD), bone volume fraction (BV/TV), trabecular thickness (Tb.Th) of the HHML-treated rats were significantly increased (P < 0.05, vs. Model) while trabecular separation (Tb.Sp) and structure model index (SMI) values were significantly reduced (P < 0.05, vs. Model). Histological analysis showed that HHML treatment promoted the healing of fractures and cartilage repair, and increased the osteoblasts and collagen fibers. Furthermore, our results also revealed HHML could promote MC3T3-E1 cells proliferation and osteoblast differentiation via regulation of the runt-related transcription factor 2 (RUNX2), bone alkaline phosphatase (BALP), and OCN by activating phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway, which confirmed by adding PI3K chemical inhibitor of LY294002. CONCLUSION HHML treatment is a reliable remedy for fractures in tibial and ankle by promotion of osteogenic differentiation via activation of PI3K/Akt pathway.
Collapse
Affiliation(s)
- Die Qian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng-Xun He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Juan Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao-Ting Huang
- Department of Orthopedics, Longquan Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610017, China
| | - Jun Zhao
- Department of Orthopedics, Longquan Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610017, China
| | - Hong Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Chi Xu
- Department of Orthopedics, Longquan Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610017, China.
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
8
|
Chen W, Ma L, Sun W, Xiao W, Guo H, Xiu J, Jiang X. CGRP promotes osteogenic differentiation by regulating macrophage M2 polarization through HDAC6/AKAP12 signaling pathway. Regen Med 2024; 19:379-391. [PMID: 39072399 PMCID: PMC11370908 DOI: 10.1080/17460751.2024.2370697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024] Open
Abstract
Aim: To determine the mechanism of Calcitonin gene-related peptide (CGRP) in bone healing.Materials & methods: Alkaline phosphatase (ALP) activity and inflammatory-factor levels were detected using ELISA. Osteogenic differentiation was assessed using Alizarin red staining technique. The interaction between histone deacetylase 6 (HDAC6) and A-kinase anchoring protein 12 (AKAP12) was investigated through Co- immunoprecipitation.Results: CGRP treatment promoted rat bone marrow-derived macrophages (BMDMs) M2 polarization. CGRP facilitated osteogenic differentiation by enhancing M2 polarization of BMDMs. Mechanistically, CGRP promoted AKAP12 acetylation to activate the extracellular regulated protein kinases pathway by HDAC6 inhibition.Conclusion: CGRP promoted M2 polarization of rat BMDMs and facilitated osteogenic differentiation through the HDAC6/AKAP12/extracellular regulated protein kinases signaling pathway, thereby promoting bone healing.
Collapse
Affiliation(s)
- Wenjing Chen
- Department of Pathology, Qiqihar First Hospital, Qiqihar, 161005, Helongjiang Province, PR China
| | - Lin Ma
- Department of Anesthesiology, Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, Helongjiang Province, PR China
| | - Wencai Sun
- The Fifth department of Orthopaedics & Traumatology, Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, Helongjiang Province, PR China
| | - Wenlong Xiao
- The Fifth department of Orthopaedics & Traumatology, Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, Helongjiang Province, PR China
| | - Hao Guo
- The Fifth department of Orthopaedics & Traumatology, Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, Helongjiang Province, PR China
| | - Jiang Xiu
- The Fifth department of Orthopaedics & Traumatology, Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, Helongjiang Province, PR China
| | - Xin Jiang
- The Fifth department of Orthopaedics & Traumatology, Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, Helongjiang Province, PR China
| |
Collapse
|
9
|
Fink SP, Triggs-Raine B. Genetic Deficiencies of Hyaluronan Degradation. Cells 2024; 13:1203. [PMID: 39056785 PMCID: PMC11275217 DOI: 10.3390/cells13141203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Hyaluronan (HA) is a large polysaccharide that is broadly distributed and highly abundant in the soft connective tissues and embryos of vertebrates. The constitutive turnover of HA is very high, estimated at 5 g per day in an average (70 kg) adult human, but HA turnover must also be tightly regulated in some processes. Six genes encoding homologues to bee venom hyaluronidase (HYAL1, HYAL2, HYAL3, HYAL4, HYAL6P/HYALP1, SPAM1/PH20), as well as genes encoding two unrelated G8-domain-containing proteins demonstrated to be involved in HA degradation (CEMIP/KIAA1199, CEMIP2/TMEM2), have been identified in humans. Of these, only deficiencies in HYAL1, HYAL2, HYAL3 and CEMIP have been identified as the cause or putative cause of human genetic disorders. The phenotypes of these disorders have been vital in determining the biological roles of these enzymes but there is much that is still not understood. Deficiencies in these HA-degrading proteins have been created in mice and/or other model organisms where phenotypes could be analyzed and probed to expand our understanding of HA degradation and function. This review will describe what has been found in human and animal models of hyaluronidase deficiency and discuss how this has advanced our understanding of HA's role in health and disease.
