1
|
Javed R, Mari M, Trosdal E, Duque T, Paddar MA, Allers L, Mudd MH, Claude-Taupin A, Akepati PR, Hendrix E, He Y, Salemi M, Phinney B, Uchiyama Y, Reggiori F, Deretic V. ATG9A facilitates the closure of mammalian autophagosomes. J Cell Biol 2025; 224:e202404047. [PMID: 39745851 DOI: 10.1083/jcb.202404047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/29/2024] [Accepted: 11/11/2024] [Indexed: 01/04/2025] Open
Abstract
Canonical autophagy captures within specialized double-membrane organelles, termed autophagosomes, an array of cytoplasmic components destined for lysosomal degradation. An autophagosome is completed when the growing phagophore undergoes ESCRT-dependent membrane closure, a prerequisite for its subsequent fusion with endolysosomal organelles and degradation of the sequestered cargo. ATG9A, a key integral membrane protein of the autophagy pathway, is best known for its role in the formation and expansion of phagophores. Here, we report a hitherto unappreciated function of mammalian ATG9A in directing autophagosome closure. ATG9A partners with IQGAP1 and key ESCRT-III component CHMP2A to facilitate this final stage in autophagosome formation. Thus, ATG9A is a central hub governing all major aspects of autophagosome membrane biogenesis, from phagophore formation to its closure, and is a unique ATG factor with progressive functionalities affecting the physiological outputs of autophagy.
Collapse
Affiliation(s)
- Ruheena Javed
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center , Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Muriel Mari
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Einar Trosdal
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center , Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Thabata Duque
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center , Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Masroor Ahmad Paddar
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center , Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Lee Allers
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center , Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Michal H Mudd
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center , Albuquerque, NM, USA
| | - Aurore Claude-Taupin
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center , Albuquerque, NM, USA
| | - Prithvi Reddy Akepati
- Gastroenterology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Emily Hendrix
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM, USA
| | - Yi He
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM, USA
| | - Michelle Salemi
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis , Davis, CA, USA
| | - Brett Phinney
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis , Davis, CA, USA
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center , Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
2
|
Paddar MA, Wang F, Trosdal ES, Hendrix E, He Y, Salemi MR, Mudd M, Jia J, Duque T, Javed R, Phinney BS, Deretic V. Noncanonical roles of ATG5 and membrane atg8ylation in retromer assembly and function. eLife 2025; 13:RP100928. [PMID: 39773872 PMCID: PMC11706607 DOI: 10.7554/elife.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
ATG5 is one of the core autophagy proteins with additional functions such as noncanonical membrane atg8ylation, which among a growing number of biological outputs includes control of tuberculosis in animal models. Here, we show that ATG5 associates with retromer's core components VPS26, VPS29, and VPS35 and modulates retromer function. Knockout of ATG5 blocked trafficking of a key glucose transporter sorted by the retromer, GLUT1, to the plasma membrane. Knockouts of other genes essential for membrane atg8ylation, of which ATG5 is a component, affected GLUT1 sorting, indicating that membrane atg8ylation as a process affects retromer function and endosomal sorting. The contribution of membrane atg8ylation to retromer function in GLUT1 sorting was independent of canonical autophagy. These findings expand the scope of membrane atg8ylation to specific sorting processes in the cell dependent on the retromer and its known interactors.
