1
|
Flores-García M, Flores Á, Aso E, Otero-López P, Ciruela F, Videla S, Grau-Sánchez J, Rodríguez-Fornells A, Bonaventura J, Fernández-Dueñas V. Dopamine dynamics in chronic pain: music-induced, sex-dependent, behavioral effects in mice. Pain Rep 2025; 10:e1205. [PMID: 39664710 PMCID: PMC11631031 DOI: 10.1097/pr9.0000000000001205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction Chronic pain is a debilitating disease that is usually comorbid to anxiety and depression. Current treatment approaches mainly rely on analgesics but often neglect emotional aspects. Nonpharmacological interventions, such as listening to music, have been incorporated into clinics to provide a more comprehensive management of chronic pain. However, the underlying mechanisms of music-mediated pain relief are not fully understood. Objectives Our aim was to evaluate the effects and mechanisms of music exposure in an animal model of chronic pain. Methods We injected mice with the complete Freund adjuvant (CFA) inflammatory agent into the hind paw and housed them for 14 days with background music, or ambient noise, during their active period (Mozart K.205, overnight). The effect of music exposure on nociception, anxiety-like behaviors, and depression-like behaviors was evaluated through different paradigms, including the hot plate, Von Frey, elevated plus maze, splash, and tail suspension tests. In addition, we conducted fiber photometry experiments to investigate whether music influences dopamine dynamics in the nucleus accumbens (NAcc), a crucial region involved in pain processing, anhedonia, and reward. Results Our findings indicate that music exposure prevents the decrease in NAcc activity observed in CFA-injected mice, linking with a sex-dependent reduction in allodynia, anxiety-like behaviors, and depression-like behaviors. Accordingly, female mice were more sensitive to music exposure than male mice. Conclusion Collectively, our findings provide compelling evidence for the integration of music as a nonpharmacological intervention in chronic pain conditions. Moreover, the observed effect on NAcc suggests its potential as a therapeutic target for addressing chronic pain and its associated symptoms.
Collapse
Affiliation(s)
- Montse Flores-García
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, IDIBELL-Bellvitge Institute for Biomedical Research, Barcelona, Spain
| | - África Flores
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, IDIBELL-Bellvitge Institute for Biomedical Research, Barcelona, Spain
| | - Ester Aso
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, IDIBELL-Bellvitge Institute for Biomedical Research, Barcelona, Spain
| | - Paloma Otero-López
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, IDIBELL-Bellvitge Institute for Biomedical Research, Barcelona, Spain
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, IDIBELL-Bellvitge Institute for Biomedical Research, Barcelona, Spain
| | - Sebastià Videla
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, IDIBELL-Bellvitge Institute for Biomedical Research, Barcelona, Spain
| | - Jennifer Grau-Sánchez
- Research Group on Complex Health Diagnoses and Interventions from Occupation and Care (OCCARE), University School of Nursing and Occupational Therapy of Terrassa, Autonomous University of Barcelona, Terrassa, Spain
| | - Antoni Rodríguez-Fornells
- Cognition and Brain Plasticity Unit, Department of Cognition, Development and Educational Psychology, Faculty of Psychology, University of Barcelona and Bellvitge Institute for Biomedical Research, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jordi Bonaventura
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, IDIBELL-Bellvitge Institute for Biomedical Research, Barcelona, Spain
| | - Víctor Fernández-Dueñas
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, IDIBELL-Bellvitge Institute for Biomedical Research, Barcelona, Spain
| |
Collapse
|
2
|
Kao TY, Kuo CH, Wu YW, Luo SC. Enhanced Electrochemiluminescence Detection of Dopamine Using Antifouling PEDOT-Modified SPEs for Complex Biological Samples. ACS MEASUREMENT SCIENCE AU 2024; 4:712-720. [PMID: 39713034 PMCID: PMC11659998 DOI: 10.1021/acsmeasuresciau.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 12/24/2024]
Abstract
Detecting medically important biomarkers in complex biological samples without prior treatment or extraction poses a major challenge in biomedical analysis. Electrochemical methods, specifically electrochemiluminescence (ECL), show potential due to their high sensitivity, minimal background noise, and straightforward operation. This study investigates the ECL performance of screen-printed electrodes (SPEs) modified with the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives for dopamine (DA) detection. PEDOT modification significantly enhances ECL intensity, improves sensitivity, and expands the linear range for DA detection. Functionalizing PEDOT with ethylene glycol (EG) further enhances stability, specificity, and resistance to interferences for DA detection. These modified SPEs demonstrate the linear range of 1-200 μM and a detection limit as low as 0.887 nM (S/N = 3), surpassing many previous studies using SPEs. Moreover, the PEDOT-EG4-OMe-modified SPEs can reliably detect DA in solutions with high protein concentrations or artificial cerebrospinal fluid. These results suggest that the PEDOT derivative-modified SPE can serve as reusable and sensitive DA sensors in complex biological environments, highlighting the potential of the ECL system for a range of challenging applications.
