1
|
Yu Y, Cai Q, Lin L, Huang CC. Fiber length distribution characterizes the brain network maturation during early school-age. Neuroimage 2025; 308:121066. [PMID: 39884413 DOI: 10.1016/j.neuroimage.2025.121066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/28/2024] [Accepted: 01/28/2025] [Indexed: 02/01/2025] Open
Abstract
Environmental and social changes during early school age have a profound impact on brain development. However, it remains unclear how the brains of typically-developing children adjust white matter to optimize network topology during this period. This study proposes fiber length distribution as a novel nodal metric to capture the continuous maturation of brain network. We acquired dMRI data from N = 30 typically developing children in their first year of primary school and a one-year follow-up. We assessed the longitudinal changes in fiber length distribution, characterized by the median length of connected fibers for each brain region. The length median was positively correlated with degree and betweenness centrality, while negatively correlated with clustering coefficient and local efficiency. From ages 7 to 8, we observed significant decreases in length median in the temporal, superior parietal, anterior cingulate, and medial prefrontal cortices, accompanied by a reduction in long-range connections and an increase in short-range connections. Meta-analytic decoding revealed that the widespread decrease in length median occurred in regions responsible for sensory processing, whereas a more localized increase in length median was observed in regions involved in memory and cognitive control. Finally, simulation tests on healthy adults further supported that the decrease in long-range connections and increase in short-range connections contributed to enhanced network segregation and integration, respectively. Our results suggest that the dual process of short- and long-range fiber changes reflects a cost-efficient strategy for optimizing network organization during this critical developmental stage.
Collapse
Affiliation(s)
- Yanlin Yu
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Qing Cai
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China; NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China.
| | - Longnian Lin
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China; NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China; School of Life Science Department, East China Normal University, Shanghai 200062, China.
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China; NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China.
| |
Collapse
|
2
|
Milisav F, Bazinet V, Betzel RF, Misic B. A simulated annealing algorithm for randomizing weighted networks. NATURE COMPUTATIONAL SCIENCE 2025; 5:48-64. [PMID: 39658626 PMCID: PMC11774763 DOI: 10.1038/s43588-024-00735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/01/2024] [Indexed: 12/12/2024]
Abstract
Scientific discovery in connectomics relies on network null models. The prominence of network features is conventionally evaluated against null distributions estimated using randomized networks. Modern imaging technologies provide an increasingly rich array of biologically meaningful edge weights. Despite the prevalence of weighted graph analysis in connectomics, randomization models that only preserve binary node degree remain most widely used. Here we propose a simulated annealing procedure for generating randomized networks that preserve weighted degree (strength) sequences. We show that the procedure outperforms other rewiring algorithms and generalizes to multiple network formats, including directed and signed networks, as well as diverse real-world networks. Throughout, we use morphospace representation to assess the sampling behavior of the algorithm and the variability of the resulting ensemble. Finally, we show that accurate strength preservation yields different inferences about brain network organization. Collectively, this work provides a simple but powerful method to analyze richly detailed next-generation connectomics datasets.
Collapse
Affiliation(s)
- Filip Milisav
- Montréal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Vincent Bazinet
- Montréal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Richard F Betzel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Sebenius I, Dorfschmidt L, Seidlitz J, Alexander-Bloch A, Morgan SE, Bullmore E. Structural MRI of brain similarity networks. Nat Rev Neurosci 2025; 26:42-59. [PMID: 39609622 DOI: 10.1038/s41583-024-00882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
Recent advances in structural MRI analytics now allow the network organization of individual brains to be comprehensively mapped through the use of the biologically principled metric of anatomical similarity. In this Review, we offer an overview of the measurement and meaning of structural MRI similarity, especially in relation to two key assumptions that often underlie its interpretation: (i) that MRI similarity can be representative of architectonic similarity between cortical areas and (ii) that similar areas are more likely to be axonally connected, as predicted by the homophily principle. We first introduce the historical roots and technical foundations of MRI similarity analysis and compare it with the distinct MRI techniques of structural covariance and tractography analysis. We contextualize this empirical work with two generative models of homophilic networks: an economic model of cost-constrained connectional homophily and a heterochronic model of ontogenetically phased cortical maturation. We then review (i) studies of the genetic and transcriptional architecture of MRI similarity in population-averaged and disorder-specific contexts and (ii) developmental studies of normative cohorts and clinical studies of neurodevelopmental and neurodegenerative disorders. Finally, we prioritize knowledge gaps that must be addressed to consolidate structural MRI similarity as an accessible, valid marker of the architecture and connectivity of an individual brain network.
