1
|
Movérare R, Lind P, Marknell DeWitt Å. The mouse monoclonal antibody 4E3 is specific for the G1m17 allotype of human IgG1. J Immunol Methods 2024; 534:113766. [PMID: 39424054 DOI: 10.1016/j.jim.2024.113766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/11/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Allotype is an amino acid variation within the immunoglobulin isotypes. Four allotypes have been described for human IgG1 and two of them (G1m3 and G1m17) are located at position 214 in the CH1 region of the gamma chain. Various diseases have been associated with allotype expression, making the allotype research an interesting field in immunology. However, allotype-specific reagents are rare. In the present study the specificity of a widely used and commercially available IgG1-specific monoclonal antibody named 4E3, described as binding to the hinge region of IgG1, was evaluated. Using the ImmunoCAP™ assay technology, surprisingly no IgG1 was measured in 13 of 23 human serum and plasma samples when 4E3 was used in an antibody-enzyme conjugate as detection reagent. Further evaluation of 4E3 using eight IgG1 myeloma paraproteins revealed that 4E3 did not bind to three of them. No association was seen between the binding pattern and myeloma light chain glycosylation or the kappa or light chain use. By comparing the myeloma paraprotein binding patterns of 4E3 and TM14 (a monoclonal antibody with known G1m3 specificity), it was indicated that 4E3 only bound to myeloma paraproteins expressing the G1m17 allotype. This was confirmed using recombinant human antibodies expressing either the G1m3 or G1m17 allotype. The G1m17 bias of 4E3 seen using ImmunoCAP was also observed in microtiter plate-based enzyme-linked immunosorbent assays. The antibody 4E3 has a G1m17 bias limiting its use in assays to measure IgG1 antibodies. However, it may be a valuable allotype-specific reagent.
Collapse
Affiliation(s)
- Robert Movérare
- Thermo Fisher Scientific, Uppsala, Sweden; Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden.
| | - Peter Lind
- Thermo Fisher Scientific, Uppsala, Sweden
| | | |
Collapse
|
2
|
Rappuoli R, Alter G, Pulendran B. Transforming vaccinology. Cell 2024; 187:5171-5194. [PMID: 39303685 DOI: 10.1016/j.cell.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 09/22/2024]
Abstract
The COVID-19 pandemic placed the field of vaccinology squarely at the center of global consciousness, emphasizing the vital role of vaccines as transformative public health tools. The impact of vaccines was recently acknowledged by the award of the 2023 Nobel Prize in Physiology or Medicine to Katalin Kariko and Drew Weissman for their seminal contributions to the development of mRNA vaccines. Here, we provide a historic perspective on the key innovations that led to the development of some 27 licensed vaccines over the past two centuries and recent advances that promise to transform vaccines in the future. Technological revolutions such as reverse vaccinology, synthetic biology, and structure-based design transformed decades of vaccine failures into successful vaccines against meningococcus B and respiratory syncytial virus (RSV). Likewise, the speed and flexibility of mRNA vaccines profoundly altered vaccine development, and the advancement of novel adjuvants promises to revolutionize our ability to tune immunity. Here, we highlight exciting new advances in the field of systems immunology that are transforming our mechanistic understanding of the human immune response to vaccines and how to predict and manipulate them. Additionally, we discuss major immunological challenges such as learning how to stimulate durable protective immune response in humans.
Collapse
Affiliation(s)
| | - Galit Alter
- Moderna Therapeutics, Cambridge, MA 02139, USA.
