1
|
Wu X, Tian X, Zhang W, Peng X, Zhou S, Buenconsejo PJS, Li Y, Xiao S, Tao J, Zhang M, Yuan H. Solution-Processable MOF-on-MOF System Constructed via Template-Assisted Growth for Ultratrace H 2S Detection. Angew Chem Int Ed Engl 2024; 63:e202410411. [PMID: 39187431 DOI: 10.1002/anie.202410411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
Conductive metal-organic frameworks (c-MOFs) hold promise for highly sensitive sensing systems due to their conductivity and porosity. However, the fabrication of c-MOF thin films with controllable morphology, thickness, and preferential orientation remains a formidable yet ubiquitous challenge. Herein, we propose an innovative template-assisted strategy for constructing MOF-on-MOF (Ni3(HITP)2/NUS-8 (HITP: 2,3,6,7,10,11-hexamino-tri (p-phenylene))) systems with good electrical conductivity, porosity, and solution processability. Leveraging the 2D nature and solution processability of NUS-8, we achieve the controllable self-assembly of Ni3(HITP)2 on NUS-8 nanosheets, producing solution-processable Ni3(HITP)2/NUS-8 nanosheets with a film conductivity of 1.55×10-3 S ⋅ cm-1 at room temperature. Notably, the excellent solution processability facilitates the fabrication of large-area thin films and printing of intricate patterns with good uniformity, and the Ni3(HITP)2/NUS-8-based system can monitor finger bending. Gas sensors based on Ni3(HITP)2/NUS-8 exhibit high sensitivity (LOD~6 ppb) and selectivity towards ultratrace H2S at room temperature, attributed to the coupling between Ni3(HITP)2 and NUS-8 and the redox reaction with H2S. This approach not only unlocks the potential of stacking different MOF layers in a sequence to generate functionalities that cannot be achieved by a single MOF, but also provides novel avenues for the scalable integration of MOFs in miniaturized devices with salient sensing performance.
Collapse
Affiliation(s)
- Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xin Tian
- School of Information Science and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Wanglin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Siyuan Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Pio John S Buenconsejo
- Facility for Analysis Characterization Testing Simulation (FACTS), Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yi Li
- State Key Laboratory of Power Grid Environmental Protection (School of Electrical Engineering and Automation), Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Song Xiao
- State Key Laboratory of Power Grid Environmental Protection (School of Electrical Engineering and Automation), Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Jifang Tao
- School of Information Science and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
2
|
Zou Z, Du Z, Dai L, Liu D, Du W. A Universal Approach for High-Yield Synthesis of Single-Crystalline Ordered Macro-Microporous Metal-Organic Frameworks. J Am Chem Soc 2024; 146:31186-31197. [PMID: 39496111 DOI: 10.1021/jacs.4c11243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Despite the excellent properties of single-crystalline ordered macro-microporous MOFs (SOM-MOFs) compared to conventional MOFs, their further development has been hindered by the lack of versatile and high-yielding preparation protocols. This study introduces an innovative universal fabrication method that can easily solve the two major challenges of precursor stabilization and crystallization modulation, enabling the efficient synthesis of various SOM-MOFs with high yields. Notably, our approach has successfully yielded SOM-MIL-88A, a novel MOF showcasing exceptional stability in both water and acidic solutions, a remarkable achievement unprecedented in prior SOM-MOF research. SOM-MIL-88A has demonstrated exponentially improved performance over conventional MIL-88A in adsorption, catalysis, immobilized enzymes, and composite biosensing. Furthermore, our versatile protocol has been successfully applied to synthesize SOM-HKUST-1 and SOM-ZIF-8, resulting in significantly improved yields (increase by about 10-fold and 2-fold, respectively, compared to the previously reported protocol). This groundbreaking achievement marks a pivotal advancement in the preparation of diverse SOM-MOFs with tailored properties, presenting exciting prospects for future research on MOFs.