Collapse
Affiliation(s)
- Stephen P. Fink
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Barbara Triggs-Raine
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
10
|
Chan DD, Guilak F, Sah RL, Calve S. Mechanobiology of Hyaluronan: Connecting Biomechanics and Bioactivity in Musculoskeletal Tissues. Annu Rev Biomed Eng 2024; 26:25-47. [PMID: 38166186 DOI: 10.1146/annurev-bioeng-073123-120541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Hyaluronan (HA) plays well-recognized mechanical and biological roles in articular cartilage and synovial fluid, where it contributes to tissue structure and lubrication. An understanding of how HA contributes to the structure of other musculoskeletal tissues, including muscle, bone, tendon, and intervertebral discs, is growing. In addition, the use of HA-based therapies to restore damaged tissue is becoming more prevalent. Nevertheless, the relationship between biomechanical stimuli and HA synthesis, degradation, and signaling in musculoskeletal tissues remains understudied, limiting the utility of HA in regenerative medicine. In this review, we discuss the various roles and significance of endogenous HA in musculoskeletal tissues. We use what is known and unknown to motivate new lines of inquiry into HA biology within musculoskeletal tissues and in the mechanobiology governing HA metabolism by suggesting questions that remain regarding the relationship and interaction between biological and mechanical roles of HA in musculoskeletal health and disease.
Collapse
Affiliation(s)
- Deva D Chan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA
| | - Robert L Sah
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
11
|
Wang S, Liu J, Zhou L, Xu H, Zhang D, Zhang X, Wang Q, Zhou Q. Research progresses on mitochondrial-targeted biomaterials for bone defect repair. Regen Biomater 2024; 11:rbae082. [PMID: 39055307 PMCID: PMC11272180 DOI: 10.1093/rb/rbae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
In recent years, the regulation of the cell microenvironment has opened up new avenues for bone defect repair. Researchers have developed novel biomaterials to influence the behavior of osteoblasts and immune cells by regulating the microenvironment, aiming to achieve efficient bone repair. Mitochondria, as crucial organelles involved in energy conversion, biosynthesis and signal transduction, play a vital role in maintaining bone integrity. Dysfunction of mitochondria can have detrimental effects on the transformation of the immune microenvironment and the differentiation of stem cells, thereby hindering bone tissue regeneration. Consequently, targeted therapy strategies focusing on mitochondria have emerged. This approach offers a wide range of applications and reliable therapeutic effects, thereby providing a new treatment option for complex and refractory bone defect diseases. In recent studies, more biomaterials have been used to restore mitochondrial function and promote positive cell differentiation. The main directions are mitochondrial energy metabolism, mitochondrial biogenesis and mitochondrial quality control. In this review, we investigated the biomaterials used for mitochondria-targeted treatment of bone defect repair in recent years from the perspective of progress and strategies. We also summarized the micro-molecular mechanisms affected by them. Through discussions on energy metabolism, oxidative stress regulation and autophagy regulation, we emphasized the opportunities and challenges faced by mitochondria-targeted biomaterials, providing vital clues for developing a new generation of bone repair materials.
