1
|
Kushima I, Nakatochi M, Ozaki N. CNVs and Human Well-being: Integrating Psychiatric, Physical, and Socioeconomic Perspectives. Biol Psychiatry 2024:S0006-3223(24)01788-8. [PMID: 39643102 DOI: 10.1016/j.biopsych.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/12/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Copy number variations (CNVs) have emerged as crucial genetic factors influencing a wide spectrum of human health outcomes, with particularly strong associations to psychiatric disorders. This review presents a synthesis of diverse impacts of psychiatric disorder-associated CNVs on neurodevelopment, brain function, and physical health across the lifespan. Large-scale studies have revealed that CNV carriers exhibit an increased risk for psychiatric disorders, cognitive deficits, sleep disturbances, neurological disorders, and other physical conditions, including cardiovascular diseases, diabetes, and renal disease, highlighting the wide-ranging impact of CNVs beyond the brain. Neuroimaging studies reveal substantial CNV effects on brain structure, from cortical and subcortical alterations to white matter microstructure, with effect sizes often exceeding those observed in idiopathic psychiatric disorders. Cellular and animal models have begun to elucidate dynamic CNV effects on neurodevelopment, neuronal function, and cellular energy metabolism, while revealing complex CNV-environment interactions and cell type-specific responses, particularly in studies of 22q11.2 deletion syndrome. This review also explores the complex interplay between psychiatric and physical health conditions in CNV carriers, and how these interactions contribute to adverse socioeconomic outcomes, including reduced educational attainment and income levels, creating a feedback loop that further impacts health outcomes. Finally, this review also highlights research limitations and proposes key priorities for clinical implementation, including the need for longitudinal studies, standardized guidelines for CNV result reporting and genetic counseling, and integrated care networks, providing a foundation for advancing the field of precision psychiatry.
Collapse
Affiliation(s)
- Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Dahawi M, de Sainte Agathe JM, Elmagzoub MS, Ahmed EA, Buratti J, Courtin T, Noé E, Bogoin J, Copin B, Elmugadam FA, Abdelgadir WA, Ahmed AKMA, Daldoum MA, Altayeb RMI, Bashir M, Khalid LM, Gamil S, Baldassari S, Elsayed L, Keren B, Nuel G, Ahmed AE, Leguern E. Genetic heterogeneity in familial forms of genetic generalized epilepsy: from mono- to oligogenism. Hum Genomics 2024; 18:130. [PMID: 39574152 PMCID: PMC11583555 DOI: 10.1186/s40246-024-00659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/16/2024] [Indexed: 11/24/2024] Open
Abstract
Genetic generalized epilepsy (GGE) including childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy (JME), and GGE with tonic-clonic seizures (TCS) (GGE-TCS), is genetically influenced with a two- to four- fold increased risk in the first-degree relatives of patients. Since large families with GGE are very rare, international studies have focused on sporadic GGE patients using whole exome sequencing, suggesting that GGE are highly genetically heterogeneous and rather involve rare or ultra-rare variants. Moreover, a polygenic mode of inheritance is suspected in most cases. We performed SNP microarrays and whole exome sequencing in 20 families from Sudan, focusing on those with at least four affected members. Standard genetic filters and Endeavour algorithm for functional prioritization of genes selected likely susceptibility variants in FAT1, DCHS1 or ASTN2 genes. FAT1 and DCHS1 are adhesion transmembrane proteins interacting during brain development, while ASTN2 is involved in dendrite development. Our approach on familial forms of GGE is complementary to large-scale collaborative consortia studies of sporadic cases. Our study reinforces the hypothesis that GGE is genetically heterogeneous, even in a relatively limited geographic area, and mainly oligogenic, as supported by the low familial penetrance of GGE and by the Bayesian algorithm that we developed in a large pedigree with JME. Since populations with founder effect and endogamy are appropriate to study autosomal recessive pathologies, they would be also adapted to decipher genetic components of complex diseases, using the reported bayesian model.
Collapse
Affiliation(s)
- Maha Dahawi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France.
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan.
| | - Jean-Madeleine de Sainte Agathe
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| | - Mohamed S Elmagzoub
- Faculty of Medicine, National Ribat University, Khartoum, Sudan
- Neuroscience Department, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Elhami A Ahmed
- Faculty of Dentistry, Shendi University, Shendi, Sudan
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Julien Buratti
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Thomas Courtin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| | - Eric Noé
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
| | - Julie Bogoin
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Bruno Copin
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | | | - Wasma A Abdelgadir
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
| | - Ahmed K M A Ahmed
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mohamed A Daldoum
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Division of Neurology, Sudan Medical Council, Khartoum, Sudan
| | | | - Mohamed Bashir
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Sahar Gamil
- Department of Basic Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, AL-Kharj, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Sara Baldassari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
| | - Liena Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Boris Keren
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Gregory Nuel
- Stochastics and Biology Group (MAV), Probability and Statistics (LPSM, CNRS 8001), Sorbonne Université, Paris, France
| | - Ammar E Ahmed
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Eric Leguern
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| |
Collapse
|
3
|
Artaza H, Lavrichenko K, Wolff ASB, Røyrvik EC, Vaudel M, Johansson S. Rare copy number variant analysis in case-control studies using snp array data: a scalable and automated data analysis pipeline. BMC Bioinformatics 2024; 25:357. [PMID: 39548362 PMCID: PMC11566566 DOI: 10.1186/s12859-024-05979-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Rare copy number variants (CNVs) significantly influence the human genome and may contribute to disease susceptibility. High-throughput SNP genotyping platforms provide data that can be used for CNV detection, but it requires the complex pipelining of bioinformatic tools. Here, we propose a flexible bioinformatic pipeline for rare CNV analysis from human SNP array data. RESULTS The pipeline consists of two major sub-pipelines: (1) Calling and quality control (QC) analysis, and (2) Rare CNV analysis. It is implemented in Snakemake following a rule-based structure that enables automation and scalability while maintaining flexibility. CONCLUSIONS Our pipeline automates the detection and analysis of rare CNVs. It implements a rigorous CNV quality control, assesses the frequencies of these rare CNVs in patients versus controls, and evaluates the impact of CNVs on specific genes or pathways. We hence aim to provide an efficient yet flexible bioinformatic framework to investigate rare CNVs in biomedical research.
Collapse
Affiliation(s)
- Haydee Artaza
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
| | - Ksenia Lavrichenko
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ellen C Røyrvik
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Bergen, Norway
| | - Marc Vaudel
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stefan Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway.
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
4
|
Dwivedi R, Kaushik M, Tripathi M, Dada R, Tiwari P. Unraveling the genetic basis of epilepsy: Recent advances and implications for diagnosis and treatment. Brain Res 2024; 1843:149120. [PMID: 39032529 DOI: 10.1016/j.brainres.2024.149120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Epilepsy, affecting approximately 1% of the global population, manifests as recurring seizures and is heavily influenced by genetic factors. Recent advancements in genetic technologies have revolutionized our understanding of epilepsy's genetic landscape. Key studies, such as the discovery of mutations in ion channels (e.g., SCN1A and SCN2A), neurotransmitter receptors (e.g., GABRA1), and synaptic proteins (e.g., SYNGAP1, KCNQ2), have illuminated critical pathways underlying epilepsy susceptibility and pathogenesis. Genome-wide association studies (GWAS) have identified specific genetic variations linked to epilepsy risk, such as variants near SCN1A and PCDH7, enhancing diagnostic accuracy and enabling personalized treatment strategies. Moreover, epigenetic mechanisms, including DNA methylation (e.g., MBD5), histone modifications (e.g., HDACs), and non-coding RNAs (e.g., miR-134), play pivotal roles in altering gene expression and synaptic plasticity, contributing to epileptogenesis. These discoveries offer promising avenues for therapeutic interventions aimed at improving outcomes for epilepsy patients. Genetic testing has become essential in clinical practice, facilitating precise diagnosis and tailored management approaches based on individual genetic profiles. Furthermore, insights into epigenetic regulation suggest novel therapeutic targets for developing more effective epilepsy treatments. In summary, this review highlights significant progress in understanding the genetic and epigenetic foundations of epilepsy. By integrating findings from key studies and specifying genes involved in epigenetic modifications, we underscore the potential for advanced therapeutic strategies in this complex neurological disorder, emphasizing the importance of personalized medicine approaches in epilepsy management.
