1
|
Wang H, Zhang Q, Chen S, Liu X, Liu J, He W, Liu X. Highly Conductive Supramolecular Salt Gel Electrolyte for Flexible Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39356324 DOI: 10.1021/acsami.4c12666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Conductive gels have greatly facilitated the development of flexible energy storage devices, including supercapacitors, batteries, and triboelectric nanogenerators. However, it is challenging for gel electrolytes to tackle the trade-off issues between mechanical properties and conductivity. Herein, a strategy of all inorganic salt-driven supramolecular networks is presented to construct gel electrolytes with high conductivity and reliable mechanical performance for flexible supercapacitors. The salt gel is successfully fabricated by combining a salt supramolecular network constructed by NH4Mo7O24·4H2O and FeCl3·6H2O and a polymer network of poly(vinyl alcohol). The inorganic salt supramolecular network serves as a rigid self-supporting framework in the hydrogel system for improving the mechanical properties and providing abundant active sites for accelerating ion transport. Furthermore, the salt gel-enabled supercapacitors are equipped and exhibit a high specific capacitance (199.4 mF cm-2) and excellent energy density (27.69 μWh cm-2). Moreover, the flexible supercapacitors not only present remarkable cyclic stability after 3000 charging/discharging cycles but also exhibit good electrochemical stability even under severe deformation conditions. The strategy of salt-gel-driven flexible supercapacitors would provide fresh thinking for the development of advanced flexible energy storage fields.
Collapse
Affiliation(s)
- Hui Wang
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Qin Zhang
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Shuang Chen
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Xuming Liu
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Jinhua Liu
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Wenwen He
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Xin Liu
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
2
|
Fan X, Liu J, Duan X, Li H, Deng S, Kuang Y, Li J, Lin C, Meng B, Hu J, Wang S, Liu J, Wang L. Alcohol-Processable All-Polymer n-Type Thermoelectrics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401952. [PMID: 38647398 PMCID: PMC11220645 DOI: 10.1002/advs.202401952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Indexed: 04/25/2024]
Abstract
The general strategy for n-type organic thermoelectric is to blend n-type conjugated polymer hosts with small molecule dopants. In this work, all-polymer n-type thermoelectric is reported by dissolving a novel n-type conjugated polymer and a polymer dopant, poly(ethyleneimine) (PEI), in alcohol solution, followed by spin-coating to give polymer host/polymer dopant blend film. To this end, an alcohol-soluble n-type conjugated polymer is developed by attaching polar and branched oligo (ethylene glycol) (OEG) side chains to a cyano-substituted poly(thiophene-alt-co-thiazole) main chain. The main chain results in the n-type property and the OEG side chain leads to the solubility in hexafluorineisopropanol (HFIP). In the polymer host/polymer dopant blend film, the Coulombic interaction between the dopant counterions and the negatively charged polymer chains is reduced and the ordered stacking of the polymer host is preserved. As a result, the polymer host/polymer dopant blend exhibits the power factor of 36.9 µW m-1 K-1, which is one time higher than that of the control polymer host/small molecule dopant blend. Moreover, the polymer host/polymer dopant blend shows much better thermal stability than the control polymer host/small molecule dopant blend. This research demonstrates the high performance and excellent stability of all-polymer n-type thermoelectric.