Collapse
Affiliation(s)
- Shuze Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Jialin Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Linxi Zhou
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Hao Xu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Dan Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Qing Zhou
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| |
Collapse
|
12
|
Chen C, Bao Y, Ju S, Jiang C, Zou X, Zhang X, Chen L. Single-cell and bulk RNA-seq unveils the immune infiltration landscape associated with cuproptosis in cerebral cavernous malformations. Biomark Res 2024; 12:57. [PMID: 38835051 DOI: 10.1186/s40364-024-00603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Cerebral cavernous malformations (CCMs) are vascular abnormalities associated with deregulated angiogenesis. Their pathogenesis and optimal treatment remain unclear. This study aims to investigate the molecular signatures of cuproptosis, a newly identified type of cell death, associated with CCMs development. METHODS Bulk RNA sequencing (RNA-seq) from 15 CCM and 6 control samples were performed with consensus clustering and clustered to two subtypes based on expression levels of cuproptosis-related genes (CRGs). Differentially expressed genes and immune infiltration between subtypes were then identified. Machine learning algorithms including the least absolute shrinkage and selection operator and random forest were employed to screen for hub genes for CCMs associated with cuproptosis. Furthermore, Pathway enrichment and correlation analysis were used to explore the functions of hub genes and their association with immune phenotypes in CCMs. An external dataset was then employed for validation. Finally, employing the Cellchat algorithm on a single-cell RNA-seq dataset, we explored potential mechanisms underlying the participation of these hub genes in cell-cell communication in CCMs. RESULTS Our study revealed two distinct CCM subtypes with differential pattern of CRG expression and immune infiltration. Three hub genes (BTBD10, PFDN4, and CEMIP) were identified and validated, which may significantly associate with CCM pathogenesis. These genes were found to be significantly upregulated in CCM endothelial cells (ECs) and were validated through immunofluorescence and western blot analysis. Single-cell RNA-seq analysis revealed the cellular co-expression patterns of these hub genes, particularly highlighting the high expression of BTBD10 and PFDN4 in ECs. Additionally, a significant co-localization was also observed between BTBD10 and the pivotal cuproptosis gene FDX1 in Mki67+ tip cells, indicating the crucial role of cuproptosis for angiogenesis in CCMs. The study also explored the cell-cell communication between subcluster of ECs expressing these hub genes and immune cells, particularly M2 macrophages, suggesting a role for these interactions in CCM pathogenesis. CONCLUSION This study identifies molecular signatures linking cuproptosis to CCMs pathogenesis. Three hub genes-PFDN4, CEMIP, and BTBD10-may influence disease progression by modulating immunity. Further research is needed to understand their precise disease mechanisms and evaluate their potential as biomarkers or therapeutic targets for CCMs.
Collapse
Affiliation(s)
- Chengwei Chen
- Neurosurgical department of Huashan hospital and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200040, China
- Tianqiao and Chrissy Chen Institute Clinical Translational Research Center, Shanghai, 200040, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences, Beijing, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yuting Bao
- Neurosurgical department of Huashan hospital and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200040, China
- Tianqiao and Chrissy Chen Institute Clinical Translational Research Center, Shanghai, 200040, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences, Beijing, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Sihan Ju
- Neurosurgical department of Huashan hospital and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200040, China
- Tianqiao and Chrissy Chen Institute Clinical Translational Research Center, Shanghai, 200040, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences, Beijing, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Conglin Jiang
- Neurosurgical department of Huashan hospital and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200040, China
- Tianqiao and Chrissy Chen Institute Clinical Translational Research Center, Shanghai, 200040, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences, Beijing, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Xiang Zou
- Neurosurgical department of Huashan hospital and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200040, China
- Tianqiao and Chrissy Chen Institute Clinical Translational Research Center, Shanghai, 200040, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences, Beijing, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Xin Zhang
- Neurosurgical department of Huashan hospital and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200040, China
- Tianqiao and Chrissy Chen Institute Clinical Translational Research Center, Shanghai, 200040, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences, Beijing, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Liang Chen
- Neurosurgical department of Huashan hospital and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200040, China.