Collapse
Affiliation(s)
- Isaac Sebenius
- Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK.
| | - Lena Dorfschmidt
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA.
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jakob Seidlitz
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron Alexander-Bloch
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E Morgan
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Edward Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
4
|
Smith RL, Sawiak SJ, Dorfschmidt L, Dutcher EG, Jones JA, Hahn JD, Sporns O, Swanson LW, Taylor PA, Glen DR, Dalley JW, McMahon FJ, Raznahan A, Vértes PE, Bullmore ET. Development and early life stress sensitivity of the rat cortical microstructural similarity network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629759. [PMID: 39803427 PMCID: PMC11722359 DOI: 10.1101/2024.12.20.629759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The rat offers a uniquely valuable animal model in neuroscience, but we currently lack an individual-level understanding of the in vivo rat brain network. Here, leveraging longitudinal measures of cortical magnetization transfer ratio (MTR) from in vivo neuroimaging between postnatal days 20 (weanling) and 290 (mid-adulthood), we design and implement a computational pipeline that captures the network of structural similarity (MIND, morphometric inverse divergence) between each of 53 distinct cortical areas. We first characterized the normative development of the network in a cohort of rats undergoing typical development (N=47), and then contrasted these findings with a cohort exposed to early life stress (ELS, N=40). MIND as a metric of cortical similarity and connectivity was validated by cortical cytoarchitectonics and axonal tract-tracing data. The normative rat MIND network had high between-study reliability and complex topological properties including a rich club. Similarity changed during post-natal and adolescent development, including a phase of fronto-hippocampal convergence, or increasing inter-areal similarity. An inverse process of increasing fronto-hippocampal dissimilarity was seen with post-adult aging. Exposure to ELS in the form of maternal separation appeared to accelerate the normative trajectory of brain development - highlighting embedding of stress in the dynamic rat brain network. Our work provides novel tools for systems-level study of the rat brain that can now be used to understand network-based underpinnings of complex lifespan behaviors and experimental manipulations that this model organism allows.
Collapse
Affiliation(s)
- Rachel L. Smith
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
- Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA 20892
| | - Stephen J. Sawiak
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EL, UK
| | - Lena Dorfschmidt
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Ethan G. Dutcher
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Jolyon A. Jones
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, UK
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Joel D. Hahn
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA 90089
| | - Olaf Sporns
- Indiana University Network Science Institute, Indiana University, Bloomington, IN, USA 47405
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA 47405
| | - Larry W. Swanson
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA 90089
| | - Paul A. Taylor
- Scientific and Statistical Computing Core, National Institute of Mental Health, NIH, Bethesda, MD, USA 20892
| | - Daniel R. Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health, NIH, Bethesda, MD, USA 20892
| | - Jeffrey W. Dalley
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, UK
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Francis J. McMahon
- Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA 20892
| | - Armin Raznahan
- Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA 20892
| | - Petra E. Vértes
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Edward T. Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| |
Collapse
|
5
|
Blanco R, Preti MG, Koba C, Ville DVD, Crimi A. Comparing structure-function relationships in brain networks using EEG and fNIRS. Sci Rep 2024; 14:28976. [PMID: 39578593 PMCID: PMC11584861 DOI: 10.1038/s41598-024-79817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
Identifying relationships between structural and functional networks is crucial for understanding the large-scale organization of the human brain. The potential contribution of emerging techniques like functional near-infrared spectroscopy to investigate the structure-functional relationship has yet to be explored. In our study, using simultaneous Electroencephalography (EEG) and Functional near-infrared spectroscopy (fNIRS) recordings from 18 subjects, we characterize global and local structure-function coupling using source-reconstructed EEG and fNIRS signals in both resting state and motor imagery tasks, as this relationship during task periods remains underexplored. Employing the mathematical framework of graph signal processing, we investigate how this relationship varies across electrical and hemodynamic networks and different brain states. Results show that fNIRS structure-function coupling resembles slower-frequency EEG coupling at rest, with variations across brain states and oscillations. Locally, the relationship is heterogeneous, with greater coupling in the sensory cortex and increased decoupling in the association cortex, following the unimodal to transmodal gradient. Discrepancies between EEG and fNIRS are noted, particularly in the frontoparietal network. Cross-band representations of neural activity revealed lower correspondence between electrical and hemodynamic activity in the transmodal cortex, irrespective of brain state while showing specificity for the somatomotor network during a motor imagery task. Overall, these findings initiate a multimodal comprehension of structure-function relationship and brain organization when using affordable functional brain imaging.
