1
|
Zhang Y, Wu X, Wang X, Dai M, Peng Y. Crop root system architecture in drought response. J Genet Genomics 2025; 52:4-13. [PMID: 38723744 DOI: 10.1016/j.jgg.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 07/27/2024]
Abstract
Drought is a natural disaster that profoundly impacts on global agricultural production, significantly reduces crop yields, and thereby poses a severe threat to worldwide food security. Addressing the challenge of effectively improving crop drought resistance (DR) to mitigate yield loss under drought conditions is a global issue. An optimal root system architecture (RSA) plays a pivotal role in enhancing the capacity of crops to efficiently uptake water and nutrients, which consequently strengthens their resilience against environmental stresses. In this review, we discuss the compositions and roles of crop RSA and summarize the most recent developments in augmenting drought tolerance in crops by manipulating RSA-related genes. Based on the current research, we propose the potential optimal RSA configuration that could be helpful in enhancing crop DR. Lastly, we discuss the existing challenges and future directions for breeding crops with enhanced DR capabilities through genetic improvements targeting RSA.
Collapse
Affiliation(s)
- Yanjun Zhang
- College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu 730070, China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China; Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China; Key Laboratory of Crop Gene Resources and Germplasm Innovation in Northwest Cold and Arid Regions, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu 730070, China
| | - Xi Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xingrong Wang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China; Key Laboratory of Crop Gene Resources and Germplasm Innovation in Northwest Cold and Arid Regions, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu 730070, China
| | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| | - Yunling Peng
- College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu 730070, China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
2
|
Chen Q, Song Y, An Y, Lu Y, Zhong G. Mechanisms and Impact of Rhizosphere Microbial Metabolites on Crop Health, Traits, Functional Components: A Comprehensive Review. Molecules 2024; 29:5922. [PMID: 39770010 PMCID: PMC11679325 DOI: 10.3390/molecules29245922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Current agricultural practices face numerous challenges, including declining soil fertility and heavy reliance on chemical inputs. Rhizosphere microbial metabolites have emerged as promising agents for enhancing crop health and yield in a sustainable manner. These metabolites, including phytohormones, antibiotics, and volatile organic compounds, play critical roles in promoting plant growth, boosting resistance to pathogens, and improving resilience to environmental stresses. This review comprehensively outlines the mechanisms through which rhizosphere microbial metabolites influence crop health, traits, functional components, and yield. It also discusses the potential applications of microbial secondary metabolites in biofertilizers and highlights the challenges associated with their production and practical use. Measures to overcome these challenges are proposed, alongside an exploration of the future development of the functional fertilizer industry. The findings presented here provide a scientific basis for utilizing rhizosphere microbial metabolites to enhance agricultural sustainability, offering new strategies for future crop management. Integrating these microbial strategies could lead to increased crop productivity, improved quality, and reduced dependence on synthetic chemical inputs, thereby supporting a more environmentally friendly and resilient agricultural system.
Collapse
Affiliation(s)
- Qingxia Chen
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yingjie Song
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yuxing An
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yinglin Lu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guohua Zhong
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Bending GD, Newman A, Picot E, Mushinski RM, Jones DL, Carré IA. Diurnal Rhythmicity in the Rhizosphere Microbiome-Mechanistic Insights and Significance for Rhizosphere Function. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39552493 DOI: 10.1111/pce.15283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/19/2024]
Abstract
The rhizosphere is a key interface between plants, microbes and the soil which influences plant health and nutrition and modulates terrestrial biogeochemical cycling. Recent research has shown that the rhizosphere environment is far more dynamic than previously recognised, with evidence emerging for diurnal rhythmicity in rhizosphere chemistry and microbial community composition. This rhythmicity is in part linked to the host plant's circadian rhythm, although some heterotrophic rhizosphere bacteria and fungi may also possess intrinsic rhythmicity. We review the evidence for diurnal rhythmicity in rhizosphere microbial communities and its link to the plant circadian clock. Factors which may drive microbial rhythmicity are discussed, including diurnal change in root exudate flux and composition, rhizosphere physico-chemical properties and plant immunity. Microbial processes which could contribute to community rhythmicity are considered, including self-sustained microbial rhythms, bacterial movement into and out of the rhizosphere, and microbe-microbe interactions. We also consider evidence that changes in microbial composition mediated by the plant circadian clock may affect microbial function and its significance for plant health and broader soil biogeochemical cycling processes. We identify key knowledge gaps and approaches which could help to resolve the spatial and temporal variation and functional significance of rhizosphere microbial rhythmicity. This includes unravelling the factors which determine the oscillation of microbial activity, growth and death, and cross-talk with the host over diurnal time frames. We conclude that diurnal rhythmicity is an inherent characteristic of the rhizosphere and that temporal factors should be considered and reported in rhizosphere studies.
