1
|
Nentwich M, Leszczynski M, Schroeder CE, Bickel S, Parra LC. Intrinsic dynamic shapes responses to external stimulation in the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606665. [PMID: 39463938 PMCID: PMC11507726 DOI: 10.1101/2024.08.05.606665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Sensory stimulation of the brain reverberates in its recurrent neuronal networks. However, current computational models of brain activity do not separate immediate sensory responses from intrinsic recurrent dynamics. We apply a vector-autoregressive model with external input (VARX), combining the concepts of "functional connectivity" and "encoding models", to intracranial recordings in humans. We find that the recurrent connectivity during rest is largely unaltered during movie watching. The intrinsic recurrent dynamic enhances and prolongs the neural responses to scene cuts, eye movements, and sounds. Failing to account for these exogenous inputs, leads to spurious connections in the intrinsic "connectivity". The model shows that an external stimulus can reduce intrinsic noise. It also shows that sensory areas have mostly outward, whereas higher-order brain areas mostly incoming connections. We conclude that the response to an external audiovisual stimulus can largely be attributed to the intrinsic dynamic of the brain, already observed during rest.
Collapse
Affiliation(s)
- Maximilian Nentwich
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Marcin Leszczynski
- Departments of Psychiatry and Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA
- Cognitive Science Department, Institute of Philosophy, Jagiellonian University, Kraków, Poland
| | - Charles E Schroeder
- Departments of Psychiatry and Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA
| | - Stephan Bickel
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Departments of Neurology and Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| |
Collapse
|
2
|
Mishra A, Tostaeva G, Nentwich M, Espinal E, Markowitz N, Winfield J, Freund E, Gherman S, Mehta AD, Bickel S. Motifs of human hippocampal and cortical high frequency oscillations structure processing and memory of naturalistic stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617305. [PMID: 39416218 PMCID: PMC11483033 DOI: 10.1101/2024.10.08.617305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The discrete events of our narrative experience are organized by the neural substrate that underlies episodic memory. This narrative process is segmented into discrete units by event boundaries. This permits a replay process that acts to consolidate each event into a narrative memory. High frequency oscillations (HFOs) are a potential mechanism for synchronizing neural activity during these processes. Here, we use intracranial recordings from participants viewing and freely recalling a naturalistic stimulus. We show that hippocampal HFOs increase following event boundaries and that coincident hippocampal-cortical HFOs (co-HFOs) occur in cortical regions previously shown to underlie event segmentation (inferior parietal, precuneus, lateral occipital, inferior frontal cortices). We also show that event-specific patterns of co-HFOs that occur during event viewing re-occur following the subsequent three event boundaries (in decaying fashion) and also during recall. This is consistent with models that support replay as a mechanism for memory consolidation. Hence, HFOs may coordinate activity across brain regions serving widespread event segmentation, encode naturalistic memory, and bind representations to assemble memory of a coherent, continuous experience.
Collapse
|
3
|
Yao Y, Stebner A, Tuytelaars T, Geirnaert S, Bertrand A. Identifying temporal correlations between natural single-shot videos and EEG signals. J Neural Eng 2024; 21:016018. [PMID: 38277701 DOI: 10.1088/1741-2552/ad2333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
Objective.Electroencephalography (EEG) is a widely used technology for recording brain activity in brain-computer interface (BCI) research, where understanding the encoding-decoding relationship between stimuli and neural responses is a fundamental challenge. Recently, there is a growing interest in encoding-decoding natural stimuli in a single-trial setting, as opposed to traditional BCI literature where multi-trial presentations of synthetic stimuli are commonplace. While EEG responses to natural speech have been extensively studied, such stimulus-following EEG responses to natural video footage remain underexplored.Approach.We collect a new EEG dataset with subjects passively viewing a film clip and extract a few video features that have been found to be temporally correlated with EEG signals. However, our analysis reveals that these correlations are mainly driven by shot cuts in the video. To avoid the confounds related to shot cuts, we construct another EEG dataset with natural single-shot videos as stimuli and propose a new set of object-based features.Main results.We demonstrate that previous video features lack robustness in capturing the coupling with EEG signals in the absence of shot cuts, and that the proposed object-based features exhibit significantly higher correlations. Furthermore, we show that the correlations obtained with these proposed features are not dominantly driven by eye movements. Additionally, we quantitatively verify the superiority of the proposed features in a match-mismatch task. Finally, we evaluate to what extent these proposed features explain the variance in coherent stimulus responses across subjects.Significance.This work provides valuable insights into feature design for video-EEG analysis and paves the way for applications such as visual attention decoding.
Collapse
Affiliation(s)
- Yuanyuan Yao
- Department of Electrical Engineering, STADIUS, KU Leuven, Leuven, Belgium
| | - Axel Stebner
- Department of Electrical Engineering, PSI, KU Leuven, Leuven, Belgium
| | - Tinne Tuytelaars
- Department of Electrical Engineering, PSI, KU Leuven, Leuven, Belgium
| | - Simon Geirnaert
- Department of Electrical Engineering, STADIUS, Department of Neurosciences, ExpORL, KU Leuven, Leuven, Belgium
| | - Alexander Bertrand
- Department of Electrical Engineering, STADIUS, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Nolden S, Turan G, Güler B, Günseli E. Prediction error and event segmentation in episodic memory. Neurosci Biobehav Rev 2024; 157:105533. [PMID: 38184184 DOI: 10.1016/j.neubiorev.2024.105533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Organizing the continuous flow of experiences into meaningful events is a crucial prerequisite for episodic memory. Prediction error and event segmentation both play important roles in supporting the genesis of meaningful mnemonic representations of events. We review theoretical contributions discussing the relationship between prediction error and event segmentation, as well as literature on episodic memory related to prediction error and event segmentation. We discuss the extent of overlap of mechanisms underlying memory emergence through prediction error and event segmentation, with a specific focus on attention and working memory. Finally, we identify areas in research that are currently developing and suggest future directions. We provide an overview of mechanisms underlying memory formation through predictions, violations of predictions, and event segmentation.
Collapse
Affiliation(s)
- Sophie Nolden
- Department for Developmental Psychology, Institute of Psychology, Goethe-University Frankfurt am Main, Germany; IDeA-Center for Research on Individual Development and Adaptive Education of Children at Risk, Frankfurt am Main, Germany.
| | - Gözem Turan
- Department for Developmental Psychology, Institute of Psychology, Goethe-University Frankfurt am Main, Germany; IDeA-Center for Research on Individual Development and Adaptive Education of Children at Risk, Frankfurt am Main, Germany
| | - Berna Güler
- Department of Psychology, Sabanci University, Istanbul, Turkey
| | - Eren Günseli
- Department of Psychology, Sabanci University, Istanbul, Turkey
| |
Collapse
|