Collapse
Affiliation(s)
- Rekha Dwivedi
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Meenakshi Kaushik
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rima Dada
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Prabhakar Tiwari
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
5
|
Auwerx C, Kutalik Z, Reymond A. The pleiotropic spectrum of proximal 16p11.2 CNVs. Am J Hum Genet 2024; 111:2309-2346. [PMID: 39332410 PMCID: PMC11568765 DOI: 10.1016/j.ajhg.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/29/2024] Open
Abstract
Recurrent genomic rearrangements at 16p11.2 BP4-5 represent one of the most common causes of genomic disorders. Originally associated with increased risk for autism spectrum disorder, schizophrenia, and intellectual disability, as well as adiposity and head circumference, these CNVs have since been associated with a plethora of phenotypic alterations, albeit with high variability in expressivity and incomplete penetrance. Here, we comprehensively review the pleiotropy associated with 16p11.2 BP4-5 rearrangements to shine light on its full phenotypic spectrum. Illustrating this phenotypic heterogeneity, we expose many parallels between findings gathered from clinical versus population-based cohorts, which often point to the same physiological systems, and emphasize the role of the CNV beyond neuropsychiatric and anthropometric traits. Revealing the complex and variable clinical manifestations of this CNV is crucial for accurate diagnosis and personalized treatment strategies for carrier individuals. Furthermore, we discuss areas of research that will be key to identifying factors contributing to phenotypic heterogeneity and gaining mechanistic insights into the molecular pathways underlying observed associations, while demonstrating how diversity in affected individuals, cohorts, experimental models, and analytical approaches can catalyze discoveries.
Collapse
Affiliation(s)
- Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Yazbeck H, Youssef J, Nasreddine W, El Kurdi A, Zgheib N, Beydoun A. The role of candidate pharmacogenetic variants in determining valproic acid efficacy, toxicity and concentrations in patients with epilepsy. Front Pharmacol 2024; 15:1483723. [PMID: 39539630 PMCID: PMC11558073 DOI: 10.3389/fphar.2024.1483723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Background Antiseizure medications (ASM) exhibit considerable interindividual variability in terms of efficacy and adverse events. Genetic variation is thought to contribute to these differences in clinical outcomes. Specifically, the response to valproic acid (VPA), a widely used ASM, is influenced by multiple pharmacogenetic factors. However, and in contrast to other ASMs such as phenytoin and carbamazepine, there is a paucity of data on the association between VPA and various gene variants. The aim of this study was hence to evaluate the influence of candidate pharmacogenetic variants on VPA efficacy, toxicity and serum concentrations in a homogeneous cohort of patients newly diagnosed with genetic generalized epilepsies (GGE). Methods In this prospective cohort study, demographic, clinical and treatment outcomes of GGE patients were retrieved from their medical records. Whole exome sequencing was performed in collaboration with Epi25. Gene variants associated with VPA efficacy, metabolism and toxicities were retrieved from PharmGKB. An analysis was then conducted to explore potential associations between these gene variants and VPA clinical outcomes. Results Of the 166 patients included, 60 (36.1%) experienced treatment failure while 106 (63.9%) achieved treatment success. After adjusting for VPA maintenance dose, carriers of the rs3892097 (CYP2D6) variant were 2.5 times more likely to experience treatment failure compared to wildtype (p = 0.026). The rs1057910 variant (CYP2C9*3) was associated with increased serum VPA concentrations (p = 0.034). Moreover, the rs1137101 variant (LEPR gene, a metabolism regulator) was significantly associated with a higher risk of weight gain (regression coefficient of 3.430 [0.674; 6.186], p = 0.015) and a higher frequency of hair loss (OR = 3.394 [1.157; 9.956], p = 0.026), while the rs4480 variant (SOD2 gene, encoding for a mitochondrial scavenging enzyme) was correlated with a lower frequency of hair loss (OR = 0.276 [0.089; 0.858], p = 0.026). Conclusion These findings highlight the role of genetic factors in VPA treatment and underscore the potential for developing therapeutic strategies to enhance patient outcomes and minimize adverse effects.
Collapse
Affiliation(s)
- Hady Yazbeck
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Joe Youssef
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Wassim Nasreddine
- Department of Neurology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdullah El Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nathalie Zgheib
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ahmad Beydoun
- Department of Neurology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
7
|
Mu J, Cao C, Gong Y, Hu G. Relationship between inflammation/immunity and epilepsy: A multi-omics mendelian randomization study integrating GWAS, eQTL, and mQTL data. Epilepsy Behav 2024; 161:110112. [PMID: 39467451 DOI: 10.1016/j.yebeh.2024.110112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
OBJECTIVES Increasing evidence suggests that activated innate/adaptive immunity induces an inflammatory response, thereby participating in epileptogenesis. However, the biological explanation of inflammation/immunity as a potential cause for epilepsy remains largely unknown. This research aimed to determine the causal effects of inflammation/immune-related genes in epilepsy based on multi-omics mendelian randomization (MR). METHODS We employed summary-data-based MR (SMR) approach to combine GWAS for epilepsy (12,891 cases and 312,803 control) with gene expression quantitative trait loci (cis-eQTL, 31,684 participants) and DNA methylation QTL (cis-mQTL, 1,980 participants) data. Five additional MR methods were then used for sensitivity analyses to confirm the reliability of causal associations. In addition, enrichment analysis of key genes was conducted to provide insight into the biological functions of epilepsy risk variants. RESULTS A total of 386 inflammation/immune-related genes were selected for further analyses. Primary SMR analysis indicated that 37 DNA methylation sites and six genes regulated by them had potential causal relationship with epilepsy. MR analysis further refined the results, identifying three genes that had a causal effect on epilepsy. Notably, VEGFA (OR: 0.925; 95 % CI: 0.862-0.994) expression was negatively correlated with epilepsy risk, whereas IL16 (OR: 1.076; 95 % CI: 1.028-1.126) and HLA-DPA1 (OR: 1.041; 95 % CI: 1.009-1.074) expressions were positively associated with epilepsy risk. Functional enrichment analysis revealed that the identified genes were involved in GO-BP terms related to VEGF activation signaling and chemotaxis regulation. CONCLUSION This analysis confirms the causal role of inflammation/immunity in epilepsy, and the identified candidate genes provide clues for drug development in clinical practice.
Collapse
Affiliation(s)
- Jing Mu
- Department of Paediatrics, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Changqing Cao
- Department of Paediatrics, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Yigu Gong
- Department of Paediatrics, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Guiying Hu
- Department of Paediatrics, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, China
| |
Collapse
|
8
|
Harris L, McDonagh EM, Zhang X, Fawcett K, Foreman A, Daneck P, Sergouniotis PI, Parkinson H, Mazzarotto F, Inouye M, Hollox EJ, Birney E, Fitzgerald T. Genome-wide association testing beyond SNPs. Nat Rev Genet 2024:10.1038/s41576-024-00778-y. [PMID: 39375560 DOI: 10.1038/s41576-024-00778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 10/09/2024]
Abstract
Decades of genetic association testing in human cohorts have provided important insights into the genetic architecture and biological underpinnings of complex traits and diseases. However, for certain traits, genome-wide association studies (GWAS) for common SNPs are approaching signal saturation, which underscores the need to explore other types of genetic variation to understand the genetic basis of traits and diseases. Copy number variation (CNV) is an important source of heritability that is well known to functionally affect human traits. Recent technological and computational advances enable the large-scale, genome-wide evaluation of CNVs, with implications for downstream applications such as polygenic risk scoring and drug target identification. Here, we review the current state of CNV-GWAS, discuss current limitations in resource infrastructure that need to be overcome to enable the wider uptake of CNV-GWAS results, highlight emerging opportunities and suggest guidelines and standards for future GWAS for genetic variation beyond SNPs at scale.