Collapse
Affiliation(s)
- Zhiqiang Zou
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhuoyang Du
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Lingmei Dai
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dehua Liu
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Wei Du
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Hu G, Zhao Y, An J, Chen W, An S, Qi B. Construction of Spatially Separated Acid-Base Sites inside and outside Metal-Organic Framework Nanocrystals for Efficient Cascade Reactions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60430-60439. [PMID: 39446971 DOI: 10.1021/acsami.4c10806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The development of acid-base catalysts for one-pot cascade reactions remains challenging because of the inherent incompatibility of inorganic acid and base active sites. Here, we introduced an innovative approach that employs spatial separation to construct separated inorganic acid-base sites, achieving sequence control of acid-base cascade reactions. The as-prepared bifunctional catalyst applied metal-organic framework (MOF) nanocrystals as spatial separators, with the inside microcavities loaded with 1 nm inorganic polyoxometalate acid H3PMo12O40 clusters (NENU-5) and the outside crystal surface covered with basic CuCo layered double hydroxide (CuCo-LDH) nanosheets. By applying the resultant NENU-5@CuCo-LDH catalyst to cascade deacetalization-Knoevenagel condensation, over 99% of the benzaldehyde dimethyl acetal (BDMA) was transformed into the final benzylidene cyanoacetate (BCA) with a 99% yield at 80 °C and solvent-free conditions. Compared to the random NENU-5+CuCo-LDH, the NENU-5@CuCo-LDH with spatially separated acid-base sites indicated a higher reaction rate due to the designed reaction sequence and the shorter mass transfer pathway. Moreover, this hierarchical structure showed inherent shape selectivity and extraordinary stability. This study introduces spatial separation to address the incompatibility issue between inorganic acid and base active sites, offering novel perspectives for acid-base systems.
Collapse
Affiliation(s)
- Guicong Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yongwei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiamin An
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wei Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang 324000, P. R. China
| | - Sai An
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang 324000, P. R. China
| | - Bo Qi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
4
|
Xu Z, Deng K, Zhang Y, Zhu B, Yang J, Xue M, Jin H, He G, Zheng G, Zheng J, Wu D. Reinforced Magnetic-Responsive Electro-Ionic Artificial Muscles by 3D Laser-Induced Graphene Nano-Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407106. [PMID: 39380392 DOI: 10.1002/adma.202407106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/12/2024] [Indexed: 10/10/2024]
Abstract
Efficient ion transport and enriched responsive modals via modulating electrochemical properties of conductivity and capacitance are essential for soft electro-ionic actuators. However, cost-effective and straightforward approaches to achieve expedited fabrication of active electrode materials capable of multimodal-responsiveness remain limited. Herein, this work reports the one-step ultrafast laser direct patterning method, to readily synthesize electro- and magneto-active electrode material, derived from the unique cobalt-phosphorus co-doped core-shell heterostructures within 3D graphene frameworks, for fulfilling the dual-mode responsive electro-ionic actuators. The designed nanofiber-structured heterointerfaces across electrodes and electrolytes further promote highly efficient electron/ion transfer. The developed soft actuator exhibits superior actuation performance of peak-to-peak displacement to 13.08 mm under an ultra-low ±0.5 V, with doubled direct current deflection under 200 mT at 1 V, an ultrafast response of 1.38 s and long-term stability (>90% retention for ≈106 000 cycles), even detectable bending to ≈280 µm under exceptional ±10 mV. The promising demonstration of promoting differentiation and proliferation of stem cells under mechanical strain and electrical stimuli, sheds more light as well on the possibility of facilitating biomedical soft robotics with ultrahigh actuation performance.
Collapse
Affiliation(s)
- Zhenjin Xu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Keqi Deng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yang Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Bin Zhu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Jianhui Yang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Mingcheng Xue
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Hang Jin
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Gonghan He
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Gaofeng Zheng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Jianyi Zheng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Dezhi Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
5
|
Tian K, Fan X, Cheng S, Zhu Q, Zheng S, Sun Q, Zhao L, Li Y, Zhang M, Xu H, Qu C, Wang D, Wang C, Liu C, Qi D. Graphene Microflower by Photothermal Marangoni-Induced Fluid Instability for Omnidirectional Broadband Photothermal Conversion. ACS NANO 2024; 18:29760-29770. [PMID: 39425741 DOI: 10.1021/acsnano.4c09360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
2-D carbon-based materials are well-known for their broadband absorption properties for efficient solar energy conversion. However, their high reflectivity poses a challenge for achieving efficient omnidirectional light absorption. Inspired by the multilevel structures of the flower, a Graphene Microflower (GM) material with gradient refractive index surface was fabricated on polymer substrates using the UV-intense laser-induced phase explosion technique under the synergistic design of the photothermal Marangoni effect and the fluid instability principle. The refractive index gradient reduces light reflection and absorbs at least 96% of light at incident angles of 0-60° across the entire solar wavelength range (200-2500 nm). Over 90% absorption even at 75° angle of incidence. The light absorption is enhanced by the multiple interferometric phase cancelation and localized surface plasmon resonance, resulting in a steady-state temperature 60 °C higher than ambient conditions under one solar irradiation. The max rate of temperature rise can reach up to 62 °C s-1. The device is then integrated at the hot end of the temperature difference generator at high altitude to ensure continuous and efficient power generation, producing a steady-state power of 196 mW.