Collapse
Affiliation(s)
- Gary D Bending
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Amy Newman
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Emma Picot
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
- Food Futures Institute, Murdoch University, Perth, WA, Australia
| | | |
Collapse
|
4
|
Liu H, Zhang Y, Li H, Chen S, Zhang J, Ding W. Characteristics of soil microbial community assembly patterns in fields with serious occurrence of tobacco Fusarium wilt disease. Front Microbiol 2024; 15:1482952. [PMID: 39606108 PMCID: PMC11600729 DOI: 10.3389/fmicb.2024.1482952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Fusarium wilt disease (FWD) of tobacco is a destructive disease caused by Fusarium spp. in tobacco-growing regions worldwide. The Fusarium spp. infection may alter the composition and structure of the tobacco root microbial community; however, the relationship between these factors under large-scale geographical conditions in China remains underexplored. Methods In the context of this investigation, soil samples from the rhizosphere of tobacco plants were procured from fields afflicted with FWD and those devoid of the disease in the Hanzhong region of Shaanxi province, as well as in the Sanmenxia and Nanyang regions of Henan province. These regions are recognized for the commercial cultivation of tobacco. The examination focused on discerning the influence of tobacco FWD on the composition and configuration of the rhizosphere microbial community, along with their co-occurrence patterns. This scrutiny was underpinned by targeted PCR amplification and high-throughput sequencing (amplicon sequencing) of the 16S rRNA gene and the ITS1 region. Results The amplicon data analyses showed that FWD influenced the microbial structure and composition of the tobacco rhizosphere soil. FWD had a greater impact on the microbiome of the tobacco fungal community than on the microbiome of the bacterial community. Healthy plants had the ability to recruit potential beneficial bacteria. Diseased plants were more susceptible to colonization by other pathogenic fungi, but they still had the capacity to recruit potential beneficial bacteria. The analysis of microbial intra- and inter-kingdom networks further indicated that FWD destabilized microbial networks. In the overall microbial interaction, microorganisms primarily interacted within their boundaries, but FWD increased the proportion of interactions occurring across boundaries. In addition, FWD could disrupt the interactions within microbial network modules. Discussion This study provides evidence that FWD can cause changes in the composition and network of microbial communities, affecting the interactions among various microorganisms, including bacteria and fungi. These findings contribute to our understanding of how plant microbiomes change due to disease. Furthermore, they add to our knowledge of the mechanisms that govern the assembly and interactions of microbial communities under the influence of FWD.
Collapse
Affiliation(s)
- Huidi Liu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yongfeng Zhang
- Shangluo Prefecture Branch of Shaanxi Tobacco Corporation, Shangluo, China
| | - Hongchen Li
- Sanmenxia Tobacco Corporation of Henan Province, Sanmenxia, China
| | - Shilu Chen
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jingze Zhang
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Wei Ding
- College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Li J, Wu L, Zhou Y, Xie Y, Lu F, Chang F, Yang X, Han X, Cheng M. Kobresia humilis via root-released flavonoids recruit Bacillus for promoted growth. Microbiol Res 2024; 287:127866. [PMID: 39111018 DOI: 10.1016/j.micres.2024.127866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024]
Abstract
Alpine meadows, which are critical for biodiversity and ecosystem services, are increasingly degrading, necessitating effective restoration strategies. This study explored the mechanism by which Kobresia humilis, an alpine meadow-constructive species, modulates the rhizosphere microbiome via root exudates to enhance growth. Field investigations revealed that the plant height of K. humilis in a severely degraded (SD) alpine meadow was significantly higher than that in other K. humilis populations. Consequently, we analysed the differences between this plot and other K. humilis samples with different degrees of degradation to explore the reasons underlying the phenotypic differences in K. humilis. 16 S rRNA amplicon sequencing results showed that the SD plots were significantly enriched with more Bacillus, altering the composition of the rhizosphere microbial community of K. humilis. The collection and analysis of root exudates from various K. humilis locations revealed distinct differences. Procrustes analysis indicated a strong correlation between the root exudates and the rhizosphere microbiome composition of K. humilis. Model-based integration of metabolite observations, species abundance 2 (MIMOSA2), and Spearman's rank correlation coefficient analysis were used to identify the root exudates potentially related to the enrichment and recruitment of Bacillus. Bacillus from SD samples was isolated and screened, and the representative strain D334 was found to be differentially enriched compared to other samples. A series of in vitro experiments with the screened root exudates and strain D334 demonstrated that K. humilis could recruit Bacillus and promote its colonisation by releasing flavonoids, particularly baicalin. Additionally, K. humilis can release sucrose and riboflavin, which promote strain growth. Finally, soil microbiome transplantation experiments confirmed that different K. humilis phenotypes were closely related to the functions of the rhizosphere microbiome, especially in root morphological shaping. Moreover, the effects of Bacillus inoculation and the microbiome on the plant phenotypes were consistent. In summary, this study revealed a new mechanism by which K. humilis recruits rhizosphere growth-promoting bacteria and enhances soil nutrient utilisation, thereby promoting plant growth. These findings provide a theoretical basis for ecological restoration using soil microbial communities and clarify the relationship between plant metabolites and microbial community assembly.