Collapse
Affiliation(s)
- Rosmary Blanco
- Computer Vision lab, Sano Center for Computational Medicine, Krakow, Poland.
| | - Maria Giulia Preti
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Cemal Koba
- Computer Vision lab, Sano Center for Computational Medicine, Krakow, Poland
| | - Dimitri Van De Ville
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alessandro Crimi
- Computer Science faculty, AGH University of Science and Technology, Krakow, Poland
| |
Collapse
|
6
|
Facca M, Del Felice A, Bertoldo A. Multiscale and multimodal signatures of structure-function coupling variability across the human neocortex. Neuroimage 2024; 302:120902. [PMID: 39490561 DOI: 10.1016/j.neuroimage.2024.120902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/01/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
The relationship between the brain's structural wiring and its dynamic activity is thought to vary regionally, implying that the mechanisms underlying structure-function coupling may differ depending on a region's position within the brain's hierarchy. To better bridge the gap between structure and function, it is crucial to identify the factors shaping this regionality, not only in terms of how static functional connectivity aligns with structure, but also regarding the time-domain variability of this interplay. Here we map structure - function coupling and its time-domain variability and relate them to the heterogeneity of the cortex. We show that these two properties split the cortical landscape into two districts anchored to the opposite ends of the brain's hierarchy. By looking at statistical relationships with layer-specific gene transcription, T1w/T2 w ratio, and synaptic density, we show that macro-scale structure-function coupling may be rooted in the brain's microstructure and meso‑scale laminar specialization. Finally, we demonstrate that a lower and more variable alignment of function and structure may bestow the emergence of unique functional dynamics.
Collapse
Affiliation(s)
| | - Alessandra Del Felice
- Padova Neuroscience Center (PNC), Padova, Italy; Department of Neuroscience, University of Padova, Padova, Italy.
| | - Alessandra Bertoldo
- Padova Neuroscience Center (PNC), Padova, Italy; Department of Information Engineering, University of Padova, Italy
| |
Collapse
|
7
|
Luppi AI, Gellersen HM, Liu ZQ, Peattie ARD, Manktelow AE, Adapa R, Owen AM, Naci L, Menon DK, Dimitriadis SI, Stamatakis EA. Systematic evaluation of fMRI data-processing pipelines for consistent functional connectomics. Nat Commun 2024; 15:4745. [PMID: 38834553 PMCID: PMC11150439 DOI: 10.1038/s41467-024-48781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/10/2024] [Indexed: 06/06/2024] Open
Abstract
Functional interactions between brain regions can be viewed as a network, enabling neuroscientists to investigate brain function through network science. Here, we systematically evaluate 768 data-processing pipelines for network reconstruction from resting-state functional MRI, evaluating the effect of brain parcellation, connectivity definition, and global signal regression. Our criteria seek pipelines that minimise motion confounds and spurious test-retest discrepancies of network topology, while being sensitive to both inter-subject differences and experimental effects of interest. We reveal vast and systematic variability across pipelines' suitability for functional connectomics. Inappropriate choice of data-processing pipeline can produce results that are not only misleading, but systematically so, with the majority of pipelines failing at least one criterion. However, a set of optimal pipelines consistently satisfy all criteria across different datasets, spanning minutes, weeks, and months. We provide a full breakdown of each pipeline's performance across criteria and datasets, to inform future best practices in functional connectomics.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- St John's College, University of Cambridge, Cambridge, UK.
- Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Helena M Gellersen
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Zhen-Qi Liu
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Alexander R D Peattie
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Anne E Manktelow
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ram Adapa
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adrian M Owen
- Department of Psychology, Western Institute for Neuroscience (WIN), Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western Institute for Neuroscience (WIN), Western University, London, ON, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Stavros I Dimitriadis
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Neuroinformatics Group, Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, UK
- Neuroscience and Mental Health Research Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, UK
- Integrative Neuroimaging Lab, Thessaloniki, Greece
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Ruffle JK, Gray RJ, Mohinta S, Pombo G, Kaul C, Hyare H, Rees G, Nachev P. Computational limits to the legibility of the imaged human brain. Neuroimage 2024; 291:120600. [PMID: 38569979 DOI: 10.1016/j.neuroimage.2024.120600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/08/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024] Open
Abstract
Our knowledge of the organisation of the human brain at the population-level is yet to translate into power to predict functional differences at the individual-level, limiting clinical applications and casting doubt on the generalisability of inferred mechanisms. It remains unknown whether the difficulty arises from the absence of individuating biological patterns within the brain, or from limited power to access them with the models and compute at our disposal. Here we comprehensively investigate the resolvability of such patterns with data and compute at unprecedented scale. Across 23 810 unique participants from UK Biobank, we systematically evaluate the predictability of 25 individual biological characteristics, from all available combinations of structural and functional neuroimaging data. Over 4526 GPU*hours of computation, we train, optimize, and evaluate out-of-sample 700 individual predictive models, including fully-connected feed-forward neural networks of demographic, psychological, serological, chronic disease, and functional connectivity characteristics, and both uni- and multi-modal 3D convolutional neural network models of macro- and micro-structural brain imaging. We find a marked discrepancy between the high predictability of sex (balanced accuracy 99.7%), age (mean absolute error 2.048 years, R2 0.859), and weight (mean absolute error 2.609Kg, R2 0.625), for which we set new state-of-the-art performance, and the surprisingly low predictability of other characteristics. Neither structural nor functional imaging predicted an individual's psychology better than the coincidence of common chronic disease (p < 0.05). Serology predicted chronic disease (p < 0.05) and was best predicted by it (p < 0.001), followed by structural neuroimaging (p < 0.05). Our findings suggest either more informative imaging or more powerful models will be needed to decipher individual level characteristics from the human brain. We make our models and code openly available.
Collapse
Affiliation(s)
- James K Ruffle
- Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Robert J Gray
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Samia Mohinta
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Guilherme Pombo
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Chaitanya Kaul
- School of Computing Science, University of Glasgow, Glasgow, United Kingdom
| | - Harpreet Hyare
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Geraint Rees
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Parashkev Nachev
- Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
9
|
Chang X, Zhang H, Chen S. Neural circuits regulating visceral pain. Commun Biol 2024; 7:457. [PMID: 38615103 PMCID: PMC11016080 DOI: 10.1038/s42003-024-06148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/05/2024] [Indexed: 04/15/2024] Open
Abstract
Visceral hypersensitivity, a common clinical manifestation of irritable bowel syndrome, may contribute to the development of chronic visceral pain, which is a major challenge for both patients and health providers. Neural circuits in the brain encode, store, and transfer pain information across brain regions. In this review, we focus on the anterior cingulate cortex and paraventricular nucleus of the hypothalamus to highlight the progress in identifying the neural circuits involved in visceral pain. We also discuss several neural circuit mechanisms and emphasize the importance of cross-species, multiangle approaches and the identification of specific neurons in determining the neural circuits that control visceral pain.
Collapse
Affiliation(s)
- Xiaoli Chang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Haiyan Zhang
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shaozong Chen
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
10
|
Fan L, Li Y, Zhao X, Huang ZG, Liu T, Wang J. Dynamic nonreversibility view of intrinsic brain organization and brain dynamic analysis of repetitive transcranial magnitude stimulation. Cereb Cortex 2024; 34:bhae098. [PMID: 38494890 DOI: 10.1093/cercor/bhae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Intrinsic neural activities are characterized as endless spontaneous fluctuation over multiple time scales. However, how the intrinsic brain organization changes over time under local perturbation remains an open question. By means of statistical physics, we proposed an approach to capture whole-brain dynamics based on estimating time-varying nonreversibility and k-means clustering of dynamic varying nonreversibility patterns. We first used synthetic fMRI to investigate the effects of window parameters on the temporal variability of varying nonreversibility. Second, using real test-retest fMRI data, we examined the reproducibility, reliability, biological, and physiological correlation of the varying nonreversibility substates. Finally, using repetitive transcranial magnetic stimulation-fMRI data, we investigated the modulation effects of repetitive transcranial magnetic stimulation on varying nonreversibility substate dynamics. The results show that: (i) as window length increased, the varying nonreversibility variance decreased, while the sliding step almost did not alter it; (ii) the global high varying nonreversibility states and low varying nonreversibility states were reproducible across multiple datasets and different window lengths; and (iii) there were increased low varying nonreversibility states and decreased high varying nonreversibility states when the left frontal lobe was stimulated, but not the occipital lobe. Taken together, these results provide a thermodynamic equilibrium perspective of intrinsic brain organization and reorganization under local perturbation.