Collapse
Affiliation(s)
- Kun Tian
- Institute of Petro Chemistry, Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Xupeng Fan
- Institute of Petro Chemistry, Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Si Cheng
- Institute of Petro Chemistry, Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Qing Zhu
- Institute of Petro Chemistry, Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Shuai Zheng
- Institute of Petro Chemistry, Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Qi Sun
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
| | - Liwei Zhao
- Institute of Petro Chemistry, Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Ye Li
- Institute of Petro Chemistry, Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Miaomiao Zhang
- Institute of Petro Chemistry, Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Huikang Xu
- Institute of Petro Chemistry, Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Chunyan Qu
- Institute of Petro Chemistry, Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Dezhi Wang
- Institute of Petro Chemistry, Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Chengyang Wang
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150000, China
| | - Changwei Liu
- Institute of Petro Chemistry, Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Dianpeng Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150000, China
| |
Collapse
|
6
|
Kong L, Yu C, Chen Y, Zhu Z, Jiang L. Rational MOF Membrane Design for Gas Detection in Complex Environments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407021. [PMID: 39444085 DOI: 10.1002/smll.202407021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Metal-organic frameworks (MOFs) hold significant promise in the realm of gas sensing. However, current understanding of their sensing mechanisms remains limited. Furthermore, the large-scale fabrication of MOFs is hampered by their inadequate mechanical properties. These two challenges contribute to the sluggish development of MOF-based gas-sensing materials. In this review, the selection of metal ions and organic ligands for designing MOFs is first presented, deepening the understanding of the interactions between different metal ions/organic ligands and target gases. Subsequently, the typical interfacial synthesis strategies (gas-solid, gas-liquid, solid-liquid interfaces) are provided, highlighting the potential for constructing MOF membranes on superhydrophobic and/or superhydrophilic substrates. Then, a multi-scale structure design strategies is proposed, including multi-dimensional membrane design and heterogeneous membrane design, to improve sensing performance through enhanced interfacial mass transfer and specific gas sieving. This strategy is anticipated to augment the task-specific capabilities of MOF-based materials in complex environments. Finally, several key future research directions are outlined with the aim not only to further investigate the underlying sensing principles of MOF membranes but also to achieve efficient detection of target gases amidst interfering gases and elevated moisture levels.
Collapse
Affiliation(s)
- Lei Kong
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| | - Chengyue Yu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
- College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong, 271018, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongpeng Zhu
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| | - Lei Jiang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| |
Collapse
|
7
|
Liu M, Wang L, Yu G. Recent Research Progress of Porous Graphene and Applications in Molecular Sieve, Sensor, and Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401767. [PMID: 38847563 DOI: 10.1002/smll.202401767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/23/2024] [Indexed: 10/19/2024]
Abstract
Porous graphene, including 2D and 3D porous graphene, is widely researched recently. One of the most attractive features is the proper utilization of graphene defects, which combine the advantages of both graphene and porous materials, greatly enriching the applications of porous graphene in biology, chemistry, electronics, and other fields. In this review, the defects of graphene are first discussed to provide a comprehensive understanding of porous graphene. Then, the latest advancements in the preparation of 2D and 3D porous graphene are presented. The pros and cons of these preparation methods are discussed in detail, providing a direction for the fabrication of porous graphene. Moreover, various superior properties of porous graphene are described, laying the foundation for their promising applications. Owing to its abundant morphology, wide distribution of pore size, and remarkable properties benefited from porous structure, porous graphene can not only promote molecular diffusion and electron transfer but also expose more active sites. Consequently, a serious of applications containing gas sieving, liquid separation, sensors, and supercapacitors, are presented. Finally, the challenges confronted during preparation and characterization of porous graphene are discussed, offering guidance for the future development of porous graphene in fabrication, characterization, properties, and applications.