Collapse
Affiliation(s)
- Junxi Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Lingling Wu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Yizhi Zhou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Yongli Xie
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; State Key Laboratory of Plateau Ecology and Agriculture of Qinghai University, Xining 810016, China; Key Laboratory of Use of Forage Germplasm Resources on Tibetan Plateau of Qinghai Province, Xining 810016, China.
| | - Fuwei Lu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Feifei Chang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Xue Yang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; State Key Laboratory of Plateau Ecology and Agriculture of Qinghai University, Xining 810016, China
| | - Xianzhong Han
- Menyuan County Grassland Station, Menyuan 810399, China
| | - Mingxuan Cheng
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| |
Collapse
|
6
|
Amara Y, Mahjoubi M, Souissi Y, Cherif H, Naili I, ElHidri D, Kadidi I, Mosbah A, Masmoudi AS, Cherif A. Tapping into haloalkaliphilic bacteria for sustainable agriculture in treated wastewater: insights into genomic fitness and environmental adaptation. Antonie Van Leeuwenhoek 2024; 118:1. [PMID: 39269515 DOI: 10.1007/s10482-024-02012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024]
Abstract
The increasing salinity and alkalinity of soils pose a global challenge, particularly in arid regions such as Tunisia, where about 50% of lands are sensitive to soil salinization. Anthropogenic activities, including the use of treated wastewater (TWW) for irrigation, exacerbate these issues. Haloalkaliphilic bacteria, adapted to TWW conditions and exhibiting plant-growth promotion (PGP) and biocontrol traits, could offer solutions. In this study, 24 haloalkaliphilic bacterial strains were isolated from rhizosphere sample of olive tree irrigated with TWW for more than 20 years. The bacterial identification using 16S rRNA gene sequencing showed that the haloalkaliphilic isolates, capable of thriving in high salinity and alkaline pH, were primarily affiliated to Bacillota (Oceanobacillus and Staphylococcus). Notably, these strains exhibited biofertilization and enzyme production under both normal and saline conditions. Traits such as phosphate solubilization, and the production of exopolysaccharide, siderophore, ammonia, and hydrogen cyanide were observed. The strains also demonstrated enzymatic activities, including protease, amylase, and esterase. Four selected haloalkaliphilic PGPR strains displayed antifungal activity against Alternaria terricola, with three showing tolerances to heavy metals and pesticides. The strain Oceanobacillus picturea M4W.A2 was selected for genome sequencing. Phylogenomic analyses indicated that the extreme environmental conditions probably influenced the development of specific adaptations in M4W.A2 strain, differentiating it from other Oceanobacillus picturae strains. The presence of the key genes associated with plant growth promotion, osmotic and oxidative stress tolerance, antibiotic and heavy metals resistance hinted the functional capabilities might help the strain M4W.A2 to thrive in TWW-irrigated soils. By demonstrating this connection, we aim to improve our understanding of genomic fitness to stressed environments. Moreover, the identification of gene duplication and horizontal gene transfer events through mobile genetic elements allow the comprehension of these adaptation dynamics. This study reveals that haloalkaliphilc bacteria from TWW-irrigated rhizosphere exhibit plant-growth promotion and biocontrol traits, with genomic adaptations enabling their survival in high salinity and alkaline conditions, offering potential solutions for soil salinization issues.
