1
|
Blechter B, Wang X, Shi J, Shiraishi K, Choi J, Matsuo K, Chen TY, Dai J, Hung RJ, Chen K, Shu XO, Kim YT, Choudhury PP, Williams J, Landi MT, Lin D, Zheng W, Yin Z, Zhou B, Wang J, Seow WJ, Song L, Chang IS, Hu W, Chien LH, Cai Q, Hong YC, Kim HN, Wu YL, Wong MP, Richardson BD, Li S, Zhang T, Breeze C, Wang Z, Bassig BA, Kim JH, Albanes D, Wong JY, Shin MH, Chung LP, Yang Y, An SJ, Zheng H, Yatabe Y, Zhang XC, Kim YC, Caporaso NE, Chang J, Man Ho JC, Kubo M, Daigo Y, Song M, Momozawa Y, Kamatani Y, Kobayashi M, Okubo K, Honda T, Hosgood HD, Kunitoh H, Watanabe SI, Miyagi Y, Nakayama H, Matsumoto S, Horinouchi H, Tsuboi M, Hamamoto R, Goto K, Ohe Y, Takahashi A, Goto A, Minamiya Y, Hara M, Nishida Y, Takeuchi K, Wakai K, Matsuda K, Murakami Y, Shimizu K, Suzuki H, Saito M, Ohtaki Y, Tanaka K, Wu T, Wei F, Dai H, Machiela MJ, Su J, Kim YH, Oh IJ, Fun Lee VH, Chang GC, Tsai YH, Che KY, Huang MS, Su WC, Chen YM, Seow A, Park JY, Kweon SS, Chen KC, Gao YT, Qian B, Wu C, Lu D, Liu J, Schwartz AG, Houlston R, Spitz MR, Gorlov IP, Wu X, Yang P, Lam S, Tardon A, Chen C, Bojesen SE, Johansson M, Risch A, Bickeböller H, Ji BT, Wichmann HE, Christiani DC, Rennert G, Arnold S, Brennan P, McKay J, Field JK, Davies MPA, Shete SS, Le Marchand L, Liu G, Andrew A, Kiemeney LA, Zienolddiny-Narui S, Grankvist K, Johansson M, Cox A, Taylor F, Yuan JM, Lazarus P, Schabath MB, Aldrich MC, Jeon HS, Jiang SS, Sung JS, Chen CH, Hsiao CF, Jung YJ, Guo H, Hu Z, Burdett L, Yeager M, Hutchinson A, Hicks B, Liu J, Zhu B, Berndt SI, Wu W, Wang J, Li Y, Choi JE, Park KH, Sung SW, Liu L, Kang CH, Wang WC, Xu J, Guan P, Tan W, Yu CJ, Yang G, Loon Sihoe AD, Chen Y, Choi YY, Kim JS, Yoon HI, Park IK, Xu P, He Q, Wang CL, Hung HH, Vermeulen RCH, Cheng I, Wu J, Lim WY, Tsai FY, Chan JKC, Li J, Chen H, Lin HC, Jin L, Liu J, Sawada N, Yamaji T, Wyatt K, Li SA, Ma H, Zhu M, Wang Z, Cheng S, Li X, Ren Y, Chao A, Iwasaki M, Zhu J, Jiang G, Fei K, Wu G, Chen CY, Chen CJ, Yang PC, Yu J, Stevens VL, Fraumeni JF, Chatterjee N, Gorlova OY, Amos CI, Shen H, Hsiung CA, Chanock SJ, Rothman N, Kohno T, Lan Q, Zhang H. Stratifying Lung Adenocarcinoma Risk with Multi-ancestry Polygenic Risk Scores in East Asian Never-Smokers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.26.24309127. [PMID: 38978671 PMCID: PMC11230324 DOI: 10.1101/2024.06.26.24309127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Polygenic risk scores (PRSs) are promising for risk stratification but have mainly been developed in European populations. This study developed single- and multi-ancestry PRSs for lung adenocarcinoma (LUAD) in East Asian (EAS) never-smokers using genome-wide association study summary statistics from EAS (8,002 cases; 20,782 controls) and European (2,058 cases; 5,575 controls) populations. A multi-ancestry PRS, developed using CT-SLEB, was strongly associated with LUAD risk (odds ratio=1.71, 95% confidence interval (CI):1.61,1.82), with an area under the receiver operating curve value of 0.640 (95% CI:0.629,0.653). Individuals in the highest 20% of the PRS had nearly four times the risk compared to the lowest 20%. Individuals in the 95 th percentile of the PRS had an estimated 6.69% lifetime absolute risk. Notably, this group reached the average population 10-year LUAD risk at age 50 (0.42%) by age 41. Our study underscores the potential of multi-ancestry PRS approaches to enhance LUAD risk stratification in EAS never-smokers.