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Xingjian Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
- The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi 710049, China
| |
Collapse
|
11
|
Caznok Silveira AC, Antunes ASLM, Athié MCP, da Silva BF, Ribeiro dos Santos JV, Canateli C, Fontoura MA, Pinto A, Pimentel-Silva LR, Avansini SH, de Carvalho M. Between neurons and networks: investigating mesoscale brain connectivity in neurological and psychiatric disorders. Front Neurosci 2024; 18:1340345. [PMID: 38445254 PMCID: PMC10912403 DOI: 10.3389/fnins.2024.1340345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
The study of brain connectivity has been a cornerstone in understanding the complexities of neurological and psychiatric disorders. It has provided invaluable insights into the functional architecture of the brain and how it is perturbed in disorders. However, a persistent challenge has been achieving the proper spatial resolution, and developing computational algorithms to address biological questions at the multi-cellular level, a scale often referred to as the mesoscale. Historically, neuroimaging studies of brain connectivity have predominantly focused on the macroscale, providing insights into inter-regional brain connections but often falling short of resolving the intricacies of neural circuitry at the cellular or mesoscale level. This limitation has hindered our ability to fully comprehend the underlying mechanisms of neurological and psychiatric disorders and to develop targeted interventions. In light of this issue, our review manuscript seeks to bridge this critical gap by delving into the domain of mesoscale neuroimaging. We aim to provide a comprehensive overview of conditions affected by aberrant neural connections, image acquisition techniques, feature extraction, and data analysis methods that are specifically tailored to the mesoscale. We further delineate the potential of brain connectivity research to elucidate complex biological questions, with a particular focus on schizophrenia and epilepsy. This review encompasses topics such as dendritic spine quantification, single neuron morphology, and brain region connectivity. We aim to showcase the applicability and significance of mesoscale neuroimaging techniques in the field of neuroscience, highlighting their potential for gaining insights into the complexities of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ana Clara Caznok Silveira
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- School of Electrical and Computer Engineering, University of Campinas, Campinas, Brazil
| | | | - Maria Carolina Pedro Athié
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Bárbara Filomena da Silva
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Camila Canateli
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Marina Alves Fontoura
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Allan Pinto
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Simoni Helena Avansini
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Murilo de Carvalho
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| |
Collapse
|
12
|
Tóbiás R, Diouf ML, Cozijn FMJ, Ubachs W, Császár AG. All paths lead to hubs in the spectroscopic networks of water isotopologues H 216O and H 218O. Commun Chem 2024; 7:34. [PMID: 38365971 PMCID: PMC10873357 DOI: 10.1038/s42004-024-01103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024] Open
Abstract
Network theory has fundamentally transformed our comprehension of complex systems, catalyzing significant advances across various domains of science and technology. In spectroscopic networks, hubs are the quantum states involved in the largest number of transitions. Here, utilizing network paths probed via precision metrology, absolute energies have been deduced, with at least 10-digit accuracy, for almost 200 hubs in the experimental spectroscopic networks of H216O and H218O. These hubs, lying on the ground vibrational states of both species and the bending fundamental of H216O, are involved in tens of thousands of observed transitions. Relying on the same hubs and other states, benchmark-quality line lists have been assembled, which supersede and improve, by three orders of magnitude, the accuracy of the massive amount of data reported in hundreds of papers dealing with Doppler-limited spectroscopy. Due to the omnipresence of water, these ultraprecise line lists could be applied to calibrate high-resolution spectra and serve ongoing and upcoming space missions.
Collapse
Affiliation(s)
- Roland Tóbiás
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University and HUN-REN-ELTE Complex Chemical Systems Research Group, H-1117 Budapest, Pázmány Péter sétány 1/A, Hungary
| | - Meissa L Diouf
- Department of Physics and Astronomy, LaserLaB, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Frank M J Cozijn
- Department of Physics and Astronomy, LaserLaB, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Wim Ubachs
- Department of Physics and Astronomy, LaserLaB, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| | - Attila G Császár
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University and HUN-REN-ELTE Complex Chemical Systems Research Group, H-1117 Budapest, Pázmány Péter sétány 1/A, Hungary.