Collapse
Affiliation(s)
- Laura Harris
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK
| | - Ellen M McDonagh
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK
| | - Xiaolei Zhang
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK
| | - Katherine Fawcett
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Amy Foreman
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK
| | - Petr Daneck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Panagiotis I Sergouniotis
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Helen Parkinson
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK
| | - Francesco Mazzarotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Michael Inouye
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Edward J Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Ewan Birney
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK
| | - Tomas Fitzgerald
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
9
|
Baer S, Schalk A, Miguet M, Schaefer É, El Chehadeh S, Ginglinger E, de Saint Martin A, Abi Wardé MT, Laugel V, de Feraudy Y, Gauer L, Hirsch E, Boulay C, Bansept C, Bolocan A, Kitadinis I, Gouronc A, Gérard B, Piton A, Scheidecker S. Copy Number Variation and Epilepsy: State of the Art in the Era of High-Throughput Sequencing-A Multicenter Cohort Study. Pediatr Neurol 2024; 159:16-25. [PMID: 39094250 DOI: 10.1016/j.pediatrneurol.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/12/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Genetic epilepsy diagnosis is increasing due to technological advancements. Although the use of molecular diagnosis is increasing, chromosomal microarray analysis (CMA) remains an important diagnostic tool for many patients. We aim to explore the role and indications of CMA in epilepsy, given the current genomic advances. METHODS We obtained data from 378 epileptic described patients, who underwent CMA between 2015 and 2021. Different types of syndromic or nonsyndromic epilepsy were represented. RESULTS After excluding patients who were undertreated or had missing data, we included 250 patients with treated epilepsy and relevant clinical information. These patients mostly had focal epilepsy or developmental and epileptic encephalopathy, with a median start age of 2 years. Ninety percent of the patients had intellectual disability, more than two thirds had normal head size, and 60% had an abnormal magnetic resonance imaging. We also included 10 patients with epilepsy without comorbidities. In our cohort, we identified 35 pathogenic copy number variations (CNVs) explaining epilepsy with nine recurrent CNVs enriched in patients with epilepsy, 12 CNVs related to neurodevelopmental disorder phenotype with possible epilepsy, five CNVs including a gene already known in epilepsy, and nine CNVs based on size combined with de novo occurrence. The diagnosis rate in our study reached 14% (35 of 250) with first-line CMA, as previously reported. Although targeted gene panel sequencing could potentially diagnose some of the reported epilepsy CNVs (34% [12 of 35]). CONCLUSIONS CMA remains a viable option as the first-line genetic test in cases where other genetic tests are not available and as a second-line diagnostic technique if gene panel or exome sequencing yields negative results.
Collapse
Affiliation(s)
- Sarah Baer
- Department of Neuropediatrics, ERN EpiCare, French Centre de référence des Épilepsies Rares (CréER), Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Institute for Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, CNRS UMR7104, INSERM U1258, Illkirch, France.
| | - Audrey Schalk
- Laboratories of Genetic Diagnosis, Institut de Génétique Médicale d'Alsace (IGMA), Strasbourg University Hospitals Strasbourg France, Strasbourg, France
| | | | - Élise Schaefer
- Clinical Genetics Unit, Institut de Génétique Médicale d'Alsace (IGMA), Strasbourg, France
| | - Salima El Chehadeh
- Clinical Genetics Unit, Institut de Génétique Médicale d'Alsace (IGMA), Strasbourg, France
| | | | - Anne de Saint Martin
- Department of Neuropediatrics, ERN EpiCare, French Centre de référence des Épilepsies Rares (CréER), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Marie-Thérèse Abi Wardé
- Department of Neuropediatrics, ERN EpiCare, French Centre de référence des Épilepsies Rares (CréER), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Vincent Laugel
- Department of Neuropediatrics, ERN EpiCare, French Centre de référence des Épilepsies Rares (CréER), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Yvan de Feraudy
- Department of Neuropediatrics, ERN EpiCare, French Centre de référence des Épilepsies Rares (CréER), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Lucas Gauer
- Epilepsy Unit "Francis Rohmer," ERN EpiCare, French Centre de référence des Épilepsies Rares (CréER), Neurology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Edouard Hirsch
- Epilepsy Unit "Francis Rohmer," ERN EpiCare, French Centre de référence des Épilepsies Rares (CréER), Neurology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Clotilde Boulay
- Epilepsy Unit "Francis Rohmer," ERN EpiCare, French Centre de référence des Épilepsies Rares (CréER), Neurology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Department of Pediatrics, Émile Muller Hospital, Mulhouse, France
| | - Claire Bansept
- Department of Pediatrics, Émile Muller Hospital, Mulhouse, France
| | - Anamaria Bolocan
- Department of Pediatrics, Émile Muller Hospital, Mulhouse, France
| | - Ismini Kitadinis
- Department of Pediatrics, Émile Muller Hospital, Mulhouse, France
| | - Aurélie Gouronc
- Laboratories of Genetic Diagnosis, Institut de Génétique Médicale d'Alsace (IGMA), Strasbourg University Hospitals Strasbourg France, Strasbourg, France
| | - Bénédicte Gérard
- Laboratories of Genetic Diagnosis, Institut de Génétique Médicale d'Alsace (IGMA), Strasbourg University Hospitals Strasbourg France, Strasbourg, France
| | - Amélie Piton
- Institute for Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, CNRS UMR7104, INSERM U1258, Illkirch, France; Laboratories of Genetic Diagnosis, Institut de Génétique Médicale d'Alsace (IGMA), Strasbourg University Hospitals Strasbourg France, Strasbourg, France
| | - Sophie Scheidecker
- Laboratories of Genetic Diagnosis, Institut de Génétique Médicale d'Alsace (IGMA), Strasbourg University Hospitals Strasbourg France, Strasbourg, France
| |
Collapse
|
10
|
Nguyen YTM, Vu BQ, Nguyen DK, Quach NV, Bui LT, Hong J, Bui CB. Genotype-driven therapeutics in DEE and metabolic epilepsy: navigating treatment efficacy and drug resistance. Sci Rep 2024; 14:21606. [PMID: 39285222 PMCID: PMC11405402 DOI: 10.1038/s41598-024-72683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Neonatal intensive care unit (NICU), particularly in treating developmental and epileptic encephalopathy (DEE) and metabolic epilepsy (ME), requires a deep understanding of their complex etiologies and treatment responses. After excluding treatable cases such as infectious or autoimmune encephalitis, our focus shifted to a more challenging subgroup of 59 patients for in-depth genetic analysis using exome sequencing (ES). The ES analysis identified 40 genetic abnormalities, significantly including de novo variants. Notably, we found structural variation as duplications in regions 2q24.3, including SCN1A and SCN2A were observed in 7 cases. These genetic variants, impacting ion channels, glucose transport, transcription regulation, and kinases, play a crucial role in determining medication efficacy. More than one-third (34.2%) of patients with DEE had an unfavorable response to anti-seizure medications (ASMs) in the chronic phase. However, since the ketogenic supplementary diet showed a positive effect, more than three-quarters (80%) of these drug-resistant patients improved during a 3-month follow-up. In contrast, the ME had a lower adverse reaction rate of 9.1% (2/22) to specialized medications, yet there were 5 fatalities and 10 cases with unidentified genetic etiologies. This study suggests the potential of categorizing drug-resistant variants and that a ketogenic diet could be beneficial in managing DEE and ME. It also opens new perspectives on the mechanisms of the ketogenic diet on the discovered genetic variants.
Collapse
Affiliation(s)
- Yen Thi My Nguyen
- Department of Biotechnology, International University, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Unit of AI Genomics, DNA Medical Technology, Ho Chi Minh City, Vietnam
| | - Bao-Quoc Vu
- Institute of Food and Biotechnology, Can Tho University, Can Tho City, Vietnam
- Faculty of Computer Science, University of Information Technology, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Duy-Khai Nguyen
- Department of Neurology, City Children's Hospital, Ho Chi Minh City, Vietnam
| | - Ngoc-Vinh Quach
- Department of Neurology, City Children's Hospital, Ho Chi Minh City, Vietnam
| | - Liem Thanh Bui
- Institute of Food and Biotechnology, Can Tho University, Can Tho City, Vietnam
| | - Jeonghan Hong
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
- HnB Genomics, Ulsan, South Korea
| | - Chi-Bao Bui
- University of Health Sciences, Vietnam National University Ho Chi Minh City, Ho Chi Minh, Vietnam.