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Tasdighian S, Bechtold V, Essaghir A, Saeys Y, Burny W. An innate immune signature induced by AS01- or AS03-adjuvanted vaccines predicts the antibody response magnitude and quality consistently over time. Front Immunol 2024; 15:1412732. [PMID: 39206189 PMCID: PMC11349632 DOI: 10.3389/fimmu.2024.1412732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Background Antibody-mediated protection can depend on mechanisms varying from neutralization to Fc-dependent innate immune-cell recruitment. Adjuvanted vaccine development relies on a holistic understanding of how adjuvants modulate the quantity/titer and quality of the antibody response. Methods A Phase 2 trial (ClinicalTrials.gov: NCT00805389) evaluated hepatitis B vaccines formulated with licensed adjuvants (AS01B, AS01E, AS03, AS04 or Alum) in antigen-naïve adults. The trial investigated the role of adjuvants in shaping antibody-effector functions, and identified an innate transcriptional response shared by AS01B, AS01E and AS03. We integrated previously reported data on the innate response (gene expression, cytokine/C-reactive protein levels) and on quantitative/qualitative features of the mature antibody response (Fc-related parameters, immunoglobulin titers, avidity). Associations between the innate and humoral parameters were explored using systems vaccinology and a machine-learning framework. Results A dichotomy in responses between AS01/AS03 and AS04/Alum (with the former two contributing most to the association with the humoral response) was observed across all timepoints of this longitudinal study. The consistent patterns over time suggested a similarity in the impacts of the two-dose immunization regimen, year-long interval, and non-adjuvanted antigenic challenge given one year later. An innate signature characterized by interferon pathway-related gene expression and secreted interferon-γ-induced protein 10 and C-reactive protein, which was shared by AS01 and AS03, consistently predicted both the qualitative antibody response features and the titers. The signature also predicted from the antibody response quality, the group of adjuvants from which the administered vaccine was derived. Conclusion An innate signature induced by AS01- or AS03-adjuvanted vaccines predicts the antibody response magnitude and quality consistently over time.
Collapse
Affiliation(s)
- Setareh Tasdighian
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | | | | | - Yvan Saeys
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | | |
Collapse
|
4
|
Buhre JS, Pongracz T, Geisen UM, Schubert M, Wang W, Nouta J, Obara M, Lehrian S, Rahmöller J, Petry J, Tran F, Schreiber S, Sümbül M, Berner D, Gerdes S, Schirmer J, Longardt AC, Hoff P, Kalinke U, Ludwig RJ, Bartsch YC, Hoyer BF, Wuhrer M, Ehlers M. Anti-TNF therapy impairs both short- and long-term IgG responses after repeated vaccination. Allergy 2024. [PMID: 39049686 DOI: 10.1111/all.16241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/29/2024] [Accepted: 06/01/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Recently, it has been questioned whether vaccination of patients with inflammatory (auto)immune diseases under anti-tumor necrosis factor (TNF) treatment leads to impaired vaccine-induced immune responses and protection against breakthrough infections. However, the effects of TNF blockade on short- and long-term immune responses after repeated vaccination remain unclear. Vaccination studies have shown that initial short-term IgG antibodies (Abs) carry highly galactosylated and sialylated Fc glycans, whilst long-term IgG Abs have low levels of galactosylation and sialylation and are most likely generated by long-lived plasma cells (PCs) derived primarily from the germinal center (GC) response. Thus, IgG Fc glycosylation patterns may be applicable to distinguish short- and long-term vaccine responses after repeated vaccination under the influence of anti-TNF treatment. METHODS We used COVID-19 vaccination as a model to investigate vaccine-induced IgG subclass levels and Fc glycosylation patterns, B cell subsets, and effector functions of short- and long-term Ab responses after up to three vaccinations in patients on anti-TNF or other immunosuppressive treatments and in healthy individuals. Using TriNetX, a global healthcare database, we determined the risk of SARS-CoV-2 breakthrough infections in vaccinated patients treated with anti-TNF or other immunosuppressive drugs. RESULTS Anti-TNF treatment reduced the long-term abundance of all anti-S IgG subclasses with low levels of galactosylation and sialylation. Re-activation of potential memory B cells initially generated highly galactosylated and sialylated IgG antibodies, which were progressively reduced after each booster dose in anti-TNF-treated patients, especially in the elderly. The reduced short- and long-term IgG (1) levels in anti-TNF-treated patients correlated with diminished functional activity and an increased risk for the development of COVID-19. CONCLUSIONS The data suggest that anti-TNF treatment reduces both GC-dependent long-lived PCs and GC-dependent memory B cell-derived short-lived PCs, hence both the long- and short-term IgG subclass responses, respectively, after repeated vaccination. We propose that anti-TNF therapy, especially in the elderly, reduces the benefit of booster vaccination.