Collapse
Affiliation(s)
- Tzu-Yu Kao
- Department
of Materials Science and Engineering, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chia-Hung Kuo
- Department
of Materials Science and Engineering, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yu-Wei Wu
- Institute
of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Shyh-Chyang Luo
- Department
of Materials Science and Engineering, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
3
|
Kielbinski M, Bernacka J. Fiber photometry in neuroscience research: principles, applications, and future directions. Pharmacol Rep 2024; 76:1242-1255. [PMID: 39235662 PMCID: PMC11582208 DOI: 10.1007/s43440-024-00646-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
In recent years, fluorescent sensors are enjoying a surge of popularity in the field of neuroscience. Through the development of novel genetically encoded sensors as well as improved methods of detection and analysis, fluorescent sensing has risen as a new major technique in neuroscience alongside molecular, electrophysiological, and imaging methods, opening up new avenues for research. Combined with multiphoton microscopy and fiber photometry, these sensors offer unique advantages in terms of cellular specificity, access to multiple targets - from calcium dynamics to neurotransmitter release to intracellular processes - as well as high capability for in vivo interrogation of neurobiological mechanisms underpinning behavior. Here, we provide a brief overview of the method, present examples of its integration with other tools in recent studies ranging from cellular to systems neuroscience, and discuss some of its principles and limitations, with the aim of introducing new potential users to this rapidly developing and potent technique.
Collapse
Affiliation(s)
- Michal Kielbinski
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | - Joanna Bernacka
- Cancer Neurophysiology Group, Łukasiewicz - PORT, Polish Center for Technology Development, Stabłowicka 147, Wrocław, 54-066, Poland
| |
Collapse
|
4
|
Driscoll N, Antonini MJ, Cannon TM, Maretich P, Olaitan G, Van VDP, Nagao K, Sahasrabudhe A, Paniagua EV, Frey EJ, Kim YJ, Hunt S, Hummel M, Mupparaju S, Jasanoff A, Venton BJ, Anikeeva P. Multifunctional Neural Probes Enable Bidirectional Electrical, Optical, and Chemical Recording and Stimulation In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408154. [PMID: 39506430 DOI: 10.1002/adma.202408154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Recording and modulation of neuronal activity enables the study of brain function in health and disease. While translational neuroscience relies on electrical recording and modulation techniques, mechanistic studies in rodent models leverage genetic precision of optical methods, such as optogenetics and fluorescent indicator imaging. In addition to electrical signal transduction, neurons produce and receive diverse chemical signals which motivate tools to probe and modulate neurochemistry. Although the past decade has delivered a wealth of technologies for electrophysiology, optogenetics, chemical sensing, and optical recording, combining these modalities within a single platform remains challenging. This work leverages materials selection and convergence fiber drawing to permit neural recording, electrical stimulation, optogenetics, fiber photometry, drug and gene delivery, and voltammetric recording of neurotransmitters within individual fibers. Composed of polymers and non-magnetic carbon-based conductors, these fibers are compatible with magnetic resonance imaging, enabling concurrent stimulation and whole-brain monitoring. Their utility is demonstrated in studies of the mesolimbic reward pathway by interfacing with the ventral tegmental area and nucleus accumbens in mice and characterizing the neurophysiological effects of a stimulant drug. This study highlights the potential of these fibers to probe electrical, optical, and chemical signaling across multiple brain regions in both mechanistic and translational studies.