Collapse
Affiliation(s)
- Xinyi Fan
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduSichuan610065P. R. China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Hongxiang Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduSichuan610065P. R. China
| | - Sihui Deng
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Yazhuo Kuang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Jingyu Li
- Key Laboratory of UV‐Emitting Materials and Technology (Northeast Normal University)Ministry of EducationChangchunJilin130024P. R. China
| | - Chengjiang Lin
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Bin Meng
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Junli Hu
- Key Laboratory of UV‐Emitting Materials and Technology (Northeast Normal University)Ministry of EducationChangchunJilin130024P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| |
Collapse
|
3
|
Mallick L, Annadata HV, Chakraborty B. Vacancy-Rich SnO 2 Quantum Dot Stabilized by Polyoxomolybdate as Electrocatalyst for Selective NH 3 Production. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32385-32393. [PMID: 38873812 DOI: 10.1021/acsami.4c04466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The pronounced conductivity of tin dioxide (SnO2) nanoparticles makes it an ideal multifunctional electrode material, while the challenge is to stabilize the quantum dot (QD) SnO2 nanocore in water. An Anderson-type polyoxomolybdate, (NH4)6[Mo7O24], is employed as an inorganic ligand to stabilize a ca. 6 nm SnO2 QD (Mox@SnO2). X-ray scattering and diffraction studies confirm the tetragonal SnO2 nanocore in Mox@SnO2. Elemental analyses are in good agreement with the mass spectrometric detection of the [Mo7O24]6- cluster present in Mox@SnO2. The ionic POMs attached to the SnO2 surface through [Mo-O-Sn] covalent linkages have been established by surface zeta potential, shift of the [Mo = O]t Raman vibration, and extended X-ray absorption fine structure (EXAFS) analyses. The presence of the [Mo7O24]6- cluster in the Mox@SnO2 is responsible for the remarkable aqueous stability of Mox@SnO2 in the pH range of 3-9. Dominant oxygen vacancy in the SnO2 core, identified by EXAFS data and the anisotropic electron paramagnetic resonance (EPR) signals (g ∼ 2.4 and 1.9), results in facile electronic conduction in Mox@SnO2 while being deposited on the electrode surface. Mox@SnO2 acts as an active catalyst for the electrocatalytic nitrate reduction (eNOR) to ammonia with 94% faradaic efficiency (FE) at -0.2 V vs RHE and a yield rate of 28.9 mg h-1 cm-2. The stability of Mox@SnO2 in acidic pH provides scope to reuse the Mox@SnO2 electrode at least four times with notable NH3 selectivity and a superior production rate (239.06 mmol g-1(cat) h-1). This study demonstrates the essential role of POM in stabilizing SnO2 QD, harnessing its electrochemical activity toward electrocatalytic ammonia production.
Collapse
Affiliation(s)
- Laxmikanta Mallick
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016, India
| | - Harshini V Annadata
- Beamline Development and Application Section, Bhabha Atomic Research Center, Trombay Mumbai 400085, India
| | - Biswarup Chakraborty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016, India
| |
Collapse
|
4
|
Xu X, Yang Y, Zhou Y, Xiao K, Szymanowski JES, Sigmon GE, Burns PC, Liu T. Critical Conditions Regulating the Gelation in Macroionic Cluster Solutions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308902. [PMID: 38430533 PMCID: PMC11095157 DOI: 10.1002/advs.202308902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Indexed: 03/04/2024]
Abstract
The critical gelation conditions observed in dilute aqueous solutions of multiple nanoscale uranyl peroxide molecular clusters are reported, in the presence of multivalent cations. This gelation is dominantly driven by counterion-mediated attraction. The gelation areas in the corresponding phase diagrams all appear in similar locations, with a characteristic triangle shape outlining three critical boundary conditions, corresponding to the critical cluster concentration, cation/cluster ratio, and the degree of counterion association with increasing cluster concentration. These interesting phrasal observations reveal general conditions for gelation driven by electrostatic interactions in hydrophilic macroionic solutions.