| |
Collapse
|
13
|
Bazinet V, Hansen JY, Misic B. Towards a biologically annotated brain connectome. Nat Rev Neurosci 2023; 24:747-760. [PMID: 37848663 DOI: 10.1038/s41583-023-00752-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
The brain is a network of interleaved neural circuits. In modern connectomics, brain connectivity is typically encoded as a network of nodes and edges, abstracting away the rich biological detail of local neuronal populations. Yet biological annotations for network nodes - such as gene expression, cytoarchitecture, neurotransmitter receptors or intrinsic dynamics - can be readily measured and overlaid on network models. Here we review how connectomes can be represented and analysed as annotated networks. Annotated connectomes allow us to reconceptualize architectural features of networks and to relate the connection patterns of brain regions to their underlying biology. Emerging work demonstrates that annotated connectomes help to make more veridical models of brain network formation, neural dynamics and disease propagation. Finally, annotations can be used to infer entirely new inter-regional relationships and to construct new types of network that complement existing connectome representations. In summary, biologically annotated connectomes offer a compelling way to study neural wiring in concert with local biological features.
Collapse
Affiliation(s)
- Vincent Bazinet
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Justine Y Hansen
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
14
|
Hansen JY, Shafiei G, Voigt K, Liang EX, Cox SML, Leyton M, Jamadar SD, Misic B. Integrating multimodal and multiscale connectivity blueprints of the human cerebral cortex in health and disease. PLoS Biol 2023; 21:e3002314. [PMID: 37747886 PMCID: PMC10553842 DOI: 10.1371/journal.pbio.3002314] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/05/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023] Open
Abstract
The brain is composed of disparate neural populations that communicate and interact with one another. Although fiber bundles, similarities in molecular architecture, and synchronized neural activity all reflect how brain regions potentially interact with one another, a comprehensive study of how all these interregional relationships jointly reflect brain structure and function remains missing. Here, we systematically integrate 7 multimodal, multiscale types of interregional similarity ("connectivity modes") derived from gene expression, neurotransmitter receptor density, cellular morphology, glucose metabolism, haemodynamic activity, and electrophysiology in humans. We first show that for all connectivity modes, feature similarity decreases with distance and increases when regions are structurally connected. Next, we show that connectivity modes exhibit unique and diverse connection patterns, hub profiles, spatial gradients, and modular organization. Throughout, we observe a consistent primacy of molecular connectivity modes-namely correlated gene expression and receptor similarity-that map onto multiple phenomena, including the rich club and patterns of abnormal cortical thickness across 13 neurological, psychiatric, and neurodevelopmental disorders. Finally, to construct a single multimodal wiring map of the human cortex, we fuse all 7 connectivity modes and show that the fused network maps onto major organizational features of the cortex including structural connectivity, intrinsic functional networks, and cytoarchitectonic classes. Altogether, this work contributes to the integrative study of interregional relationships in the human cerebral cortex.
Collapse
Affiliation(s)
- Justine Y. Hansen
- Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katharina Voigt
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Emma X. Liang
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | | | - Marco Leyton
- Montréal Neurological Institute, McGill University, Montréal, Canada
- Department of Psychiatry, McGill University, Montréal, Canada
| | - Sharna D. Jamadar
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, Canada
| |
Collapse
|
15
|
Liu ZQ, Shafiei G, Baillet S, Misic B. Spatially heterogeneous structure-function coupling in haemodynamic and electromagnetic brain networks. Neuroimage 2023; 278:120276. [PMID: 37451374 DOI: 10.1016/j.neuroimage.2023.120276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
The relationship between structural and functional connectivity in the brain is a key question in connectomics. Here we quantify patterns of structure-function coupling across the neocortex, by comparing structural connectivity estimated using diffusion MRI with functional connectivity estimated using both neurophysiological (MEG-based) and haemodynamic (fMRI-based) recordings. We find that structure-function coupling is heterogeneous across brain regions and frequency bands. The link between structural and functional connectivity is generally stronger in multiple MEG frequency bands compared to resting state fMRI. Structure-function coupling is greater in slower and intermediate frequency bands compared to faster frequency bands. We also find that structure-function coupling systematically follows the archetypal sensorimotor-association hierarchy, as well as patterns of laminar differentiation, peaking in granular layer IV. Finally, structure-function coupling is better explained using structure-informed inter-regional communication metrics than using structural connectivity alone. Collectively, these results place neurophysiological and haemodynamic structure-function relationships in a common frame of reference and provide a starting point for a multi-modal understanding of structure-function coupling in the brain.
Collapse
Affiliation(s)
- Zhen-Qi Liu
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Golia Shafiei
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
| |
Collapse
|