Collapse
Affiliation(s)
| | | | - Taylor M Cannon
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Pema Maretich
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | | | - Keisuke Nagao
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | | | - Ethan J Frey
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ye Ji Kim
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sydney Hunt
- Stanford University, Stanford, CA, 94305, USA
| | - Melissa Hummel
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sanju Mupparaju
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alan Jasanoff
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - B Jill Venton
- The University of Virginia, Charlottesville, VA, 22904, USA
| | - Polina Anikeeva
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
5
|
Ursino M, Pelle S, Nekka F, Robaey P, Schirru M. Valence-dependent dopaminergic modulation during reversal learning in Parkinson's disease: A neurocomputational approach. Neurobiol Learn Mem 2024; 215:107985. [PMID: 39270814 DOI: 10.1016/j.nlm.2024.107985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Reinforcement learning, crucial for behavior in dynamic environments, is driven by rewards and punishments, modulated by dopamine (DA) changes. This study explores the dopaminergic system's influence on learning, particularly in Parkinson's disease (PD), where medication leads to impaired adaptability. Highlighting the role of tonic DA in signaling the valence of actions, this research investigates how DA affects response vigor and decision-making in PD. DA not only influences reward and punishment learning but also indicates the cognitive effort level and risk propensity in actions, which are essential for understanding and managing PD symptoms. In this work, we adapt our existing neurocomputational model of basal ganglia (BG) to simulate two reversal learning tasks proposed by Cools et al. We first optimized a Hebb rule for both probabilistic and deterministic reversal learning, conducted a sensitivity analysis (SA) on parameters related to DA effect, and compared performances between three groups: PD-ON, PD-OFF, and control subjects. In our deterministic task simulation, we explored switch error rates after unexpected task switches and found a U-shaped relationship between tonic DA levels and switch error frequency. Through SA, we classify these three groups. Then, assuming that the valence of the stimulus affects the tonic levels of DA, we were able to reproduce the results by Cools et al. As for the probabilistic task simulation, our results are in line with clinical data, showing similar trends with PD-ON, characterized by higher tonic DA levels that are correlated with increased difficulty in both acquisition and reversal tasks. Our study proposes a new hypothesis: valence, signaled by tonic DA levels, influences learning in PD, confirming the uncorrelation between phasic and tonic DA changes. This hypothesis challenges existing paradigms and opens new avenues for understanding cognitive processes in PD, particularly in reversal learning tasks.
Collapse
Affiliation(s)
- Mauro Ursino
- Department of Electrical, Electronic and Information Engineering Guglielmo Marconi, University of Bologna, Campus of Cesena, I 47521 Cesena, Italy.
| | - Silvana Pelle
- Department of Electrical, Electronic and Information Engineering Guglielmo Marconi, University of Bologna, Campus of Cesena, I 47521 Cesena, Italy.
| | - Fahima Nekka
- Faculté de Pharmacie, Université de Montréal, Montreal, Quebec H3T 1J4, Canada; Centre de recherches mathématiques, Université de Montréal, Montreal, Quebec H3T 1J4, Canada; Centre for Applied Mathematics in Bioscience and Medicine (CAMBAM), McGill University, Montreal, Quebec H3G 1Y6, Canada.
| | - Philippe Robaey
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada.
| | - Miriam Schirru
- Department of Electrical, Electronic and Information Engineering Guglielmo Marconi, University of Bologna, Campus of Cesena, I 47521 Cesena, Italy; Faculté de Pharmacie, Université de Montréal, Montreal, Quebec H3T 1J4, Canada.