Collapse
Affiliation(s)
- Mengya Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Saha R, Gómez García CJ. Extrinsically conducting MOFs: guest-promoted enhancement of electrical conductivity, thin film fabrication and applications. Chem Soc Rev 2024; 53:9490-9559. [PMID: 39171560 DOI: 10.1039/d4cs00141a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Conductive metal-organic frameworks are of current interest in chemical science because of their applications in chemiresistive sensing, electrochemical energy storage, electrocatalysis, etc. Different strategies have been employed to design conductive frameworks. In this review, we discuss the influence of different types of guest species incorporated within the pores or channels of metal-organic frameworks (MOFs) and porous coordination polymers (PCPs) to generate charge transfer pathways and modulate their electrical conductivity. We have classified dopants or guest species into three different categories: (i) metal-based dopants, (ii) molecule and molecular entities and (iii) organic conducting polymers. Different types of metal ions, metal nano-clusters and metal oxides have been used to enhance electrical conductivity in MOFs. Metal ions and metal nano-clusters depend on the hopping process for efficient charge transfer whereas metal-oxides show charge transport through the metal-oxygen pathway. Several types of molecules or molecular entities ranging from neutral TCNQ, I2, and fullerene to ionic methyl viologen, organometallic like nickelcarborane, etc. have been used. In these cases, the charge transfer process varies with the guest species. When organic conducting polymers are the guest, the charge transport occurs through the polymer chains, mostly based on extended π-conjugation. Here we provide a comprehensive and critical review of these strategies to add electrical conductivity to the, in most cases, otherwise insulating MOFs and PCPs. We point out the guest encapsulation process, the geometry and structure of the resulting host-guest complex, the host-guest interactions and the charge transport mechanism for each case. We also present the methods for thin film fabrication of conducting MOFs (both, liquid-phase and gas-phase based methods) and their most relevant applications like electrocatalysis, sensing, charge storage, photoconductivity, photocatalysis,… We end this review with the main obstacles and challenges to be faced and the appealing perspectives of these 21st century materials.
Collapse
Affiliation(s)
- Rajat Saha
- Departamento de Química Inorgánica, Universidad de Valencia, Dr Moliner 50, 46100 Burjasot (Valencia), Spain.
| | - Carlos J Gómez García
- Departamento de Química Inorgánica, Universidad de Valencia, Dr Moliner 50, 46100 Burjasot (Valencia), Spain.
| |
Collapse
|
9
|
Yan X, Chen J, Su X, Zhang J, Wang C, Zhang H, Liu Y, Wang L, Xu G, Chen L. Redox Synergy: Enhancing Gas Sensing Stability in 2D Conjugated Metal-Organic Frameworks via Balancing Metal Node and Ligand Reactivity. Angew Chem Int Ed Engl 2024; 63:e202408189. [PMID: 38774981 DOI: 10.1002/anie.202408189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Indexed: 07/05/2024]
Abstract
Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have emerged as promising candidates in gas sensing, owing to their tunable porous structure and conductivity. Nevertheless, the reported gas sensing mechanisms heavily relied on electron transfer between metal nodes and gas molecules. Normally, the strong interaction between the metal sites and target gas molecule would result poor recovery and thus bad recycling property. Herein, we propose a redox synergy strategy to overcome this issue by balancing the reactivity of metal sites and ligands. A 2D c-MOF, Zn3(HHTQ)2, was prepared for nitrogen dioxide (NO2) sensing, which was constructed from active ligands (hexahydroxyltricycloquinazoline, HHTQ) and inactive transition-metal ions (Zn2+). Substantial characterizations and theoretical calculations demonstrated that by utilizing only the redox interactions between ligands and NO2, not only high sensitivity and selectivity, but also excellent cycling stability in NO2 sensing could be achieved. In contrast, control experiments employing isostructural 2D c-MOFs with Cu/Ni metal nodes exhibited irreversible NO2 sensing. Our current work provides a new design strategy for gas sensing materials, emphasizing harnessing the redox activity of only ligands to enhance the stability of MOF sensing materials.
Collapse
Affiliation(s)
- Xiaoli Yan
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jie Chen
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350108, P. R. China
| | - Xi Su
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jingwen Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Chuanzhe Wang
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350108, P. R. China
| | - Hanwen Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yi Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350108, P. R. China
| | - Long Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
10
|
Sun J, Liu C, Zhang Q, Zhang A, Hou L, Yuan C. Self-sacrifice template construction of a conductive Cu 3(HHTP) 2 nanowhisker arrays@copper foam toward robust lithium storage. Chem Commun (Camb) 2024; 60:8423-8426. [PMID: 39028305 DOI: 10.1039/d4cc02052a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Nanowhisker-like Cu3(HHTP)2 composed of neat arrays grown on a copper foam is rationally designed and prepared using Cu(OH)2 nanowire arrays as a self-sacrifice template. Benefiting from the good conductivity of Cu3(HHTP)2 and an ordered array structure, the optimized Cu3(HHTP)2@CF-3 electrode exhibits high area capacity, good rate performance and cyclic stability.