- Unit of Molecular Biology, City Children's Hospital, Ho Chi Minh City, Vietnam.
| |
Collapse
|
11
|
Landoulsi Z, Sreelatha AAK, Schulte C, Bobbili DR, Montanucci L, Leu C, Niestroj LM, Hassanin E, Domenighetti C, Pavelka L, Sugier PE, Radivojkov-Blagojevic M, Lichtner P, Portugal B, Edsall C, Kru ger J, Hernandez DG, Blauwendraat C, Mellick GD, Zimprich A, Pirker W, Tan M, Rogaeva E, Lang AE, Koks S, Taba P, Lesage S, Brice A, Corvol JC, Chartier-Harlin MC, Mutez E, Brockmann K, Deutschländer AB, Hadjigeorgiou GM, Dardiotis E, Stefanis L, Simitsi AM, Valente EM, Petrucci S, Straniero L, Zecchinelli A, Pezzoli G, Brighina L, Ferrarese C, Annesi G, Quattrone A, Gagliardi M, Burbulla LF, Matsuo H, Nakayama A, Hattori N, Nishioka K, Chung SJ, Kim YJ, Kolber P, van de Warrenburg BPC, Bloem BR, Singleton AB, Toft M, Pihlstrom L, Guedes LC, Ferreira JJ, Bardien S, Carr J, Tolosa E, Ezquerra M, Pastor P, Wirdefeldt K, Pedersen NL, Ran C, Belin AC, Puschmann A, Clarke CE, Morrison KE, Krainc D, Farrer MJ, Lal D, Elbaz A, Gasser T, Krüger R, Sharma M, May P. Genome-wide association study of copy number variations in Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.21.24311915. [PMID: 39228715 PMCID: PMC11370542 DOI: 10.1101/2024.08.21.24311915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Objective Our study investigates the impact of copy number variations (CNVs) on Parkinson's disease (PD) pathogenesis using genome-wide data, aiming to uncover novel genetic mechanisms and improve the understanding of the role of CNVs in sporadic PD. Methods We applied a sliding window approach to perform CNV-GWAS and conducted genome-wide burden analyses on CNV data from 11,035 PD patients (including 2,731 early-onset PD (EOPD)) and 8,901 controls from the COURAGE-PD consortium. Results We identified 14 genome-wide significant CNV loci associated with PD, including one deletion and 13 duplications. Among these, duplications in 7q22.1, 11q12.3 and 7q33 displayed the highest effect. Two significant duplications overlapped with PD-related genes SNCA and VPS13C, but none overlapped with recent significant SNP-based GWAS findings. Five duplications included genes associated with neurological disease, and four overlapping genes were dosage-sensitive and intolerant to loss-of-function variants. Enriched pathways included neurodegeneration, steroid hormone biosynthesis, and lipid metabolism. In early-onset cases, four loci were significantly associated with EOPD, including three known duplications and one novel deletion in PRKN. CNV burden analysis showed a higher prevalence of CNVs in PD-related genes in patients compared to controls (OR=1.56 [1.18-2.09], p=0.0013), with PRKN showing the highest burden (OR=1.47 [1.10-1.98], p=0.026). Patients with CNVs in PRKN had an earlier disease onset. Burden analysis with controls and EOPD patients showed similar results. Interpretation This is the largest CNV-based GWAS in PD identifying novel CNV regions and confirming the significant CNV burden in EOPD, primarily driven by the PRKN gene, warranting further investigation.
Collapse
Affiliation(s)
- Zied Landoulsi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg; L-4367, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Ashwin Ashok Kumar Sreelatha
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tubingen, Germany
| | - Claudia Schulte
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tubingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tubingen, Germany
| | - Dheeraj Reddy Bobbili
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg; L-4367, Esch-sur-Alzette, Luxembourg
| | - Ludovica Montanucci
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Costin Leu
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lisa-Marie Niestroj
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, Cologne, Germany
| | - Emadeldin Hassanin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg; L-4367, Esch-sur-Alzette, Luxembourg
| | - Cloé Domenighetti
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
| | - Lukas Pavelka
- Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
| | | | | | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Zentrum Munchen, Neuherberg, Germany
| | - Berta Portugal
- Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Connor Edsall
- Molecular Genetics Section, Laboratory of Neurogenetics, NIA, NIH, Bethesda, MD 20892, USA
| | - Jens Kru ger
- Group of Applied Bioinformatics, University of Tubingen, Tubingen, Germany
| | - Dena G Hernandez
- Molecular Genetics Section, Laboratory of Neurogenetics, NIA, NIH, Bethesda, MD 20892, USA
| | - Cornelis Blauwendraat
- Molecular Genetics Section, Laboratory of Neurogenetics, NIA, NIH, Bethesda, MD 20892, USA
| | - George D Mellick
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland, Australia
| | | | - Walter Pirker
- Department of Neurology, Klinik Ottakring, Vienna Austria
| | - Manuela Tan
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Anthony E. Lang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Edmond J. Safra Program in Parkinson’s Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Toronto, Ontario, Canada
| | - Sulev Koks
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Pille Taba
- Department of Neurology and Neurosurgery, University of Tartu, Estonia
- Neurology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Suzanne Lesage
- Sorbonne Université, Paris Brain Institute – ICM, Inserm, CNRS, Paris, France
| | - Alexis Brice
- Sorbonne Université, Paris Brain Institute – ICM, Inserm, CNRS, Paris, France
| | - Jean-Christophe Corvol
- Sorbonne Université, Paris Brain Institute – ICM, Inserm, CNRS, Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, CIC Neurosciences, Pitié-Salpêtrière Hospital, Paris, France
| | - Marie-Christine Chartier-Harlin
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Lille Neurosciences & Cognition, F-59000 Lille, France
| | - Eugenie Mutez
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Lille Neurosciences & Cognition, F-59000 Lille, France
| | - Kathrin Brockmann
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tubingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tubingen, Germany
| | - Angela B Deutschländer
- Department of Neurology, Ludwig Maximilians University of Munich, Germany
- Department of Neurology, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Neurology and Department of Clinical Genomics, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Georges M Hadjigeorgiou
- Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Efthimos Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Leonidas Stefanis
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athina Maria Simitsi
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy
| | - Simona Petrucci
- UOC Medical Genetics and Advanced Cell Diagnostics, S. Andrea University Hospital, Rome, Italy
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Italy UOC Medical Genetics and Advanced Cell Diagnostics, S. Andrea University Hospital, Rome, Italy
| | - Letizia Straniero
- Department of Biomedical Sciences - Humanitas University, Milan, Italy
| | - Anna Zecchinelli
- Parkinson Institute, Azienda Socio Sanitaria Territoriale (ASST) Gaetano Pini/CTO, Milano, Italia
| | - Gianni Pezzoli
- Parkinson Institute, Azienda Socio Sanitaria Territoriale (ASST) Gaetano Pini/CTO, Milano, Italia
- Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | - Laura Brighina
- Department of Neurology, San Gerardo Hospital, Milan, Italy
- Center for Neuroscience, University of Milano Bicocca, Monza, Italy
| | - Carlo Ferrarese
- Department of Neurology, San Gerardo Hospital, Milan, Italy
- Center for Neuroscience, University of Milano Bicocca, Monza, Italy
| | - Grazia Annesi
- Institute for Biomedical Research and Innovation, National Research Council, Cosenza, Italy
| | - Andrea Quattrone
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Monica Gagliardi
- Department of Medical and Surgical Sciences, Neuroscience Research Center, Magna Graecia University, Catanzaro, Italy
| | - Lena F Burbulla
- German Center for Neurodegenerative Diseases (DZNE), Tubingen, Germany
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama 359-8513, Japan
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama 359-8513, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kenya Nishioka
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Pierre Kolber
- Centre Hospitalier du Luxembourg, Parkinson Research Clinic, Luxembourg, Luxembourg
| | - Bart PC van de Warrenburg
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands
| | - Andrew B. Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, NIA, NIH, Bethesda, MD 20892, USA
- Center For Alzheimer’s and Related Dementias, NIA, NIH, Bethesda, MD, USA
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Lasse Pihlstrom
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Leonor Correia Guedes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosciences and Mental Health, Neurology, Hospital de Santa Maria, Centro Hospitalar Universitario Lisboa Norte (CHULN), Lisbon, Portugal
| | - Joaquim J Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
- South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Jonathan Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Eduardo Tolosa
- Parkinson’s disease &Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII) Barcelona, Spain
| | - Mario Ezquerra
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, ES-08036 Barcelona, Catalonia
| | - Pau Pastor
- Fundació per la Recerca Biomèdica i Social Mútua Terrassa, Terrassa, Barcelona, Spain
- Movement Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain
| | - Karin Wirdefeldt
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Ran
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andrea C Belin
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Puschmann
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Getingevägen 4, 221 85, Lund, Sweden
| | - Carl E Clarke
- University of Birmingham and Sandwell and West Birmingham Hospitals NHS Trust, United Kingdom