| |
Collapse
|
6
|
Kuiper LB, Dawes MH, West AM, DiMarco EK, Galante EV, Kishida KT, Jones SR. Comparison of dopamine release and uptake parameters across sex, species and striatal subregions. Eur J Neurosci 2024; 60:5113-5140. [PMID: 39161062 PMCID: PMC11632670 DOI: 10.1111/ejn.16495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
For over four decades, fast-scan cyclic voltammetry (FSCV) has been used to selectively measure neurotransmitters such as dopamine (DA) with high spatial and temporal resolution, providing detailed information about the regulation of DA in the extracellular space. FSCV is an optimal method for determining concentrations of stimulus-evoked DA in brain tissue. When modelling diseases involving disturbances in DA transmission, preclinical rodent models are especially useful because of the availability of specialized tools and techniques that serve as a foundation for translational research. There is known heterogeneity in DA dynamics between and within DA-innervated brain structures and between males and females. However, systematic evaluations of sex- and species-differences across multiple areas are lacking. Therefore, using FSCV, we captured a broad range of DA dynamics across five sub-regions of the dorsal and ventral striatum of males and females of both rats and mice that reflect the functional heterogeneity of DA kinetics and dynamics within these structures. While numerous differences were found, in particular, we documented a strong, consistent pattern of increased DA transporter activity in females in all of the regions surveyed. The data herein are intended to be used as a resource for further investigation of DA terminal function.
Collapse
Affiliation(s)
- Lindsey B. Kuiper
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Monica H. Dawes
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Alyssa M. West
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Emily K. DiMarco
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Emma V. Galante
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Kenneth T. Kishida
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Sara R. Jones
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
7
|
Engel L, Wolff AR, Blake M, Collins VL, Sinha S, Saunders BT. Dopamine neurons drive spatiotemporally heterogeneous striatal dopamine signals during learning. Curr Biol 2024; 34:3086-3101.e4. [PMID: 38925117 PMCID: PMC11279555 DOI: 10.1016/j.cub.2024.05.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/25/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Environmental cues, through Pavlovian learning, become conditioned stimuli that invigorate and guide animals toward rewards. Dopamine (DA) neurons in the ventral tegmental area (VTA) and substantia nigra (SNc) are crucial for this process, via engagement of a reciprocally connected network with their striatal targets. Critically, it remains unknown how dopamine neuron activity itself engages dopamine signals throughout the striatum, across learning. Here, we investigated how optogenetic Pavlovian cue conditioning of VTA or SNc dopamine neurons directs cue-evoked behavior and shapes subregion-specific striatal dopamine dynamics. We used a fluorescent biosensor to monitor dopamine in the nucleus accumbens (NAc) core and shell, dorsomedial striatum (DMS), and dorsolateral striatum (DLS). We demonstrate spatially heterogeneous, learning-dependent dopamine changes across striatal regions. Although VTA stimulation-evoked robust dopamine release in NAc core, shell, and DMS, predictive cues preferentially recruited dopamine release in NAc core, starting early in training, and DMS, late in training. Negative prediction error signals, reflecting a violation in the expectation of dopamine neuron activation, only emerged in the NAc core and DMS. Despite the development of vigorous movement late in training, conditioned dopamine signals did not emerge in the DLS, even during Pavlovian conditioning with SNc dopamine neuron activation, which elicited robust DLS dopamine release. Together, our studies show a broad dissociation in the fundamental prediction and reward-related information generated by VTA and SNc dopamine neuron populations and signaled by dopamine across the striatum. Further, they offer new insight into how larger-scale adaptations across the striatal network emerge during learning to coordinate behavior.