Collapse
Affiliation(s)
- Jinfeng Sun
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Chanjuan Liu
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Qian Zhang
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Anning Zhang
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Linrui Hou
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Changzhou Yuan
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China.
| |
Collapse
|
11
|
Zhu J, Xiao Y, Zhang X, Tong Y, Li J, Meng K, Zhang Y, Li J, Xing C, Zhang S, Bao B, Yang H, Gao M, Pan T, Liu S, Lorestani F, Cheng H, Lin Y. Direct Laser Processing and Functionalizing PI/PDMS Composites for an On-Demand, Programmable, Recyclable Device Platform. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400236. [PMID: 38563243 PMCID: PMC11361840 DOI: 10.1002/adma.202400236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Skin-interfaced high-sensitive biosensing systems to detect electrophysiological and biochemical signals have shown great potential in personal health monitoring and disease management. However, the integration of 3D porous nanostructures for improved sensitivity and various functional composites for signal transduction/processing/transmission often relies on different materials and complex fabrication processes, leading to weak interfaces prone to failure upon fatigue or mechanical deformations. The integrated system also needs additional adhesive to strongly conform to the human skin, which can also cause irritation, alignment issues, and motion artifacts. This work introduces a skin-attachable, reprogrammable, multifunctional, adhesive device patch fabricated by simple and low-cost laser scribing of an adhesive composite with polyimide powders and amine-based ethoxylated polyethylenimine dispersed in the silicone elastomer. The obtained laser-induced graphene in the adhesive composite can be further selectively functionalized with conductive nanomaterials or enzymes for enhanced electrical conductivity or selective sensing of various sweat biomarkers. The possible combination of the sensors for real-time biofluid analysis and electrophysiological signal monitoring with RF energy harvesting and communication promises a standalone stretchable adhesive device platform based on the same material system and fabrication process.
Collapse
Affiliation(s)
- Jia Zhu
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronics Science and Technology of China, Quzhou 324000, China
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yang Xiao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xianzhe Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yao Tong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Jiaying Li
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ke Meng
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yingying Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Jiuqiang Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Chenghao Xing
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Senhao Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Benkun Bao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Hongbo Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Min Gao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Taisong Pan
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shangbin Liu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Farnaz Lorestani
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yuan Lin
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronics Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
12
|
Ou Y, Wang B, Xu N, Song Q, Liu T, Xu H, Wang F, Li S, Wang Y. Tandem Electric-Fields Prolong Energetic Hot Electrons Lifetime for Ultra-Fast and Stable NO 2 Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403215. [PMID: 38706406 DOI: 10.1002/adma.202403215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Prolonging energetic hot electrons lifetimes and surface activity in the reactive site can overcome the slow kinetics and unfavorable thermodynamics of photo-activated gas sensors. However, bulk and surface recombination limit the simultaneous optimization of both kinetics and thermodynamics. Here tandem electric fields are deployed at (111)/(100)Au-CeO2 to ensure a sufficient driving force for carrier transfer and elucidate the mechanism of the relationship between charge transport and gas-sensing performance. The asymmetric structure of the (111)/(100)CeO2 facet junction provides interior electric fields, which facilitates electron transfer from the (100)face to the (111)face. This separation of reduction and oxidation reaction sites across different crystal faces helps inhibit surface recombination. The increased electron concentration at the (111)face intensifies the interface electric field, which promotes electron transfer to the Au site. The local electric field generated by the surface plasmon resonance effect promotes the generation of high-energy energy hot-electrons, which maintains charge concentration in the interface field by injecting into (111)/(100)CeO2, thereby provide thermodynamic contributions and inhibit bulk recombination. The tandem electric fields enable the (111)/(100)Au-CeO2 to rapidly detect 5 ppm of NO2 at room temperature with stability maintained within 20 s.
Collapse
Affiliation(s)
- Yucheng Ou
- Science and Technology on Advanced Ceramic Fiber and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Bing Wang
- Science and Technology on Advanced Ceramic Fiber and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Nana Xu
- Science and Technology on Advanced Ceramic Fiber and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Quzhi Song
- Science and Technology on Advanced Ceramic Fiber and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Tao Liu
- Science and Technology on Advanced Ceramic Fiber and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Hui Xu
- Science and Technology on Advanced Ceramic Fiber and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Fuwen Wang
- Science and Technology on Advanced Ceramic Fiber and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Siwei Li
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
| | - Yingde Wang
- Science and Technology on Advanced Ceramic Fiber and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| |
Collapse
|
13
|
Xu R, Sun B, Ji W, Sun J, Li P, Ren Z, Jing L. Construction of a CoNiHHTP MOF/PHI Z-Scheme Heterojunction for ppb Level NO 2 Photoelectric Sensing with 405 nm Irradiation at RT. ACS Sens 2024; 9:3187-3197. [PMID: 38809143 DOI: 10.1021/acssensors.4c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Ultrasensitive photoelectric detection of nitrogen dioxide (NO2) with PHI under visible light irradiation at room temperature (RT) remains an ongoing challenge due to the low charge separation and scarce adsorption sites. In this work, a dimensionally matched ultrathin CoNiHHTP MOF/PHI Z-scheme heterojunction is successfully constructed by taking advantage of the π-π interactions existing between the CoNiHHTP MOF and PHI. The amount-optimized heterojunction possesses a record detection limit of 1 ppb (response = 15.6%) for NO2 under 405 nm irradiation at RT, with reduced responsive (3.6 min) and recovery (2.7 min) times, good selectivity and reversibility, and long-time stability (150 days) compared with PHI, even superior to others reported at RT. Based on the time-resolved photoluminescence spectra, in situ X-ray photoelectron spectra, and diffuse reflectance infrared Fourier transform spectroscopy results, the resulting sensing performance is attributed to the favorable Z-scheme charge transfer and separation. Moreover, the Ni nodes favorably present in adjacent metal sites between the lamellae contribute to charge transfer and redistribution, whereas Co nodes could act as selective centers for promoted adsorption of NO2. Interestingly, it is confirmed that the CoNiHHTP MOF/PHI heterojunction could effectively reduce the influence of O2 in the gas-sensitive reaction due to their unique bimetallic (Co and Ni) nodes, which is also favorable for the improved sensing performances for NO2. This work provides a feasible strategy to develop promising PHI-based optoelectronic gas sensors at RT.