| | - Karen E Morrison
- Faculty of Medicine, Health and Life Sciences, Queens University, Belfast, United Kingdom
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Matt J Farrer
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Dennis Lal
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Stanley Center for Psychiatric Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Alexis Elbaz
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
| | - Thomas Gasser
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tubingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tubingen, Germany
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg; L-4367, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
- Centre Hospitalier du Luxembourg, Parkinson Research Clinic, Luxembourg, Luxembourg
| | - Manu Sharma
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tubingen, Germany
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg; L-4367, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
12
|
Cui TY, Wu H, Tang CY, Wang XF, Li TF, Zhou J. Surgical outcomes of patients with genetically refractory epilepsy: A systematic review and meta-analysis. Seizure 2024; 120:124-134. [PMID: 38959583 DOI: 10.1016/j.seizure.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE To summarize the surgical outcomes of genetically refractory epilepsy and identify prognostic factors for these outcomes. METHODS A literature search of the PubMed, Web of Science, and Embase databases for relevant studies, published between January 1, 2002 and December 31, 2023, was performed using specific search terms. All studies addressing surgical outcomes and follow-up of genetically refractory epilepsy were included. All statistical analyses were performed using STATA software (StataCorp LLC, College Station, TX, USA). This review was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses, 2020 (i.e., "PRISMA") reporting guidelines. RESULTS Of the 3833 studies retrieved, 55 fulfilled the inclusion criteria. Eight studies were eligible for meta-analysis at the study level. Pooled outcomes revealed that 74 % of patients who underwent resective surgery (95 % confidence interval [CI] 0.55-0.89; z = 9.47, p < 0.05) achieved Engel I status at the last follow-up. In the study level analysis, pooled outcomes revealed that 9 % of patients who underwent vagus nerve stimulation achieved seizure-free status (95 % CI 0.00-0.31; z = 1.74, p < 0.05), and 61 % (95 % CI 0.55-0.89; z = 11.96, p < 0.05) achieved a 50 % reduction in seizure frequency at the last follow-up. Fifty-three studies comprising 249 patients were included in an individual-level analysis. Among patients who underwent lesion resection or lobectomy/multilobar resection, 65 % (100/153) achieved Engel I status at the last follow-up. Univariate analysis indicated that female sex, somatic mutations, and presenting with focal seizure symptoms were associated with better prognosis (p < 0.05). Additionally, 75 % (21/28) of patients who underwent hemispherectomy/hemispherotomy achieved Engel I status at the last follow-up. In the individual-level analysis, among patients treated with vagus nerve stimulation, 21 % (10/47) were seizure-free and 64 % (30/47) experienced >50 % reduction in seizure frequency compared with baseline. CONCLUSION Meticulous presurgical evaluation and selection of appropriate surgical procedures can, to a certain extent, effectively control seizures. Therefore, various surgical procedures should be considered when treating patients with genetically refractory epilepsy.
Collapse
Affiliation(s)
- Tian-Yi Cui
- Functional Neurosurgery Department, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Han Wu
- Functional Neurosurgery Department, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Chong-Yang Tang
- Functional Neurosurgery Department, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Xiong-Fei Wang
- Functional Neurosurgery Department, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Tian-Fu Li
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Clinical Research on Epilepsy, Beijing, China; Centre of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Jian Zhou
- Functional Neurosurgery Department, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Clinical Research on Epilepsy, Beijing, China; Centre of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
Magielski J, McSalley I, Parthasarathy S, McKee J, Ganesan S, Helbig I. Advances in big data and omics: Paving the way for discovery in childhood epilepsies. Curr Probl Pediatr Adolesc Health Care 2024; 54:101634. [PMID: 38825428 DOI: 10.1016/j.cppeds.2024.101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The insights gained from big data and omics approaches have transformed the field of childhood genetic epilepsy. With an increasing number of individuals receiving genetic testing for seizures, we are provided with an opportunity to identify clinically relevant subgroups and extract meaningful observations from this large-scale clinical data. However, the volume of data from electronic medical records and omics (e.g., genomics, transcriptomics) is so vast that standardized methods, such as the Human Phenotype Ontology, are necessary for reliable and comprehensive characterization. Here, we explore the integration of clinical and omics data, highlighting how these approaches pave the way for discovery in childhood epilepsies.
Collapse
Affiliation(s)
- Jan Magielski
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Ian McSalley
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Shridhar Parthasarathy
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jillian McKee
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA; Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shiva Ganesan
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19014, USA
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA; Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
Zeng Y, Ding H, Wang X, Huang Y, Liu L, Du L, Lu J, Wu J, Zeng Y, Mai M, Zhu J, Yu L, He W, Guo F, Peng H, Yao C, Qi Y, Liu Y, Li F, Yang J, Hu R, Liang J, Wang J, Wang W, Zhang Y, Yin A. High positive predictive value of CNVs detected by clinical exome sequencing in suspected genetic diseases. J Transl Med 2024; 22:644. [PMID: 38982507 PMCID: PMC11234535 DOI: 10.1186/s12967-024-05468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Genetic disorders often manifest as abnormal fetal or childhood development. Copy number variations (CNVs) represent a significant genetic mechanism underlying such disorders. Despite their importance, the effectiveness of clinical exome sequencing (CES) in detecting CNVs, particularly small ones, remains incompletely understood. We aimed to evaluate the detection of both large and small CNVs using CES in a substantial clinical cohort, including parent-offspring trios and proband only analysis. METHODS We conducted a retrospective analysis of CES data from 2428 families, collected from 2018 to 2021. Detected CNV were categorized as large or small, and various validation techniques including chromosome microarray (CMA), Multiplex ligation-dependent probe amplification assay (MLPA), and/or PCR-based methods, were employed for cross-validation. RESULTS Our CNV discovery pipeline identified 171 CNV events in 154 cases, resulting in an overall detection rate of 6.3%. Validation was performed on 113 CNVs from 103 cases to assess CES reliability. The overall concordance rate between CES and other validation methods was 88.49% (100/113). Specifically, CES demonstrated complete consistency in detecting large CNV. However, for small CNVs, consistency rates were 81.08% (30/37) for deletions and 73.91% (17/23) for duplications. CONCLUSION CES demonstrated high sensitivity and reliability in CNV detection. It emerges as an economical and dependable option for the clinical CNV detection in cases of developmental abnormalities, especially fetal structural abnormalities.
Collapse
Affiliation(s)
- Yimo Zeng
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China
| | - Hongke Ding
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China
| | - Xingwang Wang
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China
| | - Yanlin Huang
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China
| | - Ling Liu
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China
| | - Li Du
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China
| | - Jian Lu
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China
| | - Jing Wu
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China
| | - Yukun Zeng
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China
| | - Mingqin Mai
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China
| | - Juan Zhu
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China
| | - Lihua Yu
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China
| | - Wei He
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China
| | - Fangfang Guo
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China
| | - Haishan Peng
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China
| | - Cuize Yao
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China
| | - Yiming Qi
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China
| | - Yuan Liu
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China
| | - Fake Li
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China
| | - Jiexia Yang
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China
| | - Rong Hu
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China
| | - Jie Liang
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China
| | - Jicheng Wang
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China
| | - Wei Wang
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China
| | - Yan Zhang
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China.
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China.
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China.
| | - Aihua Yin
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China.
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China.