Collapse
Affiliation(s)
- Jana Sophia Buhre
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Tamas Pongracz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ulf Martin Geisen
- Medical Department 1, Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Mareike Schubert
- Laboratory of Anti-viral antibody-omics, TWINCORE-Institute for Experimental Infection Research, Helmholtz Center for Infection Research (HZI) and Medical School Hannover (MHH), Hannover, Germany
| | - Wenjun Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Nouta
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maureen Obara
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Selina Lehrian
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Johann Rahmöller
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Janina Petry
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel, Kiel, Germany
- Department for Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel, Kiel, Germany
- Department for Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Melike Sümbül
- Department for Dermatology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Dennis Berner
- Medical Department 1, Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Sascha Gerdes
- Department for Dermatology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jan Schirmer
- Medical Department 1, Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ann Carolin Longardt
- Department of Pediatrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Paula Hoff
- Department of Rheumatology, Endokrinologikum-Gruppe, Berlin, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Yannic C Bartsch
- Laboratory of Anti-viral antibody-omics, TWINCORE-Institute for Experimental Infection Research, Helmholtz Center for Infection Research (HZI) and Medical School Hannover (MHH), Hannover, Germany
| | - Bimba F Hoyer
- Medical Department 1, Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
- Airway Research Center North (ARCN), University of Lübeck, German Center for Lung Research (DZL), Lübeck, Germany
| |
Collapse
|
5
|
Lawrence LA, Vidal P, Varughese RS, Tiger Li ZR, Chen TD, Tuske SC, Jimenez AR, Lowen AC, Shafer WM, Swaims-Kohlmeier A. Murine modeling of menstruation identifies immune correlates of protection during Chlamydia muridarum challenge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595090. [PMID: 38826233 PMCID: PMC11142139 DOI: 10.1101/2024.05.21.595090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The menstrual cycle influences the risk of acquiring sexually transmitted infections (STIs), including Chlamydia trachomatis (C. trachomatis), although the underlying immune contributions are poorly defined. A mouse model simulating the immune-mediated process of menstruation could provide valuable insights into tissue-specific determinants of protection against chlamydial infection within the cervicovaginal and uterine mucosae comprising the female reproductive tract (FRT). Here, we used the pseudopregnancy approach in naïve C57Bl/6 mice and performed vaginal challenge with Chlamydia muridarum (C. muridarum) at decidualization, endometrial tissue remodeling, or uterine repair. This strategy identified that the time frame comprising uterine repair correlated with robust infection and greater bacterial burden as compared with mice on hormonal contraception, while challenges during endometrial remodeling were least likely to result in a productive infection. By comparing the infection site at early time points following chlamydial challenge, we found that a greater abundance of innate effector populations and proinflammatory signaling, including IFNγ correlated with protection. FRT immune profiling in uninfected mice over pseudopregnancy or in pig-tailed macaques over the menstrual cycle identified NK cell infiltration into the cervicovaginal tissues and lumen over the course of endometrial remodeling. Notably, NK cell depletion over this time frame reversed protection, with mice now productively infected with C. muridarum following challenge. This study shows that the pseudopregnancy murine menstruation model recapitulates immune changes in the FRT as a result of endometrial remodeling and identifies NK cell localization at the FRT as essential for immune protection against primary C. muridarum infection.