Collapse
Affiliation(s)
- Yosra Amara
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
- National Agronomy Institute of Tunisia, Avenue Charles Nicolle, 1082, Tunis, Mahrajène, Tunisia
| | - Mouna Mahjoubi
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Yasmine Souissi
- Department of Engineering, German University of Technology in Oman, P.O. Box 1816, 130, Muscat, Oman
| | - Hanene Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Islem Naili
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Darine ElHidri
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Imen Kadidi
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Amor Mosbah
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Ahmed S Masmoudi
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Ameur Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia.
| |
Collapse
|
7
|
Li Y, Jiang S, Hong Y, Yao Z, Chen Y, Zhu M, Ding J, Li C, Zhu X, Xu W, Guo W, Zhu N, Zhang J. Transcriptomic and Hormonal Changes in Wheat Roots Enhance Growth under Moderate Soil Drying. Int J Mol Sci 2024; 25:9157. [PMID: 39273103 PMCID: PMC11395032 DOI: 10.3390/ijms25179157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Understanding the mechanisms that regulate plant root growth under soil drying is an important challenge in root biology. We observed that moderate soil drying promotes wheat root growth. To understand whether metabolic and hormonic changes are involved in this regulation, we performed transcriptome sequencing on wheat roots under well-watered and moderate soil drying conditions. The genes upregulated in wheat roots under soil drying were mainly involved in starch and sucrose metabolism and benzoxazinoid biosynthesis. Various plant hormone-related genes were differentially expressed during soil drying. Quantification of the plant hormones under these conditions showed that the concentrations of abscisic acid (ABA), cis-zeatin (CZ), and indole-3-acetic acid (IAA) significantly increased during soil drying, whereas the concentrations of salicylic (SA), jasmonic (JA), and glycosylated salicylic (SAG) acids significantly decreased. Correlation analysis of total root length and phytohormones indicated that CZ, ABA, and IAA are positively associated with wheat root length. These results suggest that changes in metabolic pathways and plant hormones caused by moderate soil drying help wheat roots grow into deeper soil layers.
Collapse
Affiliation(s)
- Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Shuqiu Jiang
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Yonghui Hong
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Zixuan Yao
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Yadi Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Min Zhu
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jinfeng Ding
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Chunyan Li
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xinkai Zhu
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crop, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenshan Guo
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Nanyan Zhu
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
8
|
Wang Q, Xu J, Li D, Zhang J, Zhao B. Salinity-induced variations in wheat biomass are regulated by the Na +:K + ratio, root exudates, and keystone species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174778. [PMID: 39009148 DOI: 10.1016/j.scitotenv.2024.174778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Salt stress can limit crop productivity, and there are differences in salt tolerance among plant varieties; however, we lack a comprehensive understanding of how keystone species obtained from different plant varieties under salt stress change plant biomass by driving root exudate secretion and regulating the Na+:K+ ratio. We conducted a pot experiment for three wheat varieties (JiMai32 (JM32), XiaoYan60 (XY60), and ShanRong3 (SR3)) under saline/nonsaline soil conditions. Salt stress tended to significantly reduce wheat biomass, and the biomass reduction rates of the different varieties decreased in the order JM32 < XY60 < SR3. The compositions of the bacterial and fungal communities in the root endosphere, rhizosphere and bulk soil were measured, and salt-induced microbial taxa were isolated to identify keystone species from the co-occurrence networks and to study their effects on physiological responses to salinity in wheat varieties. We observed that root exudates participated in the regulation of the Na+:K+ ratio, thereby affecting wheat biomass, and this process was regulated by keystone species. JM32 was enriched in microorganisms that promote plant growth and resistance to salt stress, such as Burkholderiales, Sordariomycetes, Alteromonadaceae, Acremonium, and Dokdonella, and inhibited microorganisms that are sensitive to the environment (salt, nutrients) and plant pathogens, such as Nocardioidaceae, Nitrospira, Cytophagaceae, Syntrophobacteriaceae, and Striaticonidium. XY60 inhibited microorganisms with biological control and disease inhibition potential, such as Agromyces and Kaistobacter. SR3-enriched pathogens, such as Aurantimonadaceae and Pseudogymnoascus, as well as microorganisms with antagonistic pathogen potential and the ability to treat bacterial infections, such as RB41 and Saccharothrix, were inhibited. Our results confirmed the crucial function of salt-induced keystone species in enhancing plant adaptation to salt stress by driving root exudate secretion and regulating the Na+:K+ ratio, with implications for exploring reasonable measures to improve plant salt tolerance.