- Guangzhou Key Laboratory of Prenatal Screening and Prenatal Diagnosis, Guangzhou, China.
| |
Collapse
|
15
|
Scorrano G, Dono F, Corniello C, Evangelista G, Chiarelli F, Sensi SL. Exploring epileptic phenotypes in PRRT2-related disorders: A report of two cases and literature appraisal. Seizure 2024; 119:3-11. [PMID: 38749256 DOI: 10.1016/j.seizure.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND The proline-rich transmembrane protein 2 (PRRT2) is a synaptic protein involved in neurotransmitter vesicle release. PRRT2 protein is highly expressed in the cerebellum, cerebral cortex, basal ganglia, and hippocampus. Variants in PRRT2 have been identified as a cause of several neurological disorders, including epilepsy, movement disorders, and headache. METHODS We report two families carrying two distinct PRRT2 mutations showing childhood onset of movement disorders, headache, and epilepsy. Demographics, clinical, EEG, neuroimaging, and genetic sequencing study data were collected. A systematic review of the literature was also performed to dissect the most frequently reported PRRT2-associated epileptic phenotypes. RESULTS two variants in PRRT2 gene (NM_145239.3:c718C>T, p.Arg240Ter; c.649dupC, p.Arg217Profs*8) were identified. The two variants altered the same extracellular domain of PRRT2. The de novo PRRT2 mutation (c718C>T, p.Arg240Ter) was related to multi-drug-resistant epilepsy. According to the literature, homozygous, biallelic variants and 16p11.2 deletions lead to PRRT2 haploinsufficiency and a more severe phenotype. CONCLUSIONS PRRT2 mutations can be associated with several epileptic phenotypes ranging from benign ASM-responsive form to more severe epileptic encephalopathies. Identifying PRRT2 variants in epilepsy patients may help achieve more personalized treatment approaches. However, phenotype-genotype correlations remain a challenge.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Pediatrics, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging and Clinical Science, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy; Neurology Clinic, Epilepsy Center, "SS Annunziata" Hospital of Chieti, Chieti, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST-, University G. d'Annunzio of Chieti-Pescara, Italy.
| | - Clarissa Corniello
- Department of Neuroscience, Imaging and Clinical Science, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy; Neurology Clinic, Epilepsy Center, "SS Annunziata" Hospital of Chieti, Chieti, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST-, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Giacomo Evangelista
- Department of Neuroscience, Imaging and Clinical Science, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy; Neurology Clinic, Epilepsy Center, "SS Annunziata" Hospital of Chieti, Chieti, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST-, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging and Clinical Science, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy; Neurology Clinic, Epilepsy Center, "SS Annunziata" Hospital of Chieti, Chieti, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST-, University G. d'Annunzio of Chieti-Pescara, Italy
| |
Collapse
|
16
|
Córdoba NM, Lince-Rivera I, Gómez JLR, Rubboli G, De la Rosa SO. ATP1A2-related epileptic encephalopathy and movement disorder: Clinical features of three novel patients. Epileptic Disord 2024; 26:332-340. [PMID: 38512072 DOI: 10.1002/epd2.20220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVE Variants in the ATP1A2 gene exhibit a wide clinical spectrum, ranging from familial hemiplegic migraine to childhood epilepsies and early infantile developmental epileptic encephalopathy (EIDEE) with movement disorders. This study aims to describe the epileptology of three unpublished cases and summarize epilepsy features of the other 17 published cases with ATP1A2 variants and EIDEE. METHODS Medical records of three novel patients with pathogenic ATP1A2 variants were retrospectively reviewed. Additionally, the PUBMED, EMBASE, and Cochrane databases were searched until December 2023 for articles on EIDEE with ATP1A2 variants, without language or publication year restrictions. RESULTS Three female patients, aged 6 months-10 years, were investigated. Epilepsy onset occurred between 5 days and 2 years, accompanied by severe developmental delay, intellectual disability, drug-resistant epilepsy, severe movement disorder, and recurrent status epilepticus. All individuals had pathogenic variants of the ATP1A2 gene (ATP1A2 c.720_721del (p.Ile240MetfsTer9), ATP1A2c.3022C > T (p.Arg1008Trp), ATP1A2 c.1096G > T (p.Gly366Cys), according to ACMG criteria. Memantine was p) rescribed to three patients, one with a reduction in ictal frequency, one with improvement in gait pattern, coordination, and attention span, and another one in alertness without significant side effects. SIGNIFICANCE This study reinforces the association between ATP1A2 variants and a severe phenotype. All patients had de novo variants, focal motor seizures with impaired awareness as the primary type of seizure; of the 11 EEGs recorded, 10 presented a slow background rhythm, 7 multifocal interictal epileptiform discharges (IED), predominantly temporal IEDs, followed by frontal IED, as well as ten ictal recordings, which showed ictal onset from the same regions mentioned above. Treatment with antiseizure medication was generally ineffective, but memantine showed moderate improvement. Prospective studies are needed to enlarge the phenotype and assess the efficacy of NMDA receptor antagonist therapies in reducing seizure frequency and improving quality of life.
Collapse
Affiliation(s)
| | | | | | - Guido Rubboli
- Danish Epilepsy Center, Member of ERN EpiCARE, Dianalund, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sebastián Ortiz De la Rosa
- Instituto Roosevelt, Bogotá, Colombia
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
17
|
Auwerx C, Jõeloo M, Sadler MC, Tesio N, Ojavee S, Clark CJ, Mägi R, Reymond A, Kutalik Z. Rare copy-number variants as modulators of common disease susceptibility. Genome Med 2024; 16:5. [PMID: 38185688 PMCID: PMC10773105 DOI: 10.1186/s13073-023-01265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Copy-number variations (CNVs) have been associated with rare and debilitating genomic disorders (GDs) but their impact on health later in life in the general population remains poorly described. METHODS Assessing four modes of CNV action, we performed genome-wide association scans (GWASs) between the copy-number of CNV-proxy probes and 60 curated ICD-10 based clinical diagnoses in 331,522 unrelated white British UK Biobank (UKBB) participants with replication in the Estonian Biobank. RESULTS We identified 73 signals involving 40 diseases, all of which indicating that CNVs increased disease risk and caused earlier onset. We estimated that 16% of these associations are indirect, acting by increasing body mass index (BMI). Signals mapped to 45 unique, non-overlapping regions, nine of which being linked to known GDs. Number and identity of genes affected by CNVs modulated their pathogenicity, with many associations being supported by colocalization with both common and rare single-nucleotide variant association signals. Dissection of association signals provided insights into the epidemiology of known gene-disease pairs (e.g., deletions in BRCA1 and LDLR increased risk for ovarian cancer and ischemic heart disease, respectively), clarified dosage mechanisms of action (e.g., both increased and decreased dosage of 17q12 impacted renal health), and identified putative causal genes (e.g., ABCC6 for kidney stones). Characterization of the pleiotropic pathological consequences of recurrent CNVs at 15q13, 16p13.11, 16p12.2, and 22q11.2 in adulthood indicated variable expressivity of these regions and the involvement of multiple genes. Finally, we show that while the total burden of rare CNVs-and especially deletions-strongly associated with disease risk, it only accounted for ~ 0.02% of the UKBB disease burden. These associations are mainly driven by CNVs at known GD CNV regions, whose pleiotropic effect on common diseases was broader than anticipated by our CNV-GWAS. CONCLUSIONS Our results shed light on the prominent role of rare CNVs in determining common disease susceptibility within the general population and provide actionable insights for anticipating later-onset comorbidities in carriers of recurrent CNVs.
Collapse
Affiliation(s)
- Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland.
- Department of Computational Biology, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
- University Center for Primary Care and Public Health, 1005, Lausanne, Switzerland.
| | - Maarja Jõeloo
- Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Marie C Sadler
- Department of Computational Biology, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
- University Center for Primary Care and Public Health, 1005, Lausanne, Switzerland
| | - Nicolò Tesio
- Center for Integrative Genomics, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland
| | - Sven Ojavee
- Department of Computational Biology, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Charlie J Clark
- Center for Integrative Genomics, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland.