Collapse
Affiliation(s)
- Liv Engel
- Department of Neuroscience, University of Minnesota, 2001 6th St SE, Minneapolis, MN 55455, USA; Medical Discovery Team on Addiction, University of Minnesota, 2001 6th St SE, Minneapolis, MN 55455, USA
| | - Amy R Wolff
- Department of Neuroscience, University of Minnesota, 2001 6th St SE, Minneapolis, MN 55455, USA; Medical Discovery Team on Addiction, University of Minnesota, 2001 6th St SE, Minneapolis, MN 55455, USA
| | - Madelyn Blake
- Department of Neuroscience, University of Minnesota, 2001 6th St SE, Minneapolis, MN 55455, USA
| | - Val L Collins
- Department of Neuroscience, University of Minnesota, 2001 6th St SE, Minneapolis, MN 55455, USA; Medical Discovery Team on Addiction, University of Minnesota, 2001 6th St SE, Minneapolis, MN 55455, USA
| | - Sonal Sinha
- Krieger School of Arts & Sciences, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
| | - Benjamin T Saunders
- Department of Neuroscience, University of Minnesota, 2001 6th St SE, Minneapolis, MN 55455, USA; Medical Discovery Team on Addiction, University of Minnesota, 2001 6th St SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
8
|
Labouesse MA, Wilhelm M, Kagiampaki Z, Yee AG, Denis R, Harada M, Gresch A, Marinescu AM, Otomo K, Curreli S, Serratosa Capdevila L, Zhou X, Cola RB, Ravotto L, Glück C, Cherepanov S, Weber B, Zhou X, Katner J, Svensson KA, Fellin T, Trudeau LE, Ford CP, Sych Y, Patriarchi T. A chemogenetic approach for dopamine imaging with tunable sensitivity. Nat Commun 2024; 15:5551. [PMID: 38956067 PMCID: PMC11219860 DOI: 10.1038/s41467-024-49442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
Genetically-encoded dopamine (DA) sensors enable high-resolution imaging of DA release, but their ability to detect a wide range of extracellular DA levels, especially tonic versus phasic DA release, is limited by their intrinsic affinity. Here we show that a human-selective dopamine receptor positive allosteric modulator (PAM) can be used to boost sensor affinity on-demand. The PAM enhances DA detection sensitivity across experimental preparations (in vitro, ex vivo and in vivo) via one-photon or two-photon imaging. In vivo photometry-based detection of optogenetically-evoked DA release revealed that DETQ administration produces a stable 31 minutes window of potentiation without effects on animal behavior. The use of the PAM revealed region-specific and metabolic state-dependent differences in tonic DA levels and enhanced single-trial detection of behavior-evoked phasic DA release in cortex and striatum. Our chemogenetic strategy can potently and flexibly tune DA imaging sensitivity and reveal multi-modal (tonic/phasic) DA signaling across preparations and imaging approaches.
Collapse
Affiliation(s)
- Marie A Labouesse
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Maria Wilhelm
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Institute for Neuroscience, ETH Zurich, Zurich, Switzerland
| | | | - Andrew G Yee
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Raphaelle Denis
- Department of Pharmacology & Physiology, Faculty of Medicine, SNC and CIRCA Research groups, Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, SNC and CIRCA Research groups, Université de Montréal, Montréal, QC, Canada
| | - Masaya Harada
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Andrea Gresch
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | | | - Kanako Otomo
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Sebastiano Curreli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Xuehan Zhou
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Reto B Cola
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Luca Ravotto
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Chaim Glück
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Stanislav Cherepanov
- Institute of Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Xin Zhou
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Louis-Eric Trudeau
- Department of Pharmacology & Physiology, Faculty of Medicine, SNC and CIRCA Research groups, Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, SNC and CIRCA Research groups, Université de Montréal, Montréal, QC, Canada
| | - Christopher P Ford
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yaroslav Sych
- Institute of Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
9
|