Collapse
Affiliation(s)
- Laurel A Lawrence
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Paola Vidal
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Richa S Varughese
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Zheng-Rong Tiger Li
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Thien Duy Chen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Steven C Tuske
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Ariana R Jimenez
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Laboratories of Bacterial Pathogenesis, Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Alison Swaims-Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Department of GYNOB, Emory University School of Medicine, Atlanta, Georgia
- Division of HIV Prevention Centers for Disease Control and Prevention, Atlanta, Georgia (previous affiliation)
| |
Collapse
|
6
|
Smits HH, Jochems SP. Diverging patterns in innate immunity against respiratory viruses during a lifetime: lessons from the young and the old. Eur Respir Rev 2024; 33:230266. [PMID: 39009407 PMCID: PMC11262623 DOI: 10.1183/16000617.0266-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/16/2024] [Indexed: 07/17/2024] Open
Abstract
Respiratory viral infections frequently lead to severe respiratory disease, particularly in vulnerable populations such as young children, individuals with chronic lung conditions and older adults, resulting in hospitalisation and, in some cases, fatalities. The innate immune system plays a crucial role in monitoring for, and initiating responses to, viruses, maintaining a state of preparedness through the constant expression of antimicrobial defence molecules. Throughout the course of infection, innate immunity remains actively involved, contributing to viral clearance and damage control, with pivotal contributions from airway epithelial cells and resident and newly recruited immune cells. In instances where viral infections persist or are not effectively eliminated, innate immune components prominently contribute to the resulting pathophysiological consequences. Even though both young children and older adults are susceptible to severe respiratory disease caused by various respiratory viruses, the underlying mechanisms may differ significantly. Children face the challenge of developing and maturing their immunity, while older adults contend with issues such as immune senescence and inflammaging. This review aims to compare the innate immune responses in respiratory viral infections across both age groups, identifying common central hubs that could serve as promising targets for innovative therapeutic and preventive strategies, despite the apparent differences in underlying mechanisms.
Collapse
Affiliation(s)
- Hermelijn H Smits
- Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Simon P Jochems
- Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Purcell RA, Aurelia LC, Esterbauer R, Allen LF, Bond KA, Williamson DA, Trevillyan JM, Trubiano JA, Juno JJ, Wheatley AK, Davenport MP, Nguyen THO, Kedzierska K, Kent SJ, Selva KJ, Chung AW. Immunoglobulin G genetic variation can confound assessment of antibody levels via altered binding to detection reagents. Clin Transl Immunology 2024; 13:e1494. [PMID: 38433763 PMCID: PMC10902689 DOI: 10.1002/cti2.1494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Objectives Amino acid variations across more than 30 immunoglobulin (Ig) allotypes may introduce structural changes that influence recognition by anti-Ig detection reagents, consequently confounding interpretation of antibody responses, particularly in genetically diverse cohorts. Here, we assessed a panel of commercial monoclonal anti-IgG1 clones for capacity to universally recognise two dominant IgG1 haplotypes (G1m-1,3 and G1m1,17). Methods Four commercial monoclonal anti-human IgG1 clones were assessed via ELISAs and multiplex bead-based assays for their ability to bind G1m-1,3 and G1m1,17 IgG1 variants. Detection antibodies were validated against monoclonal IgG1 allotype standards and tested for capacity to recognise antigen-specific plasma IgG1 from G1m-1,3 and G1m1,17 homozygous and heterozygous SARS-CoV-2 BNT162b2 vaccinated (n = 28) and COVID-19 convalescent (n = 44) individuals. An Fc-specific pan-IgG detection antibody corroborated differences between hinge- and Fc-specific anti-IgG1 responses. Results Hinge-specific anti-IgG1 clone 4E3 preferentially bound G1m1,17 compared to G1m-1,3 IgG1. Consequently, SARS-CoV-2 Spike-specific IgG1 levels detected in G1m1,17/G1m1,17 BNT162b2 vaccinees appeared 9- to 17-fold higher than in G1m-1,3/G1m-1,3 vaccinees. Fc-specific IgG1 and pan-IgG detection antibodies equivalently bound G1m-1,3 and G1m1,17 IgG1 variants, and detected comparable Spike-specific IgG1 levels between haplotypes. IgG1 responses against other human coronaviruses and influenza were similarly poorly detected by 4E3 anti-IgG1 in G1m-1,3/G1m-1,3 subjects. Conclusion Anti-IgG1 clone 4E3 confounds assessment of antibody responses in clinical cohorts owing to bias towards detection of G1m1,17 IgG1 variants. Validation of anti-Ig clones should include evaluation of binding to relevant antibody variants, particularly as the role of immunogenetics upon humoral immunity is increasingly explored in diverse populations.