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
- University Center for Primary Care and Public Health, 1005, Lausanne, Switzerland.
| |
Collapse
|
18
|
Gargano MA, Matentzoglu N, Coleman B, Addo-Lartey EB, Anagnostopoulos A, Anderton J, Avillach P, Bagley AM, Bakštein E, Balhoff JP, Baynam G, Bello SM, Berk M, Bertram H, Bishop S, Blau H, Bodenstein DF, Botas P, Boztug K, Čady J, Callahan TJ, Cameron R, Carbon S, Castellanos F, Caufield JH, Chan LE, Chute C, Cruz-Rojo J, Dahan-Oliel N, Davids JR, de Dieuleveult M, de Souza V, de Vries BBA, de Vries E, DePaulo JR, Derfalvi B, Dhombres F, Diaz-Byrd C, Dingemans AJM, Donadille B, Duyzend M, Elfeky R, Essaid S, Fabrizzi C, Fico G, Firth HV, Freudenberg-Hua Y, Fullerton JM, Gabriel DL, Gilmour K, Giordano J, Goes FS, Moses RG, Green I, Griese M, Groza T, Gu W, Guthrie J, Gyori B, Hamosh A, Hanauer M, Hanušová K, He Y(O, Hegde H, Helbig I, Holasová K, Hoyt CT, Huang S, Hurwitz E, Jacobsen JOB, Jiang X, Joseph L, Keramatian K, King B, Knoflach K, Koolen DA, Kraus M, Kroll C, Kusters M, Ladewig MS, Lagorce D, Lai MC, Lapunzina P, Laraway B, Lewis-Smith D, Li X, Lucano C, Majd M, Marazita ML, Martinez-Glez V, McHenry TH, McInnis MG, McMurry JA, Mihulová M, Millett CE, Mitchell PB, Moslerová V, Narutomi K, Nematollahi S, Nevado J, Nierenberg AA, Čajbiková NN, Nurnberger JI, Ogishima S, Olson D, Ortiz A, Pachajoa H, Perez de Nanclares G, Peters A, Putman T, Rapp CK, Rath A, Reese J, Rekerle L, Roberts A, Roy S, Sanders SJ, Schuetz C, Schulte EC, Schulze TG, Schwarz M, Scott K, Seelow D, Seitz B, Shen Y, Similuk MN, Simon ES, Singh B, Smedley D, Smith CL, Smolinsky JT, Sperry S, Stafford E, Stefancsik R, Steinhaus R, Strawbridge R, Sundaramurthi JC, Talapova P, Tenorio Castano JA, Tesner P, Thomas RH, Thurm A, Turnovec M, van Gijn ME, Vasilevsky NA, Vlčková M, Walden A, Wang K, Wapner R, Ware JS, Wiafe AA, Wiafe SA, Wiggins LD, Williams AE, Wu C, Wyrwoll MJ, Xiong H, Yalin N, Yamamoto Y, Yatham LN, Yocum AK, Young AH, Yüksel Z, Zandi PP, Zankl A, Zarante I, Zvolský M, Toro S, Carmody LC, Harris NL, Munoz-Torres MC, Danis D, Mungall CJ, Köhler S, Haendel MA, Robinson PN. The Human Phenotype Ontology in 2024: phenotypes around the world. Nucleic Acids Res 2024; 52:D1333-D1346. [PMID: 37953324 PMCID: PMC10767975 DOI: 10.1093/nar/gkad1005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs.
Collapse
Affiliation(s)
| | | | - Ben Coleman
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | | | - Joel Anderton
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Anita M Bagley
- Shriners Children's Northern California, Sacramento, CA, USA
| | - Eduard Bakštein
- National Institute of Mental Health, Klecany, Czech Republic
| | - James P Balhoff
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC 27517, USA
| | - Gareth Baynam
- Rare Care Centre, Perth Children's Hospital, Perth, Australia
| | | | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Holli Bertram
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Somer Bishop
- Department of Psychiatry and Behavioral Sciences, UCSF Weil Institute for Neuroscience, San Francisco, CA, USA
| | - Hannah Blau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - David F Bodenstein
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | - Kaan Boztug
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Jolana Čady
- Institute of Health Information and Statistics of the Czech Republic, Prague, Czech Republic
| | - Tiffany J Callahan
- Department of Biomedical Informatics, Columbia University Irving Medical Center, NY, NY, USA
| | | | - Seth J Carbon
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - J Harry Caufield
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lauren E Chan
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Christopher G Chute
- Schools of Medicine, Public Health, and Nursing, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Jaime Cruz-Rojo
- UDISGEN (Dysmorphology and Genetics Unit), 12 de Octubre Hospital, Madrid, Spain
| | - Noémi Dahan-Oliel
- Department of Clinical Research, Shriners Hospitals for Children, Montreal, Quebec, Canada
| | - Jon R Davids
- Shriners Children's Northern California, Sacramento, CA, USA
| | - Maud de Dieuleveult
- Département I&D, AP-HP, Banque Nationale de Données Maladies Rares, Paris, France
| | - Vinicius de Souza
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - J Raymond DePaulo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Beata Derfalvi
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Ferdinand Dhombres
- Fetal Medicine Department, Armand Trousseau Hospital, Sorbonne University, GRC26, INSERM, Limics, Paris, France
| | - Claudia Diaz-Byrd
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Alexander J M Dingemans
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bruno Donadille
- St Antoine Hospital, Reference Center for Rare Growth Endocrine Disorders, Sorbonne University, AP-HP, INSERM, US14 - Orphanet, Plateforme Maladies Rares, Paris, France
| | | | - Reem Elfeky
- Department of Immunology, GOS Hospital for Children NHS Foundation Trust, University College London, London, UK
| | - Shahim Essaid
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Giovanna Fico
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Helen V Firth
- Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Yun Freudenberg-Hua
- Department of Psychiatry, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | | | - Davera L Gabriel
- School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | - Jessica Giordano
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Rachel Gore Moses
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian Green
- SNOMED International, London W2 6BD, UK
| | - Matthias Griese
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, German center for Lung research (DZL), Munich, Germany
| | - Tudor Groza
- Rare Care Centre, Perth Children's Hospital, Perth, Australia
| | | | - Julia Guthrie
- Department of Structural and Computational Biology, University of Vienna; Max Perutz Labs, Vienna, Austria
| | - Benjamin Gyori
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | - Ada Hamosh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Marc Hanauer
- INSERM, US14 - Orphanet, Plateforme Maladies Rares, Paris, France
| | - Kateřina Hanušová
- Institute of Health Information and Statistics of the Czech Republic, Prague, Czech Republic
| | | | - Harshad Hegde
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ingo Helbig
- Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kateřina Holasová
- Institute of Health Information and Statistics of the Czech Republic, Prague, Czech Republic
| | - Charles Tapley Hoyt
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | | | - Eric Hurwitz
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Julius O B Jacobsen
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Lisa Joseph
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, Bethesda, MD, USA
| | - Kamyar Keramatian
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Bryan King
- Department of Psychiatry and Behavioral Sciences, UCSF Weil Institute for Neuroscience, San Francisco, CA, USA
| | - Katrin Knoflach
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, German center for Lung research (DZL), Munich, Germany
| | - David A Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Megan L Kraus
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Carlo Kroll
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Maaike Kusters
- Immunology, NIHR Great Ormond Street Hospital BRC, London, UK
| | - Markus S Ladewig
- Department of Ophthalmology, University Clinic Marburg - Campus Fulda, Fulda, Germany
| | - David Lagorce
- INSERM, US14 - Orphanet, Plateforme Maladies Rares, Paris, France
| | - Meng-Chuan Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Pablo Lapunzina
- Institute of Medical and Molecular Genetics, Hospital Univ. La Paz, Madrid, Spain
| | - Bryan Laraway
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David Lewis-Smith
- Translational and Clinical Research Institute, Henry Wellcome Building, Framlington Place, Newcastle University, Newcastle-Upon-Tyne NE14LP, UK
| | | | - Caterina Lucano
- INSERM, US14 - Orphanet, Plateforme Maladies Rares, Paris, France
| | - Marzieh Majd
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Victor Martinez-Glez
- Center for Genomic Medicine, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Spain
| | - Toby H McHenry
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Julie A McMurry
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michaela Mihulová
- Department of Biology and Medical Genetics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech Republic
| | - Caitlin E Millett
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Philip B Mitchell
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| | - Veronika Moslerová
- Department of Biology and Medical Genetics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech Republic
| | - Kenji Narutomi
- Okinawa Prefectural Nanbu Medical Center & Children's Medical Center
| | - Shahrzad Nematollahi
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
| | - Julian Nevado
- Institute of Medical and Molecular Genetics, Hospital Univ. La Paz, Madrid, Spain
| | - Andrew A Nierenberg
- Dauten Family Center for Bipolar Treatment Innovation, Massachusetts General Hospital, Boston, MA, USA
| | - Nikola Novák Čajbiková
- Department of Biology and Medical Genetics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech Republic
| | - John I Nurnberger
- Stark Neurosciences Research Institute, Departments of Psychiatry and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Daniel Olson
- Data Collaboration Center, Data Science, Critical Path Institute, Tucson, AZ, USA