Collapse
|
2
|
Duncan DH, van Moorselaar D, Theeuwes J. Visual statistical learning requires attention. Psychon Bull Rev 2024:10.3758/s13423-024-02605-1. [PMID: 39497006 DOI: 10.3758/s13423-024-02605-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2024] [Indexed: 11/06/2024]
Abstract
Statistical learning is a person's ability to automatically learn environmental regularities through passive exposure. Since the earliest studies of statistical learning in infants, it has been debated exactly how "passive" this learning can be (i.e., whether attention is needed for learning to occur). In Experiment 1 of the current study, participants performed a serial feature search task where they searched for a target shape among heterogenous nontarget shapes. Unbeknownst to the participants, one of these nontarget shapes was presented much more often in location. Even though the regularity concerned a nonsalient, nontarget item that did not receive any attentional priority during search, participants still learned its regularity (responding faster when it was presented at this high-probability location). While this may suggest that not much, if any, attention is needed for learning to occur, follow-up experiments showed that if an attentional strategy (i.e., color subset search or exogenous cueing) effectively prevents attention from being directed to this critical regularity, incidental learning is no longer observed. We conclude that some degree of attention to a regularity is needed for visual statistical learning to occur.
Collapse
Affiliation(s)
- Dock H Duncan
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
- Institute Brain and Behavior Amsterdam (iBBA), Amsterdam, the Netherlands.
| | - Dirk van Moorselaar
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Institute Brain and Behavior Amsterdam (iBBA), Amsterdam, the Netherlands
| | - Jan Theeuwes
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Institute Brain and Behavior Amsterdam (iBBA), Amsterdam, the Netherlands
- William James Center for Research, ISPA-Instituto Universitario, Lisbon, Portugal
| |
Collapse
|
3
|
Kuo CY, Yeh YY, Chao HF. The rise and fall of durable color-induced attentional bias. Atten Percept Psychophys 2024; 86:2329-2344. [PMID: 39285144 DOI: 10.3758/s13414-024-02946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2024] [Indexed: 10/16/2024]
Abstract
Target and distractor templates play a pivotal role in guiding attentional control during visual search, with the former template facilitating target search and the latter template leading distractor suppression. We first investigated whether task-irrelevant colors could earn their value through color-target contingency in the training phase and bias attention when they became a distractor in search for a singleton shape during the test phase. Colors provided useful information for target selection, with high- and low-informational values, respectively, in Experiments 1 and 2. Experience-based attentional biases were observed in the first half of the former experiment, and null results were observed in the latter. Experiment 3 verified whether the null results were elicited because the response-relevant feature inside of the singleton shape was also a singleton. Colors were task defined in the training phase, and the test display was the same as that used in Experiment 2. Experience-based attentional biases were observed in the first half of the test phase. In Experiment 4, we tested whether decreasing the consistency of distractor processing can lengthen the duration of experience-based attentional biases by increasing the number of possible response-relevant features inside of the colored distractor. The results showed experience-based attentional biases throughout the test phase. The results highlight the ideas that the informational value provided by a feature dimension for facilitating target selection can modify a target template and that the consistency of rejecting a distractor feature can play a role in the formation of a distractor template.