Collapse
Affiliation(s)
- Ruth A Purcell
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - L Carissa Aurelia
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Robyn Esterbauer
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Lilith F Allen
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Katherine A Bond
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
- Victorian Infectious Diseases Reference Laboratory (VIDRL)The Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Deborah A Williamson
- Victorian Infectious Diseases Reference Laboratory (VIDRL)The Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Infectious DiseasesThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Janine M Trevillyan
- Department of Infectious DiseasesThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
- Centre for Antibiotic Allergy and Research, Department of Infectious DiseasesAustin HealthHeidelbergVICAustralia
| | - Jason A Trubiano
- Centre for Antibiotic Allergy and Research, Department of Infectious DiseasesAustin HealthHeidelbergVICAustralia
- Department of MedicineUniversity of MelbourneParkvilleVICAustralia
- Department of Infectious DiseasesPeter MacCallum Cancer CentreMelbourneVICAustralia
- National Centre for Infections in CancerPeter MacCallum Cancer CentreMelbourneVICAustralia
| | - Jennifer J Juno
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Adam K Wheatley
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | | | - Thi HO Nguyen
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Katherine Kedzierska
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Stephen J Kent
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Kevin John Selva
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Amy W Chung
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| |
Collapse
|
8
|
Enssle JC, Campe J, Moter A, Voit I, Gessner A, Yu W, Wolf S, Steffen B, Serve H, Bremm M, Huenecke S, Lohoff M, Vehreschild M, Rabenau HF, Widera M, Ciesek S, Oellerich T, Imkeller K, Rieger MA, von Metzler I, Ullrich E. Cytokine-responsive T- and NK-cells portray SARS-CoV-2 vaccine-responders and infection in multiple myeloma patients. Leukemia 2024; 38:168-180. [PMID: 38049509 PMCID: PMC10776400 DOI: 10.1038/s41375-023-02070-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 12/06/2023]
Abstract
Patients with multiple myeloma (MM) routinely receive mRNA-based vaccines to reduce COVID-19-related mortality. However, whether disease- and therapy-related alterations in immune cells and cytokine-responsiveness contribute to the observed heterogeneous vaccination responses is unclear. Thus, we analyzed peripheral blood mononuclear cells from patients with MM during and after SARS-CoV-2 vaccination and breakthrough infection (BTI) using combined whole-transcriptome and surface proteome single-cell profiling with functional serological and T-cell validation in 58 MM patients. Our results demonstrate that vaccine-responders showed a significant overrepresentation of cytotoxic CD4+ T- and mature CD38+ NK-cells expressing FAS+/TIM3+ with a robust cytokine-responsiveness, such as type-I-interferon-, IL-12- and TNF-α-mediated signaling. Patients with MM experiencing BTI developed strong serological and cellular responses and exhibited similar cytokine-responsive immune cell patterns as vaccine-responders. This study can expand our understanding of molecular and cellular patterns associated with immunization responses and may benefit the design of improved vaccination strategies in immunocompromised patients.
Collapse
Affiliation(s)
- Julius C Enssle
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Julia Campe
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, Experimental Immunology and Cell Therapy, Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany
| | - Alina Moter
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, Experimental Immunology and Cell Therapy, Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany
| | - Isabel Voit
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, Experimental Immunology and Cell Therapy, Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany
| | - Alec Gessner
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Weijia Yu
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Sebastian Wolf
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Björn Steffen
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
| | - Hubert Serve
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Melanie Bremm
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany
| | - Sabine Huenecke
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany
| | - Michael Lohoff
- Institute of Medical Microbiology and Hospital Hygiene, Philipps University, Marburg, Germany
| | - Maria Vehreschild
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Infectious Diseases, Frankfurt am Main, Germany
| | - Holger F Rabenau
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt am Main, Germany
| | - Marek Widera
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt am Main, Germany
| | - Sandra Ciesek
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt am Main, Germany
- German Centre for Infection Research, external partner site, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Thomas Oellerich
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Katharina Imkeller
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Edinger Institute (Neurological Institute), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, MSNZ Group of Computational Immunology, Frankfurt am Main, Germany
- University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Michael A Rieger
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Frankfurt am Main, Germany
| | - Ivana von Metzler
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany.
- Goethe University Frankfurt, Department of Pediatrics, Experimental Immunology and Cell Therapy, Frankfurt am Main, Germany.
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany.
- University Cancer Center (UCT), Frankfurt am Main, Germany.
| |
Collapse
|