Collapse
Affiliation(s)
- Masroor Ahmad Paddar
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Fulong Wang
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Einar S Trosdal
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Emily Hendrix
- Department of Chemistry & Chemical Biology, The University of New MexicoAlbuquerqueUnited States
| | - Yi He
- Department of Chemistry & Chemical Biology, The University of New MexicoAlbuquerqueUnited States
| | - Michelle R Salemi
- Proteomics Core Facility, University of California, DavisDavisUnited States
| | - Michal Mudd
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Jingyue Jia
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Thabata Duque
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Ruheena Javed
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Brett S Phinney
- Proteomics Core Facility, University of California, DavisDavisUnited States
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| |
Collapse
|
3
|
Mandic M, Paunovic V, Vucicevic L, Kosic M, Mijatovic S, Trajkovic V, Harhaji-Trajkovic L. No energy, no autophagy-Mechanisms and therapeutic implications of autophagic response energy requirements. J Cell Physiol 2024; 239:e31366. [PMID: 38958520 DOI: 10.1002/jcp.31366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Autophagy is a lysosome-mediated self-degradation process of central importance for cellular quality control. It also provides macromolecule building blocks and substrates for energy metabolism during nutrient or energy deficiency, which are the main stimuli for autophagy induction. However, like most biological processes, autophagy itself requires ATP, and there is an energy threshold for its initiation and execution. We here present the first comprehensive review of this often-overlooked aspect of autophagy research. The studies in which ATP deficiency suppressed autophagy in vitro and in vivo were classified according to the energy pathway involved (oxidative phosphorylation or glycolysis). A mechanistic insight was provided by pinpointing the critical ATP-consuming autophagic events, including transcription/translation/interaction of autophagy-related molecules, autophagosome formation/elongation, autophagosome fusion with the lysosome, and lysosome acidification. The significance of energy-dependent fine-tuning of autophagic response for preserving the cell homeostasis, and potential implications for the therapy of cancer, autoimmunity, metabolic disorders, and neurodegeneration are discussed.
Collapse
Affiliation(s)
- Milos Mandic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Verica Paunovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ljubica Vucicevic
- Department of Neurophysiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Kosic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Srdjan Mijatovic
- Clinic for Emergency Surgery, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ljubica Harhaji-Trajkovic
- Department of Neurophysiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Norell PN, Campisi D, Mohan J, Wollert T. Biogenesis of omegasomes and autophagosomes in mammalian autophagy. Biochem Soc Trans 2024; 52:2145-2155. [PMID: 39392358 PMCID: PMC11555699 DOI: 10.1042/bst20240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Autophagy is a highly conserved catabolic pathway that maintains cellular homeostasis by promoting the degradation of damaged or superfluous cytoplasmic material. A hallmark of autophagy is the generation of membrane cisternae that sequester autophagic cargo. Expansion of these structures allows cargo to be engulfed in a highly selective and exclusive manner. Cytotoxic stress or starvation induces the formation of autophagosomes that sequester bulk cytoplasm instead of selected cargo. This rather nonselective pathway is essential for maintaining vital cellular functions during adverse conditions and is thus a major stress response pathway. Both selective and nonselective autophagy rely on the same molecular machinery. However, due to the different nature of cargo to be sequestered, the involved molecular mechanisms are fundamentally different. Although intense research over the past decades has advanced our understanding of autophagy, fundamental questions remain to be addressed. This review will focus on molecular principles and open questions regarding the formation of omegasomes and phagophores in nonselective mammalian autophagy.
Collapse
Affiliation(s)
- Puck N. Norell
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Daniele Campisi
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Jagan Mohan
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Thomas Wollert
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| |
Collapse
|
5
|
Paddar MA, Wang F, Trosdal ES, Hendrix E, He Y, Salemi M, Mudd M, Jia J, Duque TLA, Javed R, Phinney B, Deretic V. Noncanonical roles of ATG5 and membrane atg8ylation in retromer assembly and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602886. [PMID: 39026874 PMCID: PMC11257513 DOI: 10.1101/2024.07.10.602886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
ATG5 is one of the core autophagy proteins with additional functions such as noncanonical membrane atg8ylation, which among a growing number of biological outputs includes control of tuberculosis in animal models. Here we show that ATG5 associates with retromer's core components VPS26, VPS29 and VPS35 and modulates retromer function. Knockout of ATG5 blocked trafficking of a key glucose transporter sorted by the retromer, GLUT1, to the plasma membrane. Knockouts of other genes essential for membrane atg8ylation, of which ATG5 is a component, affected GLUT1 sorting, indicating that membrane atg8ylation as a process affects retromer function and endosomal sorting. The contribution of membrane atg8ylation to retromer function in GLUT1 sorting was independent of canonical autophagy. These findings expand the scope of membrane atg8ylation to specific sorting processes in the cell dependent on the retromer and its known interactors.