Phillips CD, Hodge AT, Myers CC, Leventhal DK, Burgess CR. Striatal Dopamine Contributions to Skilled Motor Learning. J Neurosci 2024; 44:e0240242024. [PMID: 38806248 PMCID: PMC11211718 DOI: 10.1523/jneurosci.0240-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Coordinated multijoint limb and digit movements-"manual dexterity"-underlie both specialized skills (e.g., playing the piano) and more mundane tasks (e.g., tying shoelaces). Impairments in dexterous skill cause significant disability, as occurs with motor cortical injury, Parkinson's disease, and a range of other pathologies. Clinical observations, as well as basic investigations, suggest that corticostriatal circuits play a critical role in learning and performing dexterous skills. Furthermore, dopaminergic signaling in these regions is implicated in synaptic plasticity and motor learning. Nonetheless, the role of striatal dopamine signaling in skilled motor learning remains poorly understood. Here, we use fiber photometry paired with a genetically encoded dopamine sensor to investigate striatal dopamine release in both male and female mice as they learn and perform a skilled reaching task. Dopamine rapidly increases during a skilled reach and peaks near pellet consumption. In the dorsolateral striatum, dopamine dynamics are faster than in the dorsomedial and ventral striatum. Across training, as reaching performance improves, dopamine signaling shifts from pellet consumption to cues that predict pellet availability, particularly in medial and ventral areas of the striatum. Furthermore, performance prediction errors are present across the striatum, with reduced dopamine release after an unsuccessful reach. These findings show that dopamine dynamics during skilled motor behaviors change with learning and are differentially regulated across striatal subregions.
Collapse
Affiliation(s)
- Chris D Phillips
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas 75080
| | - Alexander T Hodge
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Courtney C Myers
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Daniel K Leventhal
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109
- Parkinson's Disease Foundation Research Center of Excellence, University of Michigan, Ann Arbor, Michigan 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109
- Department of Neurology, VA Ann Arbor Health System, Ann Arbor, Michigan 48109
| | - Christian R Burgess
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
10
|
Driscoll N, Antonini MJ, Cannon TM, Maretich P, Olaitan G, Phi Van VD, Nagao K, Sahasrabudhe A, Vargas E, Hunt S, Hummel M, Mupparaju S, Jasanoff A, Venton J, Anikeeva P. Fiber-based Probes for Electrophysiology, Photometry, Optical and Electrical Stimulation, Drug Delivery, and Fast-Scan Cyclic Voltammetry In Vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.598004. [PMID: 38895451 PMCID: PMC11185794 DOI: 10.1101/2024.06.07.598004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Recording and modulation of neuronal activity enables the study of brain function in health and disease. While translational neuroscience relies on electrical recording and modulation techniques, mechanistic studies in rodent models leverage genetic precision of optical methods, such as optogenetics and imaging of fluorescent indicators. In addition to electrical signal transduction, neurons produce and receive diverse chemical signals which motivate tools to probe and modulate neurochemistry. Although the past decade has delivered a wealth of technologies for electrophysiology, optogenetics, chemical sensing, and optical recording, combining these modalities within a single platform remains challenging. This work leverages materials selection and convergence fiber drawing to permit neural recording, electrical stimulation, optogenetics, fiber photometry, drug and gene delivery, and voltammetric recording of neurotransmitters within individual fibers. Composed of polymers and non-magnetic carbon-based conductors, these fibers are compatible with magnetic resonance imaging, enabling concurrent stimulation and whole-brain monitoring. Their utility is demonstrated in studies of the mesolimbic reward pathway by simultaneously interfacing with the ventral tegmental area and nucleus accumbens in mice and characterizing the neurophysiological effects of a stimulant drug. This study highlights the potential of these fibers to probe electrical, optical, and chemical signaling across multiple brain regions in both mechanistic and translational studies.