Collapse
Affiliation(s)
- Xiaohan Xu
- School of Polymer Science and Polymer EngineeringThe University of AkronAkronOH44325USA
| | - Yuqing Yang
- School of Polymer Science and Polymer EngineeringThe University of AkronAkronOH44325USA
| | - Yifan Zhou
- School of Polymer Science and Polymer EngineeringThe University of AkronAkronOH44325USA
| | - Kexing Xiao
- School of Polymer Science and Polymer EngineeringThe University of AkronAkronOH44325USA
| | - Jennifer E. S. Szymanowski
- Department of Civil and Environmental Engineering and Earth SciencesUniversity of Notre DameNotre DameIN46556USA
| | - Ginger E. Sigmon
- Department of Civil and Environmental Engineering and Earth SciencesUniversity of Notre DameNotre DameIN46556USA
| | - Peter C. Burns
- Department of Civil and Environmental Engineering and Earth SciencesUniversity of Notre DameNotre DameIN46556USA
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIN46556USA
| | - Tianbo Liu
- School of Polymer Science and Polymer EngineeringThe University of AkronAkronOH44325USA
| |
Collapse
|
5
|
Yin JF, Amidani L, Chen J, Li M, Xue B, Lai Y, Kvashnina K, Nyman M, Yin P. Spatiotemporal Studies of Soluble Inorganic Nanostructures with X-rays and Neutrons. Angew Chem Int Ed Engl 2024; 63:e202310953. [PMID: 37749062 DOI: 10.1002/anie.202310953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
This Review addresses the use of X-ray and neutron scattering as well as X-ray absorption to describe how inorganic nanostructured materials assemble, evolve, and function in solution. We first provide an overview of techniques and instrumentation (both large user facilities and benchtop). We review recent studies of soluble inorganic nanostructure assembly, covering the disciplines of materials synthesis, processes in nature, nuclear materials, and the widely applicable fundamental processes of hydrophobic interactions and ion pairing. Reviewed studies cover size regimes and length scales ranging from sub-Ångström (coordination chemistry and ion pairing) to several nanometers (molecular clusters, i.e. polyoxometalates, polyoxocations, and metal-organic polyhedra), to the mesoscale (supramolecular assembly processes). Reviewed studies predominantly exploit 1) SAXS/WAXS/SANS (small- and wide-angle X-ray or neutron scattering), 2) PDF (pair-distribution function analysis of X-ray total scattering), and 3) XANES and EXAFS (X-ray absorption near-edge structure and extended X-ray absorption fine structure, respectively). While the scattering techniques provide structural information, X-ray absorption yields the oxidation state in addition to the local coordination. Our goal for this Review is to provide information and inspiration for the inorganic/materials science communities that may benefit from elucidating the role of solution speciation in natural and synthetic processes.
Collapse
Affiliation(s)
- Jia-Fu Yin
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Lucia Amidani
- The Rossendorf Beamline at ESRF, The European Synchrotron, CS40220, 38043, Grenoble Cedex 9, France
- Institute of Resource Ecology, Helmholtz Zentrum Dresden-Rossendorf (HZDR) P.O. Box 510119, 01314, Dresden, Germany
| | - Jiadong Chen
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Mu Li
- Institute of Advanced Science Facilities, Shenzhen, 518107, China
| | - Binghui Xue
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Yuyan Lai
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Kristina Kvashnina
- The Rossendorf Beamline at ESRF, The European Synchrotron, CS40220, 38043, Grenoble Cedex 9, France
- Institute of Resource Ecology, Helmholtz Zentrum Dresden-Rossendorf (HZDR) P.O. Box 510119, 01314, Dresden, Germany
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, OR, 97330, USA
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
6
|
Li T, Liang C, Yu K, Li J, Lin C, Li H, Xu Y, Cai S, Zhu Q, Huang Q, Xing W, Duan X. Effects of temperature on microstructures of MSA-type electroplating solution: a coarse-grained molecular dynamics simulation. Phys Chem Chem Phys 2023; 25:28272-28281. [PMID: 37830226 DOI: 10.1039/d3cp03342b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