Collapse
Affiliation(s)
- Rongping Xu
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China
| | - Baihe Sun
- School of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, P. R. China
| | - Wenting Ji
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China
| | - Jianhui Sun
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China
- College of Physical Science and Technology, Heilongjiang University, Harbin 150080, P. R. China
| | - Peng Li
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China
- College of Physical Science and Technology, Heilongjiang University, Harbin 150080, P. R. China
| | - Zhiyu Ren
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China
| | - Liqiang Jing
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China
| |
Collapse
|
14
|
Li Y, Gu Y, Pang Y, Zhao Q. Laser induced graphene goes stretchable for multimodal sensing. Sci Bull (Beijing) 2024; 69:1601-1603. [PMID: 38637225 DOI: 10.1016/j.scib.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Affiliation(s)
- Yang Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China.
| | - Yuzhe Gu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Yuncong Pang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China.
| |
Collapse
|
15
|
Wang Z, Liu M, Shi S, Zhou X, Wu C, Wu K. Ti 3C 2T x/laser-induced graphene-based micro-droplet electrochemical sensing platform for rapid and sensitive detection of benomyl. Anal Chim Acta 2024; 1304:342526. [PMID: 38637046 DOI: 10.1016/j.aca.2024.342526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024]
Abstract
The design and fabrication of high-performance electrode devices are highly important for the practical application of electrochemical sensors. In this study, flexible three-dimensional porous graphene electrode devices were first facilely fabricated using common laser ablation technique at room temperature. After then, hydrophilic two-dimensional MXene (Ti3C2Tx) nanosheet was decorated on the surface of the laser-induced graphene (LIG), resulting in disposable Ti3C2Tx/LIG electrode devices. After introducing Ti3C2Tx nanosheet, the electrochemical active area, electron transfer ability of LIG electrode device and its adsorption efficiency toward organic pesticide benomyl was significantly boosted. As a result, the fabricated Ti3C2Tx/LIG electrode device exhibited significantly enhanced electrocatalytic activity toward benomyl oxidation. Based on this, a novel and ultra-sensitive electrochemical platform for micro-droplet detection of benomyl was achieved in the range of 10 nM-6000 nM with detection sensitivity of 169.9 μA μM-1 cm-2 and detection limit of 5.8 nM. Considering the low-cost Ti3C2Tx/LIG electrode devices are rarely used for electrochemical analysis, we believed this research work will contribute to exploring the broader application of MXene/LIG electrode devices in the field of electrochemical sensing.
Collapse
Affiliation(s)
- Zhaohao Wang
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Mei Liu
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Shenchao Shi
- Department of Pancreatic Surgery, Renmin Hospital, Wuhan University, Wuhan, 430060, China.