Collapse
Affiliation(s)
- Masroor Ahmad Paddar
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Fulong Wang
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Einar S Trosdal
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Emily Hendrix
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM, USA
| | - Yi He
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM, USA
| | - Michelle Salemi
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, CA 95616, USA
| | - Michal Mudd
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Jingyue Jia
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Thabata L A Duque
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Ruheena Javed
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Brett Phinney
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, CA 95616, USA
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
- Lead Contact
| |
Collapse
|
6
|
Holzer E, Martens S, Tulli S. The Role of ATG9 Vesicles in Autophagosome Biogenesis. J Mol Biol 2024; 436:168489. [PMID: 38342428 DOI: 10.1016/j.jmb.2024.168489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Autophagy mediates the degradation and recycling of cellular material in the lysosomal system. Dysfunctional autophagy is associated with a plethora of diseases including uncontrolled infections, cancer and neurodegeneration. In macroautophagy (hereafter autophagy) this material is encapsulated in double membrane vesicles, the autophagosomes, which form upon induction of autophagy. The precursors to autophagosomes, referred to as phagophores, first appear as small flattened membrane cisternae, which gradually enclose the cargo material as they grow. The assembly of phagophores during autophagy initiation has been a major subject of investigation over the past decades. A special focus has been ATG9, the only conserved transmembrane protein among the core machinery. The majority of ATG9 localizes to small Golgi-derived vesicles. Here we review the recent advances and breakthroughs regarding our understanding of how ATG9 and the vesicles it resides in serve to assemble the autophagy machinery and to establish membrane contact sites for autophagosome biogenesis. We also highlight open questions in the field that need to be addressed in the years to come.
Collapse
Affiliation(s)
- Elisabeth Holzer
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria; University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Campus-Vienna-Biocenter 1, Vienna, Austria.
| | - Sascha Martens
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria; University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria.
| | - Susanna Tulli
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria; University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria.
| |
Collapse
|
7
|
Shatz O, Elazar Z. The physiological relevance of autophagosome morphogenesis. Trends Biochem Sci 2024; 49:569-572. [PMID: 38796312 DOI: 10.1016/j.tibs.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024]
Abstract
Autophagy sequesters cytoplasmic portions into autophagosomes. While selective cargo is engulfed by elongation of cup-shaped isolation membranes (IMs), the morphogenesis of non-selective IMs remains elusive. Based on recent observations, we propose a novel model for autophagosome morphogenesis wherein active regulation of the IM rim serves the physiological roles of autophagy.
Collapse
Affiliation(s)
- Oren Shatz
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Zvulun Elazar
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
8
|
Nähse V, Stenmark H, Schink KO. Omegasomes control formation, expansion, and closure of autophagosomes. Bioessays 2024; 46:e2400038. [PMID: 38724256 DOI: 10.1002/bies.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/28/2024]
Abstract
Autophagy, an essential cellular process for maintaining cellular homeostasis and eliminating harmful cytoplasmic objects, involves the de novo formation of double-membraned autophagosomes that engulf and degrade cellular debris, protein aggregates, damaged organelles, and pathogens. Central to this process is the phagophore, which forms from donor membranes rich in lipids synthesized at various cellular sites, including the endoplasmic reticulum (ER), which has emerged as a primary source. The ER-associated omegasomes, characterized by their distinctive omega-shaped structure and accumulation of phosphatidylinositol 3-phosphate (PI3P), play a pivotal role in autophagosome formation. Omegasomes are thought to serve as platforms for phagophore assembly by recruiting essential proteins such as DFCP1/ZFYVE1 and facilitating lipid transfer to expand the phagophore. Despite the critical importance of phagophore biogenesis, many aspects remain poorly understood, particularly the complete range of proteins involved in omegasome dynamics, and the detailed mechanisms of lipid transfer and membrane contact site formation.