Collapse
Affiliation(s)
- Qingxia Wang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jisheng Xu
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dandan Li
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiabao Zhang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Bingzi Zhao
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, Nanjing 211135, China.
| |
Collapse
|
9
|
Seo H, Kim JH, Lee SM, Lee SW. The Plant-Associated Flavobacterium: A Hidden Helper for Improving Plant Health. THE PLANT PATHOLOGY JOURNAL 2024; 40:251-260. [PMID: 38835296 PMCID: PMC11162857 DOI: 10.5423/ppj.rw.01.2024.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/01/2024] [Accepted: 04/06/2024] [Indexed: 06/06/2024]
Abstract
Flavobacterium is a genus within the phylum Bacteroidota that remains relatively unexplored. Recent analyses of plant microbiota have identified the phylum Bacteroidota as a major bacterial group in the plant rhizosphere. While Flavobacterium species within the phylum Bacteroidota have been recognized as pathogens in the aquatic habitats, microbiome analysis and the characterization of novel Flavobacterium species have indicated the great diversity and potential of their presence in various environments. Many Flavobacterium species have positively contribute to plant health and development, including growth promotion, disease control, and tolerance to abiotic stress. Despite the well-described beneficial interactions of the Flavobacterium species with plants, the molecular mechanisms and bacterial determinants underlying these interactions remain unclear. To broaden our understanding of the genus Flavobacterium's role in plant health, we review the recent studies focusing on their ecological niche, functional roles, and determinants in plant-beneficial interactions. Additionally, this review discusses putative mechanisms explaining the interactions between plants and Flavobacterium. We have also introduced the importance of future research on Flavobacterium spp. and its potential applications in agriculture.
Collapse
Affiliation(s)
- Hyojun Seo
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Ju Hui Kim
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Sang-Moo Lee
- Institute of Agricultural Life Sciences, Dong-A University, Busan 49315, Korea
| | - Seon-Woo Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
- Institute of Agricultural Life Sciences, Dong-A University, Busan 49315, Korea
| |
Collapse
|
10
|
Wang M, Ge AH, Ma X, Wang X, Xie Q, Wang L, Song X, Jiang M, Yang W, Murray JD, Wang Y, Liu H, Cao X, Wang E. Dynamic root microbiome sustains soybean productivity under unbalanced fertilization. Nat Commun 2024; 15:1668. [PMID: 38395981 PMCID: PMC10891064 DOI: 10.1038/s41467-024-45925-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Root-associated microbiomes contribute to plant growth and health, and are dynamically affected by plant development and changes in the soil environment. However, how different fertilizer regimes affect quantitative changes in microbial assembly to effect plant growth remains obscure. Here, we explore the temporal dynamics of the root-associated bacteria of soybean using quantitative microbiome profiling (QMP) to examine its response to unbalanced fertilizer treatments (i.e., lacking either N, P or K) and its role in sustaining plant growth after four decades of unbalanced fertilization. We show that the root-associated bacteria exhibit strong succession during plant development, and bacterial loads largely increase at later stages, particularly for Bacteroidetes. Unbalanced fertilization has a significant effect on the assembly of the soybean rhizosphere bacteria, and in the absence of N fertilizer the bacterial community diverges from that of fertilized plants, while lacking P fertilizer impedes the total load and turnover of rhizosphere bacteria. Importantly, a SynCom derived from the low-nitrogen-enriched cluster is capable of stimulating plant growth, corresponding with the stabilized soybean productivity in the absence of N fertilizer. These findings provide new insights in the quantitative dynamics of the root-associated microbiome and highlight a key ecological cluster with prospects for sustainable agricultural management.
Collapse
Affiliation(s)
- Mingxing Wang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - An-Hui Ge
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xingzhu Ma
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, 150086, China
| | - Xiaolin Wang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qiujin Xie
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Like Wang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianwei Song
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengchen Jiang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Weibing Yang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jeremy D Murray
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yayu Wang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, 150040, China
| | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ertao Wang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|