| | - Xin Zhou
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Can Wu
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Kangbing Wu
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
16
|
Chen EX, He L, Qiu M, Zhang Y, Sun Y, Li WH, Xiao JZ, Chen J, Xu G, Lin Q. Regulating electron transfer and orbital interaction within metalloporphyrin-MOFs for highly sensitive NO 2 sensing. Chem Sci 2024; 15:6833-6841. [PMID: 38725503 PMCID: PMC11077542 DOI: 10.1039/d3sc06909e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/19/2024] [Indexed: 05/12/2024] Open
Abstract
The understanding of electron transfer pathways and orbital interactions between analytes and adsorption sites in gas-sensitive studies, especially at the atomic level, is currently limited. Herein, we have designed eight isoreticular catechol-metalloporphyrin scaffolds, FeTCP-M and InTCP-M (TCP = 5,10,15,20-tetrakis-catechol-porphyrin, M = Fe, Co, Ni and Zn) with adjustable charge transfer schemes in the coordination microenvironment and precise tuning of orbital interactions between analytes and adsorption sites, which can be used as models for exploring the influence of these factors on gas sensing. Our experimental findings indicate that the sensitivity and selectivity can be modulated using the type of metals in the metal-catechol chains (which regulate the electron transfer routes) and the metalloporphyrin rings (which fine-tune the orbital interactions between analytes and adsorption sites). Among the isostructures, InTCP-Co demonstrates the highest response and selectivity to NO2 under visible light irradiation, which could be attributed to the more favorable transfer pathway of charge carriers in the coordination microenvironment under visible light illumination, as well as the better electron spin state compatibility, higher orbital overlap and orbital symmetry matching between the N-2s2pz hybrid orbital of NO2 and the Co-3dz2 orbital of InTCP-Co.
Collapse
Affiliation(s)
- Er-Xia Chen
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| | - Liang He
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Mei Qiu
- College of Chemistry and Materials, Jiangxi Agricultural University Nanchang Jiangxi 330045 China
| | - Yongfan Zhang
- College of Chemistry, Fuzhou University Fuzhou Fujian 350116 China
| | - Yayong Sun
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Wen-Hua Li
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Jian-Ze Xiao
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Jie Chen
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qipu Lin
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
17
|
Tran ATT, Hassan K, Tung TT, Tripathy A, Mondal A, Losic D. Graphene and metal-organic framework hybrids for high-performance sensors for lung cancer biomarker detection supported by machine learning augmentation. NANOSCALE 2024. [PMID: 38644676 DOI: 10.1039/d4nr00174e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Conventional diagnostic methods for lung cancer, based on breath analysis using gas chromatography and mass spectrometry, have limitations for fast screening due to their limited availability, operational complexity, and high cost. As potential replacement, among several low-cost and portable methods, chemoresistive sensors for the detection of volatile organic compounds (VOCs) that represent biomarkers of lung cancer were explored as promising solutions, which unfortunately still face challenges. To address the key problems of these sensors, such as low sensitivity, high response time, and poor selectivity, this study presents the design of new chemoresistive sensors based on hybridised porous zeolitic imidazolate (ZIF-8) based metal-organic frameworks (MOFs) and laser-scribed graphene (LSG) structures, inspired by the architecture of the human lung. The sensing performance of the fabricated ZIF-8@LSG hybrid sensors was characterised using four dominant VOC biomarkers, including acetone, ethanol, methanol, and formaldehyde, which are identified as metabolomic signatures in lung cancer patients' exhaled breath. The results using simulated breath samples showed that the sensors exhibited excellent performance for a set of these biomarkers, including fast response (2-3 seconds), a wide detection range (0.8 ppm to 50 ppm), a low detection limit (0.8 ppm), and high selectivity, all obtained at room temperature. Intelligent machine learning (ML) recognition using the multilayer perceptron (MLP)-based classification algorithm was further employed to enhance the capability of these sensors, achieving an exceptional accuracy (approximately 96.5%) for the four targeted VOCs over the tested range (0.8-10 ppm). The developed hybridised nanomaterials, combined with the ML methodology, showcase robust identification of lung cancer biomarkers in simulated breath samples containing multiple biomarkers and a promising solution for their further improvements toward practical applications.
Collapse
Affiliation(s)
- Anh Tuan Trong Tran
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Kamrul Hassan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Tran Thanh Tung
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Ashis Tripathy
- School of Electronics Engineering (SENSE), Vellore Institute of Technology, Vandalur-Kelambakkam Road, Chennai 600127, India
| | - Ashok Mondal
- School of Electronics Engineering (SENSE), Vellore Institute of Technology, Vandalur-Kelambakkam Road, Chennai 600127, India
| | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
18
|
Shan Z, Xiao JZ, Wu M, Wang J, Su J, Yao MS, Lu M, Wang R, Zhang G. Topologically Tunable Conjugated Metal-Organic Frameworks for Modulating Conductivity and Chemiresistive Properties for NH 3 Sensing. Angew Chem Int Ed Engl 2024; 63:e202401679. [PMID: 38389160 DOI: 10.1002/anie.202401679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Electrically conductive metal-organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern electrical devices. However, achieving effective modulation of their conductivity has proven to be a major challenge. In this study, we have successfully prepared cMOFs with high conductivity by incorporating electron-donating fused thiophen rings in the frameworks and extending their π-conjugated systems through ring-closing reactions. The conductivity of cMOFs can be precisely modulated ranging from 10-3 to 102 S m-1 by regulating their dimensions and topologies. Furthermore, leveraging the inherent tunable electrical properties based on topology, we successfully demonstrated the potential of these materials as chemiresistive gas sensors with an outstanding response toward 100 ppm NH3 at room temperature. This work not only provides valuable insights into the design of functional cMOFs with different topologies but also enriches the cMOF family with exceptional conductivity properties.