Collapse
Affiliation(s)
- Viola Nähse
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kay O Schink
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Ortega MA, Fraile-Martinez O, de Leon-Oliva D, Boaru DL, Lopez-Gonzalez L, García-Montero C, Alvarez-Mon MA, Guijarro LG, Torres-Carranza D, Saez MA, Diaz-Pedrero R, Albillos A, Alvarez-Mon M. Autophagy in Its (Proper) Context: Molecular Basis, Biological Relevance, Pharmacological Modulation, and Lifestyle Medicine. Int J Biol Sci 2024; 20:2532-2554. [PMID: 38725847 PMCID: PMC11077378 DOI: 10.7150/ijbs.95122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Autophagy plays a critical role in maintaining cellular homeostasis and responding to various stress conditions by the degradation of intracellular components. In this narrative review, we provide a comprehensive overview of autophagy's cellular and molecular basis, biological significance, pharmacological modulation, and its relevance in lifestyle medicine. We delve into the intricate molecular mechanisms that govern autophagy, including macroautophagy, microautophagy and chaperone-mediated autophagy. Moreover, we highlight the biological significance of autophagy in aging, immunity, metabolism, apoptosis, tissue differentiation and systemic diseases, such as neurodegenerative or cardiovascular diseases and cancer. We also discuss the latest advancements in pharmacological modulation of autophagy and their potential implications in clinical settings. Finally, we explore the intimate connection between lifestyle factors and autophagy, emphasizing how nutrition, exercise, sleep patterns and environmental factors can significantly impact the autophagic process. The integration of lifestyle medicine into autophagy research opens new avenues for promoting health and longevity through personalized interventions.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego de Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, 28805 Alcala de Henares, Spain
| | - Agustin Albillos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), Príncipe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
10
|
Shatz O, Fraiberg M, Isola D, Das S, Gogoi O, Polyansky A, Shimoni E, Dadosh T, Dezorella N, Wolf SG, Elazar Z. Rim aperture of yeast autophagic membranes balances cargo inclusion with vesicle maturation. Dev Cell 2024; 59:911-923.e4. [PMID: 38447569 DOI: 10.1016/j.devcel.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 11/28/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
Autophagy eliminates cytoplasmic material by engulfment in membranous vesicles targeted for lysosome degradation. Nonselective autophagy coordinates sequestration of bulk cargo with the growth of the isolation membrane (IM) in a yet-unknown manner. Here, we show that in the budding yeast Saccharomyces cerevisiae, IMs expand while maintaining a rim sufficiently wide for sequestration of large cargo but tight enough to mature in due time. An obligate complex of Atg24/Snx4 with Atg20 or Snx41 assembles locally at the rim in a spatially extended manner that specifically depends on autophagic PI(3)P. This assembly stabilizes the open rim to promote autophagic sequestration of large cargo in correlation with vesicle expansion. Moreover, constriction of the rim by the PI(3)P-dependent Atg2-Atg18 complex and clearance of PI(3)P by Ymr1 antagonize rim opening to promote autophagic maturation and consumption of small cargo. Tight regulation of membrane rim aperture by PI(3)P thus couples the mechanism and physiology of nonselective autophagy.
Collapse
Affiliation(s)
- Oren Shatz
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Milana Fraiberg
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Damilola Isola
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Shubhankar Das
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Olee Gogoi
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Alexandra Polyansky
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Eyal Shimoni
- Chemical Research Support, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Tali Dadosh
- Chemical Research Support, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Nili Dezorella
- Chemical Research Support, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Sharon G Wolf
- Chemical Research Support, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Zvulun Elazar
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
11
|
Klute S, Sparrer KMJ. Friends and Foes: The Ambivalent Role of Autophagy in HIV-1 Infection. Viruses 2024; 16:500. [PMID: 38675843 PMCID: PMC11054699 DOI: 10.3390/v16040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Autophagy has emerged as an integral part of the antiviral innate immune defenses, targeting viruses or their components for lysosomal degradation. Thus, successful viruses, like pandemic human immunodeficiency virus 1 (HIV-1), evolved strategies to counteract or even exploit autophagy for efficient replication. Here, we provide an overview of the intricate interplay between autophagy and HIV-1. We discuss the impact of autophagy on HIV-1 replication and report in detail how HIV-1 manipulates autophagy in infected cells and beyond. We also highlight tissue and cell-type specifics in the interplay between autophagy and HIV-1. In addition, we weigh exogenous modulation of autophagy as a putative double-edged sword against HIV-1 and discuss potential implications for future antiretroviral therapy and curative approaches. Taken together, we consider both antiviral and proviral roles of autophagy to illustrate the ambivalent role of autophagy in HIV-1 pathogenesis and therapy.