In this study, we employ coarse-grained molecular dynamics simulations to explore the microstructure of MSA (methanesulfonic acid)-type electroplating solution, containing Sn(MSA)2 as the primary salt, MSA as the stabilizer, amphiphilic alkylphenol ethoxylate (APEO) as surfactants and cinnamaldehyde (CA) as the brightener agents, as well as water as the solvent. Our simulation indicates that temperature variations can significantly affect the structural properties of the electroplating solution and the adsorption behavior of its key components onto the substrate. Specifically, at low temperatures, the primary salt ions aggregate into ionic clusters, and the amphiphilic APEO surfactants and CA molecules form micelles composed of hydrophobic cores and hydrophilic shells, which reduces the uniformity of the solution and hinders the adsorption of ions, CA and surfactants onto the substrate. Appropriately increasing the temperature can weaken the aggregation of these components in bulk solution due to the accelerated molecular movements and arouse their adsorption. However, on further increasing the temperature, the elevated kinetic energy of the components thoroughly overwhelms the adsorption interactions, and therefore, the ions, surfactants, and CA desorb from the substrate and redissolve into the solution. We systematically analyze the complex interactions between these components at different temperatures and clarify the mechanism of the non-monotonic dependence of adsorption strength on the temperature at the molecular level. Our simulations demonstrate that there is low-temperature scope for reprocessing/recycling and intermediate-temperature scope for substrate-adsorptions of the key components. This study confers insights into a fundamental understanding of the microscopic mechanism for electroplating and can provide guidance for the development of precise electroplatings.
Collapse
Affiliation(s)
- Teng Li
- Key Laboratory of Automobile Materials, Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, Jilin 130025, China.
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Ce Liang
- Key Laboratory of Automobile Materials, Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, Jilin 130025, China.
| | - Kaifeng Yu
- Key Laboratory of Automobile Materials, Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, Jilin 130025, China.
| | - Jichen Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chengjiang Lin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hongfei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yongzi Xu
- Research & Development Center, Yunnan Stannous Group (Holding) Co., Ltd, Kunming 650000, China.
| | - Shanshan Cai
- Research & Development Center, Yunnan Stannous Group (Holding) Co., Ltd, Kunming 650000, China.
| | - Qingsheng Zhu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110179, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA
| | - Wei Xing
- Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
7
|
Chen X, Sun YF, Wu X, Shi S, Wang Z, Zhang J, Fang WH, Huang W. Breaking the Trade-Off Between Polymer Dielectric Constant and Loss via Aluminum Oxo Macrocycle Dopants for High-Performance Neuromorphic Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306260. [PMID: 37660306 DOI: 10.1002/adma.202306260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Indexed: 09/05/2023]
Abstract
The dielectric layer is crucial in regulating the overall performance of field-effect transistors (FETs), the key component in central processing units, sensors, and displays. Despite considerable efforts being devoted to developing high-permittivity (k) dielectrics, limited progress is made due to the inherent trade-off between dielectric constant and loss. Here, a solution is presented by designing a monodispersed disk-shaped Ce-Al-O-macrocycle as a dopant in polymer dielectrics. The molecule features a central Ce(III) core connected with eight Al atoms through sixteen bridging hydroxyls and eight 3-aminophenyl peripheries. The incorporation of this macrocycle in polymer dielectrics results in an up to sevenfold increase in dielectric constants and up to 89% reduction in dielectric loss at low frequencies. Moreover, the leakage-current densities decrease, and the breakdown strengths are improved by 63%. Relying on the above merits, FETs bearing cluster-doped polymer dielectrics give near three-orders source-drain current increments while maintaining low-level leakage/off currents, resulting in much higher charge-carrier mobilities (up to 2.45 cm2 V-1 s-1 ) and on/off ratios. This cluster-doping strategy is generalizable and shows great promise for ultralow-power photoelectric synapses and neuromorphic retinas. This work successfully breaks the trade-off between dielectric constant and loss and offers a unique design for polymer composite dielectrics.
Collapse
Affiliation(s)
- Xiaowei Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yi-Fan Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Xiaosong Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shuhui Shi
- Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong SAR, Hong Kong
| | - Zhongrui Wang
- Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong SAR, Hong Kong
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|