Collapse
Affiliation(s)
- Zhen Shan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jian-Ze Xiao
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Zhongguancun Beiertiao No. 1, Haidian, Beijing, 100190, China
| | - Miaomiao Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jinjian Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jian Su
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Ming-Shui Yao
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Zhongguancun Beiertiao No. 1, Haidian, Beijing, 100190, China
| | - Ming Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Gen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
19
|
Lim H, Kwon H, Kang H, Jang JE, Kwon HJ. Laser-Induced and MOF-Derived Metal Oxide/Carbon Composite for Synergistically Improved Ethanol Sensing at Room temperature. NANO-MICRO LETTERS 2024; 16:113. [PMID: 38334829 PMCID: PMC10858016 DOI: 10.1007/s40820-024-01332-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/26/2023] [Indexed: 02/10/2024]
Abstract
Advancements in sensor technology have significantly enhanced atmospheric monitoring. Notably, metal oxide and carbon (MOx/C) hybrids have gained attention for their exceptional sensitivity and room-temperature sensing performance. However, previous methods of synthesizing MOx/C composites suffer from problems, including inhomogeneity, aggregation, and challenges in micropatterning. Herein, we introduce a refined method that employs a metal-organic framework (MOF) as a precursor combined with direct laser writing. The inherent structure of MOFs ensures a uniform distribution of metal ions and organic linkers, yielding homogeneous MOx/C structures. The laser processing facilitates precise micropatterning (< 2 μm, comparable to typical photolithography) of the MOx/C crystals. The optimized MOF-derived MOx/C sensor rapidly detected ethanol gas even at room temperature (105 and 18 s for response and recovery, respectively), with a broad range of sensing performance from 170 to 3,400 ppm and a high response value of up to 3,500%. Additionally, this sensor exhibited enhanced stability and thermal resilience compared to previous MOF-based counterparts. This research opens up promising avenues for practical applications in MOF-derived sensing devices.
Collapse
Affiliation(s)
- Hyeongtae Lim
- Department of Electrical Engineering and Computer Science, DGIST, Daegu, 42988, South Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42988, South Korea
| | - Hyeokjin Kwon
- Department of Electrical Engineering and Computer Science, DGIST, Daegu, 42988, South Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42988, South Korea
| | - Hongki Kang
- Department of Electrical Engineering and Computer Science, DGIST, Daegu, 42988, South Korea
| | - Jae Eun Jang
- Department of Electrical Engineering and Computer Science, DGIST, Daegu, 42988, South Korea
| | - Hyuk-Jun Kwon
- Department of Electrical Engineering and Computer Science, DGIST, Daegu, 42988, South Korea.
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42988, South Korea.
| |
Collapse
|
20
|
Shubhangi, Nandi I, Rai SK, Chandra P. MOF-based nanocomposites as transduction matrices for optical and electrochemical sensing. Talanta 2024; 266:125124. [PMID: 37657374 DOI: 10.1016/j.talanta.2023.125124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Metal Organic Frameworks (MOFs), a class of crystalline microporous materials have been into research limelight lately due to their commendable physio-chemical properties and easy fabrication methods. They have enormous surface area which can be a working ground for innumerable molecule adhesions and site for potential sensor matrices. Their biocompatibility makes them valuable for in vitro detection systems but a compromised conductivity requires a lot of surface engineering of these molecules for their usage in electrochemical biosensors. However, they are not just restricted to a single type of transduction system rather can also be modified to achieve feat as optical (colorimetry, luminescence) and electro-luminescent biosensors. This review emphasizes on recent advancements in the area of MOF-based biosensors with focus on various MOF synthesis methods and their general properties along with selective attention to electrochemical, optical and opto-electrochemical hybrid biosensors. It also summarizes MOF-based biosensors for monitoring free radicals, metal ions, small molecules, macromolecules and cells in a wide range of real matrices. Extensive tables have been included for understanding recent trends in the field of MOF-composite probe fabrication. The article sums up the future scope of these materials in the field of biosensors and enlightens the reader with recent trends for future research scope.
Collapse
Affiliation(s)
- Shubhangi
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Uttar Pradesh, 221005, India; Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - Indrani Nandi
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - S K Rai
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|