| | - Abigail Ortiz
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Harry Pachajoa
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER), Universidad Icesi, Cali, Colombia
| | - Guiomar Perez de Nanclares
- Molecular (epi) genetics lab, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Amy Peters
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Tim Putman
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christina K Rapp
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, German center for Lung research (DZL), Munich, Germany
| | - Ana Rath
- INSERM, US14 - Orphanet, Plateforme Maladies Rares, Paris, France
| | - Justin Reese
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lauren Rekerle
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Angharad M Roberts
- National Heart & Lung Institute & MRC London Institute of Medical Sciences, Imperial College London, London W12 0HS, UK
| | - Suzy Roy
- SNOMED International, London W2 6BD, UK
| | - Stephan J Sanders
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
| | - Catharina Schuetz
- Universitätsklinikum Carl Gustav Carus, Medizinische Fakultät, TU, Dresden, Germany
| | - Eva C Schulte
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
| | - Thomas G Schulze
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Martin Schwarz
- Department of Biology and Medical Genetics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech Republic
| | - Katie Scott
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Dominik Seelow
- Exploratory Diagnostic Sciences, Berliner Institut für Gesundheitsforschung - Charité, Berlin, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center UKS, Homburg/Saar, Germany
| | | | - Morgan N Similuk
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eric S Simon
- Eisenberg Family Depression Center, University of Michigan, Ann Arbor, MI, USA
| | - Balwinder Singh
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Damian Smedley
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Jake T Smolinsky
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Sarah Sperry
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | | | - Ray Stefancsik
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Robin Steinhaus
- Exploratory Diagnostic Sciences, Berliner Institut für Gesundheitsforschung - Charité, Berlin, Germany
| | - Rebecca Strawbridge
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | | - Polina Talapova
- Institute for Research and Health Policy Studies, Tufts Medicine, Boston, MA 2111, USA
| | | | - Pavel Tesner
- Department of Biology and Medical Genetics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech Republic
| | - Rhys H Thomas
- Translational and Clinical Research Institute, Henry Wellcome Building, Framlington Place, Newcastle University, Newcastle-Upon-Tyne NE14LP, UK
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, Bethesda, MD, USA
| | - Marek Turnovec
- Department of Biology and Medical Genetics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech Republic
| | - Marielle E van Gijn
- Department of Genetics, University Medical Center Groningen, Groningen, Netherlands
| | | | - Markéta Vlčková
- Department of Biology and Medical Genetics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech Republic
| | - Anita Walden
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kai Wang
- Chinese HPO Consortium, Beijing, China
| | - Ron Wapner
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - James S Ware
- National Heart & Lung Institute & MRC London Institute of Medical Sciences, Imperial College London, London W12 0HS, UK
| | | | | | - Lisa D Wiggins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Andrew E Williams
- Institute for Research and Health Policy Studies, Tufts Medicine, Boston, MA 2111, USA
| | - Chen Wu
- Chinese HPO Consortium, Beijing, China
| | - Margot J Wyrwoll
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
| | - Hui Xiong
- Chinese HPO Consortium, Beijing, China
| | - Nefize Yalin
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Yasunori Yamamoto
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Japan
| | - Lakshmi N Yatham
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Anastasia K Yocum
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Allan H Young
- Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London & South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent, London SE5 8AF, UK
| | - Zafer Yüksel
- Department of Human Genetics, Bioscientia Healthcare GmbH, Ingelheim, Germany
| | - Peter P Zandi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Andreas Zankl
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Ignacio Zarante
- Institute of Human Genetics, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Miroslav Zvolský
- Institute of Health Information and Statistics of the Czech Republic, Prague, Czech Republic
| | - Sabrina Toro
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Leigh C Carmody
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Nomi L Harris
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Monica C Munoz-Torres
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniel Danis
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Christopher J Mungall
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Melissa A Haendel
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| |
Collapse
|
19
|
Wu J, Wu T, Xie X, Niu Q, Zhao Z, Zhu B, Chen Y, Zhang L, Gao X, Niu X, Gao H, Li J, Xu L. Genetic Association Analysis of Copy Number Variations for Meat Quality in Beef Cattle. Foods 2023; 12:3986. [PMID: 37959106 PMCID: PMC10647706 DOI: 10.3390/foods12213986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Meat quality is an economically important trait for global food production. Copy number variations (CNVs) have been previously implicated in elucidating the genetic basis of complex traits. In this article, we detected a total of 112,198 CNVs and 10,102 CNV regions (CNVRs) based on the Bovine HD SNP array. Next, we performed a CNV-based genome-wide association analysis (GWAS) of six meat quality traits and identified 12 significant CNV segments corresponding to eight candidate genes, including PCDH15, CSMD3, etc. Using region-based association analysis, we further identified six CNV segments relevant to meat quality in beef cattle. Among these, TRIM77 and TRIM64 within CNVR4 on BTA29 were detected as candidate genes for backfat thickness (BFT). Notably, we identified a 34 kb duplication for meat color (MC) which was supported by read-depth signals, and this duplication was embedded within the keratin gene family including KRT4, KRT78, and KRT79. Our findings will help to dissect the genetic architecture of meat quality traits from the aspects of CNVs, and subsequently improve the selection process in breeding programs.
Collapse
Affiliation(s)
- Jiayuan Wu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Tianyi Wu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Xueyuan Xie
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Qunhao Niu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Zhida Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Bo Zhu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Yan Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Lupei Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Xue Gao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Xiaoyan Niu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Huijiang Gao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Junya Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Lingyang Xu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| |
Collapse
|
20
|
Miguel Sanz C, Martinez Navarro M, Caballero Diaz D, Sanchez-Elexpuru G, Di Donato V. Toward the use of novel alternative methods in epilepsy modeling and drug discovery. Front Neurol 2023; 14:1213969. [PMID: 37719765 PMCID: PMC10501616 DOI: 10.3389/fneur.2023.1213969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Epilepsy is a chronic brain disease and, considering the amount of people affected of all ages worldwide, one of the most common neurological disorders. Over 20 novel antiseizure medications (ASMs) have been released since 1993, yet despite substantial advancements in our understanding of the molecular mechanisms behind epileptogenesis, over one-third of patients continue to be resistant to available therapies. This is partially explained by the fact that the majority of existing medicines only address seizure suppression rather than underlying processes. Understanding the origin of this neurological illness requires conducting human neurological and genetic studies. However, the limitation of sample sizes, ethical concerns, and the requirement for appropriate controls (many patients have already had anti-epileptic medication exposure) in human clinical trials underscore the requirement for supplemental models. So far, mammalian models of epilepsy have helped to shed light on the underlying causes of the condition, but the high costs related to breeding of the animals, low throughput, and regulatory restrictions on their research limit their usefulness in drug screening. Here, we present an overview of the state of art in epilepsy modeling describing gold standard animal models used up to date and review the possible alternatives for this research field. Our focus will be mainly on ex vivo, in vitro, and in vivo larval zebrafish models contributing to the 3R in epilepsy modeling and drug screening. We provide a description of pharmacological and genetic methods currently available but also on the possibilities offered by the continued development in gene editing methodologies, especially CRISPR/Cas9-based, for high-throughput disease modeling and anti-epileptic drugs testing.
Collapse
|