Collapse
Affiliation(s)
- Chun-Yu Kuo
- Department of Adult and Continuing Education, National Taiwan Normal University, Taipei City, Taiwan
| | - Yei-Yu Yeh
- Center for General Education, Chang Gung University, Taoyuan City, Taiwan
- Department of Psychology, National Taiwan University, Taipei City, Taiwan
| | - Huan-Fu Chao
- Department of Psychology, Chung Yuan Christian University, Taoyuan City, Taiwan.
- Department of Educational Psychology and Counseling, East Dist, National Tsing Hua University, Nanda Rd, No. 521, Hsinchu City, 300193, Taiwan.
| |
Collapse
|
4
|
Brill-Weil SG, Kramer PF, Yanez A, Clever FH, Zhang R, Khaliq ZM. Presynaptic GABA A receptors control integration of nicotinic input onto dopaminergic axons in the striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600616. [PMID: 39372741 PMCID: PMC11451734 DOI: 10.1101/2024.06.25.600616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Axons of dopaminergic neurons express gamma-aminobutyric acid type-A receptors (GABAARs) and nicotinic acetylcholine receptors (nAChRs) which are both independently positioned to shape striatal dopamine release. Using electrophysiology and calcium imaging, we investigated how interactions between GABAARs and nAChRs influence dopaminergic axon excitability. Direct axonal recordings showed that benzodiazepine application suppresses subthreshold axonal input from cholinergic interneurons (CINs). In imaging experiments, we used the first temporal derivative of presynaptic calcium signals to distinguish between direct- and nAChR-evoked activity in dopaminergic axons. We found that GABAAR antagonism with gabazine selectively enhanced nAChR-evoked axonal signals. Acetylcholine release was unchanged in gabazine suggesting that GABAARs located on dopaminergic axons, but not CINs, mediated this enhancement. Unexpectedly, we found that a widely used GABAAR antagonist, picrotoxin, inhibits axonal nAChRs and should be used cautiously for striatal circuit analysis. Overall, we demonstrate that GABAARs on dopaminergic axons regulate integration of nicotinic input to shape presynaptic excitability.
Collapse
Affiliation(s)
- Samuel G. Brill-Weil
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Paul F. Kramer
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Anthony Yanez
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Faye H. Clever
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Renshu Zhang
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Zayd M. Khaliq
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
7
|
Yu X, Li J, Zhu H, Tian X, Lau E. Electrophysiological hallmarks for event relations and event roles in working memory. Front Neurosci 2024; 17:1282869. [PMID: 38328555 PMCID: PMC10847304 DOI: 10.3389/fnins.2023.1282869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/22/2023] [Indexed: 02/09/2024] Open
Abstract
The ability to maintain events (i.e., interactions between/among objects) in working memory is crucial for our everyday cognition, yet the format of this representation is poorly understood. The current ERP study was designed to answer two questions: How is maintaining events (e.g., the tiger hit the lion) neurally different from maintaining item coordinations (e.g., the tiger and the lion)? That is, how is the event relation (present in events but not coordinations) represented? And how is the agent, or initiator of the event encoded differently from the patient, or receiver of the event during maintenance? We used a novel picture-sentence match-across-delay approach in which the working memory representation was "pinged" during the delay, replicated across two ERP experiments with Chinese and English materials. We found that maintenance of events elicited a long-lasting late sustained difference in posterior-occipital electrodes relative to non-events. This effect resembled the negative slow wave reported in previous studies of working memory, suggesting that the maintenance of events in working memory may impose a higher cost compared to coordinations. Although we did not observe significant ERP differences associated with pinging the agent vs. the patient during the delay, we did find that the ping appeared to dampen the ongoing sustained difference, suggesting a shift from sustained activity to activity silent mechanisms. These results suggest a new method by which ERPs can be used to elucidate the format of neural representation for events in working memory.
Collapse
Affiliation(s)
- Xinchi Yu
- Program of Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States
- Department of Linguistics, University of Maryland, College Park, MD, United States
| | - Jialu Li
- Division of Arts and Sciences, New York University Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Hao Zhu
- Division of Arts and Sciences, New York University Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Xing Tian
- Division of Arts and Sciences, New York University Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Ellen Lau
- Program of Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States
- Department of Linguistics, University of Maryland, College Park, MD, United States
| |
Collapse
|