Collapse
|
12
|
Maruyama T, Hama Y, Noda NN. Mechanisms of mitochondrial reorganization. J Biochem 2024; 175:167-178. [PMID: 38016932 DOI: 10.1093/jb/mvad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023] Open
Abstract
The cytoplasm of eukaryotes is dynamically zoned by membrane-bound and membraneless organelles. Cytoplasmic zoning allows various biochemical reactions to take place at the right time and place. Mitochondrion is a membrane-bound organelle that provides a zone for intracellular energy production and metabolism of lipids and iron. A key feature of mitochondria is their high dynamics: mitochondria constantly undergo fusion and fission, and excess or damaged mitochondria are selectively eliminated by mitophagy. Therefore, mitochondria are appropriate model systems to understand dynamic cytoplasmic zoning by membrane organelles. In this review, we summarize the molecular mechanisms of mitochondrial fusion and fission as well as mitophagy unveiled through studies using yeast and mammalian models.
Collapse
Affiliation(s)
- Tatsuro Maruyama
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yutaro Hama
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
- Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-0815, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
- Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-0815, Japan
| |
Collapse
|
13
|
Ma L, Han T, Zhan YA. Mechanism and role of mitophagy in the development of severe infection. Cell Death Discov 2024; 10:88. [PMID: 38374038 PMCID: PMC10876966 DOI: 10.1038/s41420-024-01844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Mitochondria produce adenosine triphosphate and potentially contribute to proinflammatory responses and cell death. Mitophagy, as a conservative phenomenon, scavenges waste mitochondria and their components in the cell. Recent studies suggest that severe infections develop alongside mitochondrial dysfunction and mitophagy abnormalities. Restoring mitophagy protects against excessive inflammation and multiple organ failure in sepsis. Here, we review the normal mitophagy process, its interaction with invading microorganisms and the immune system, and summarize the mechanism of mitophagy dysfunction during severe infection. We highlight critical role of normal mitophagy in preventing severe infection.
Collapse
Affiliation(s)
- Lixiu Ma
- Department of Respiratory and Critical Care Medicine, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Tianyu Han
- Jiangxi Institute of Respiratory Disease, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yi-An Zhan
- Department of Respiratory and Critical Care Medicine, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
14
|
Nähse V, Schink KO, Stenmark H. ATPase-regulated autophagosome biogenesis. Autophagy 2024; 20:218-219. [PMID: 37722386 PMCID: PMC10761139 DOI: 10.1080/15548627.2023.2255967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023] Open
Abstract
Omega-shaped domains of the endoplasmic reticulum, known as omegasomes, have been suggested to contribute to autophagosome biogenesis, although their exact function is not known. Omegasomes are characterized by the presence of the double FYVE domain containing protein ZFYVE1/DFCP1, but it has remained a paradox that depletion of ZFYVE1 does not prevent bulk macroautophagy/autophagy. We recently showed that ZFYVE1 contains an N-terminal ATPase domain which dimerizes upon ATP binding. Mutations in the ATPase domain that inhibit ATP binding or hydrolysis do not prevent omegasome expansion and maturation. However, omegasome constriction is inhibited by these mutations, which results in an increased lifetime and thereby higher number of omegasomes. Interestingly, whereas ZFYVE1 knockout or mutations do not significantly affect bulk autophagy, selective autophagy of mitochondria, protein aggregates and micronuclei is inhibited. We propose that ATP binding and hydrolysis control the di- or multimerization state of ZFYVE1 which could provide the mechanochemical energy to drive large omegasome constriction and autophagosome completion.
Collapse
Affiliation(s)
- Viola Nähse
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, montebello, OsloNorway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kay O. Schink
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, montebello, OsloNorway
- Department of Molecular Medicine, Institute of Basic MedicalSciences, University of Oslo, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, montebello, OsloNorway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| |
Collapse
|
15
|
Nigorikawa K, Fukushima Y, Shimada C, Matsumoto D, Nomura W. CRISPRa Analysis of Phosphoinositide Phosphatases Shows That TMEM55A Is a Positive Regulator of Autophagy. Biol Pharm Bull 2024; 47:1148-1153. [PMID: 38880622 DOI: 10.1248/bpb.b23-00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Transcriptional activation, based on Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) and known as CRISPR activation (CRISPRa), is a specific and safe tool to upregulate endogenous genes. Therefore, CRISPRa is valuable not only for analysis of molecular mechanisms of cellular events, but also for treatment of various diseases. Regulating autophagy has been proposed to enhance effects of some therapies. In this study, we upregulated genes for phosphoinositide phosphatases, SACM1L, PIP4P1, and PIP4P2, using CRISPRa, and their effects on autophagy were examined. Our results suggested that TMEM55A/PIP4P2, a phosphatidylinositol-4,5-bisphosphate 4-phosphatase, positively regulates basal autophagy in 293A cells. Furthermore, it was also suggested that SAC1, a phosphatidylinositol 4-phosphatase, negatively regulates basal autophagic degradation.