- Tianqiao and Chrissy Chen Institute Clinical Translational Research Center, Shanghai, 200040, China.
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences, Beijing, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
| |
Collapse
|
13
|
Huang T, Lu Z, Wang Z, Cheng L, Gao L, Gao J, Zhang N, Geng CA, Zhao X, Wang H, Wong CW, Yeung KWK, Pan H, Lu WW, Guan M. Targeting adipocyte ESRRA promotes osteogenesis and vascular formation in adipocyte-rich bone marrow. Nat Commun 2024; 15:3769. [PMID: 38704393 PMCID: PMC11069533 DOI: 10.1038/s41467-024-48255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
Excessive bone marrow adipocytes (BMAds) accumulation often occurs under diverse pathophysiological conditions associated with bone deterioration. Estrogen-related receptor α (ESRRA) is a key regulator responding to metabolic stress. Here, we show that adipocyte-specific ESRRA deficiency preserves osteogenesis and vascular formation in adipocyte-rich bone marrow upon estrogen deficiency or obesity. Mechanistically, adipocyte ESRRA interferes with E2/ESR1 signaling resulting in transcriptional repression of secreted phosphoprotein 1 (Spp1); yet positively modulates leptin expression by binding to its promoter. ESRRA abrogation results in enhanced SPP1 and decreased leptin secretion from both visceral adipocytes and BMAds, concertedly dictating bone marrow stromal stem cell fate commitment and restoring type H vessel formation, constituting a feed-forward loop for bone formation. Pharmacological inhibition of ESRRA protects obese mice against bone loss and high marrow adiposity. Thus, our findings highlight a therapeutic approach via targeting adipocyte ESRRA to preserve bone formation especially in detrimental adipocyte-rich bone milieu.
Collapse
Affiliation(s)
- Tongling Huang
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhaocheng Lu
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zihui Wang
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lixin Cheng
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
| | - Lu Gao
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Gao
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ning Zhang
- Neuroscience Center, Shantou University Medical College, Shantou, China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiaoli Zhao
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huaiyu Wang
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | - Kelvin W K Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haobo Pan
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - William Weijia Lu
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Min Guan
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Guo S, Guo Y, Chen Y, Cui S, Zhang C, Chen D. The role of CEMIP in cancers and its transcriptional and post-transcriptional regulation. PeerJ 2024; 12:e16930. [PMID: 38390387 PMCID: PMC10883155 DOI: 10.7717/peerj.16930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
CEMIP is a protein known for inducing cell migration and binding to hyaluronic acid. Functioning as a hyaluronidase, CEMIP primarily facilitates the breakdown of the extracellular matrix component, hyaluronic acid, thereby regulating various signaling pathways. Recent evidence has highlighted the significant role of CEMIP in different cancers, associating it with diverse pathological states. While identified as a biomarker for several diseases, CEMIP's mechanism in cancer seems distinct. Accumulating data suggests that CEMIP expression is triggered by chemical modifications to itself and other influencing factors. Transcriptionally, chemical alterations to the CEMIP promoter and involvement of transcription factors such as AP-1, HIF, and NF-κB regulate CEMIP levels. Similarly, specific miRNAs have been found to post-transcriptionally regulate CEMIP. This review provides a comprehensive summary of CEMIP's role in various cancers and explores how both transcriptional and post-transcriptional mechanisms control its expression.
Collapse
Affiliation(s)
- Song Guo
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Yunfei Guo
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Yuanyuan Chen
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Shuaishuai Cui
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Chunmei Zhang
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Dahu Chen
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| |
Collapse
|