Collapse
Affiliation(s)
- Kiyomi Nigorikawa
- School of Pharmaceutical Sciences, Hiroshima University
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Yu Fukushima
- School of Pharmaceutical Sciences, Hiroshima University
| | | | - Daisuke Matsumoto
- School of Pharmaceutical Sciences, Hiroshima University
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Wataru Nomura
- School of Pharmaceutical Sciences, Hiroshima University
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
16
|
Deretic V. Atg8ylation as a host-protective mechanism against Mycobacterium tuberculosis. FRONTIERS IN TUBERCULOSIS 2023; 1:1275882. [PMID: 37901138 PMCID: PMC10612523 DOI: 10.3389/ftubr.2023.1275882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Nearly two decades have passed since the first report on autophagy acting as a cell-autonomous defense against Mycobacterium tuberculosis. This helped usher a new area of research within the field of host-pathogen interactions and led to the recognition of autophagy as an immunological mechanism. Interest grew in the fundamental mechanisms of antimicrobial autophagy and in the prophylactic and therapeutic potential for tuberculosis. However, puzzling in vivo data have begun to emerge in murine models of M. tuberculosis infection. The control of infection in mice affirmed the effects of certain autophagy genes, specifically ATG5, but not of other ATGs. Recent studies with a more complete inactivation of ATG genes now show that multiple ATG genes are indeed necessary for protection against M. tuberculosis. These particular ATG genes are involved in the process of membrane atg8ylation. Atg8ylation in mammalian cells is a broad response to membrane stress, damage and remodeling of which canonical autophagy is one of the multiple downstream outputs. The current developments clarify the controversies and open new avenues for both fundamental and translational studies.
Collapse
Affiliation(s)
- Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| |
Collapse
|
17
|
Li M, Tripathi-Giesgen I, Schulman BA, Baumeister W, Wilfling F. In situ snapshots along a mammalian selective autophagy pathway. Proc Natl Acad Sci U S A 2023; 120:e2221712120. [PMID: 36917659 PMCID: PMC10041112 DOI: 10.1073/pnas.2221712120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/08/2023] [Indexed: 03/16/2023] Open
Abstract
Selective macroautophagy (hereafter referred to as autophagy) describes a process in which cytosolic material is engulfed in a double membrane organelle called an autophagosome. Autophagosomes are carriers responsible for delivering their content to a lytic compartment for destruction. The cargo can be of diverse origin, ranging from macromolecular complexes to protein aggregates, organelles, and even invading pathogens. Each cargo is unique in composition and size, presenting different challenges to autophagosome biogenesis. Among the largest cargoes targeted by the autophagy machinery are intracellular bacteria, which can, in the case of Salmonella, range from 2 to 5 μm in length and 0.5 to 1.5 μm in width. How phagophores form and expand on such a large cargo remains mechanistically unclear. Here, we used HeLa cells infected with an auxotrophic Salmonella to study the process of phagophore biogenesis using in situ correlative cryo-ET. We show that host cells generate multiple phagophores at the site of damaged Salmonella-containing vacuoles (SCVs). The observed double membrane structures range from disk-shaped to expanded cup-shaped phagophores, which have a thin intermembrane lumen with a dilating rim region and expand using the SCV, the outer membrane of Salmonella, or existing phagophores as templates. Phagophore rims establish different forms of contact with the endoplasmic reticulum (ER) via structurally distinct molecular entities for membrane formation and expansion. Early omegasomes correlated with the marker Double-FYVE domain-Containing Protein 1 (DFCP1) are observed in close association with the ER without apparent membrane continuity. Our study provides insights into the formation of phagophores around one of the largest selective cargoes.
Collapse
Affiliation(s)
- Meijing Li
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry,82152Martinsried, Germany
| | - Ishita Tripathi-Giesgen
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry,82152Martinsried, Germany
| | - Brenda A. Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry,82152Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry,82152Martinsried, Germany
| | - Florian Wilfling
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry,82152Martinsried, Germany
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, 60438Frankfurt a. M., Germany
| |
Collapse
|