Collapse
Affiliation(s)
| | | | | | - Pema Maretich
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | - Keisuke Nagao
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | | | - Melissa Hummel
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Alan Jasanoff
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jill Venton
- The University of Virginia, Charlottesville, VA 22904
| | | |
Collapse
|
11
|
Kim Y, Lee Y, Yoo J, Nam KS, Jeon W, Lee S, Park S. Multifunctional and Flexible Neural Probe with Thermally Drawn Fibers for Bidirectional Synaptic Probing in the Brain. ACS NANO 2024; 18:13277-13285. [PMID: 38728175 PMCID: PMC11112973 DOI: 10.1021/acsnano.4c02578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Synapses in the brain utilize two distinct communication mechanisms: chemical and electrical. For a comprehensive investigation of neural circuitry, neural interfaces should be capable of both monitoring and stimulating these types of physiological interactions. However, previously developed interfaces for neurotransmitter monitoring have been limited in interaction modality due to constraints in device size, fabrication techniques, and the usage of flexible materials. To address this obstacle, we propose a multifunctional and flexible fiber probe fabricated through the microwire codrawing thermal drawing process, which enables the high-density integration of functional components with various materials such as polymers, metals, and carbon fibers. The fiber enables real-time monitoring of transient dopamine release in vivo, real-time stimulation of cell-specific neuronal populations via optogenetic stimulation, single-unit electrophysiology of individual neurons localized to the tip of the neural probe, and chemical stimulation via drug delivery. This fiber will improve the accessibility and functionality of bidirectional interrogation of neurochemical mechanisms in implantable neural probes.
Collapse
Affiliation(s)
- Yeji Kim
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yunheum Lee
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeongeun Yoo
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kum Seok Nam
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Woojin Jeon
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seungmin Lee
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seongjun Park
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department
of Materials Science, Korea Advanced Institute
of Science and Technology (KAIST), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic
of Korea
- KAIST
Institute for NanoCentury (KINC), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic
of Korea
| |
Collapse
|
12
|
Simpson EH, Akam T, Patriarchi T, Blanco-Pozo M, Burgeno LM, Mohebi A, Cragg SJ, Walton ME. Lights, fiber, action! A primer on in vivo fiber photometry. Neuron 2024; 112:718-739. [PMID: 38103545 PMCID: PMC10939905 DOI: 10.1016/j.neuron.2023.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Fiber photometry is a key technique for characterizing brain-behavior relationships in vivo. Initially, it was primarily used to report calcium dynamics as a proxy for neural activity via genetically encoded indicators. This generated new insights into brain functions including movement, memory, and motivation at the level of defined circuits and cell types. Recently, the opportunity for discovery with fiber photometry has exploded with the development of an extensive range of fluorescent sensors for biomolecules including neuromodulators and peptides that were previously inaccessible in vivo. This critical advance, combined with the new availability of affordable "plug-and-play" recording systems, has made monitoring molecules with high spatiotemporal precision during behavior highly accessible. However, while opening exciting new avenues for research, the rapid expansion in fiber photometry applications has occurred without coordination or consensus on best practices. Here, we provide a comprehensive guide to help end-users execute, analyze, and suitably interpret fiber photometry studies.
Collapse
Affiliation(s)
- Eleanor H Simpson
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA.
| | - Thomas Akam
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland; Neuroscience Center Zürich, University and ETH Zürich, Zürich, Switzerland.
| | - Marta Blanco-Pozo
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Lauren M Burgeno
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Ali Mohebi
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie J Cragg
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Mark E Walton
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Wallace CW, Holleran KM, Slinkard CY, Centanni SW, Jones SR. Kappa Opioid Receptors Negatively Regulate Real Time Spontaneous Dopamine Signals by Reducing Release and Increasing Uptake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578840. [PMID: 38370660 PMCID: PMC10871279 DOI: 10.1101/2024.02.05.578840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The role of the dynorphin/kappa opioid receptor (KOR) system in dopamine (DA) regulation has been extensively investigated. KOR activation reduces extracellular DA concentrations and increases DA transporter (DAT) activity and trafficking to the membrane. To explore KOR influences on real-time DA fluctuations, we used the photosensor dLight1.2 with fiber photometry in the nucleus accumbens (NAc) core of freely moving male and female C57BL/6 mice. First, we established that the rise and fall of spontaneous DA signals were due to DA release and reuptake, respectively. Then mice were systemically administered the KOR agonist U50,488H (U50), with or without pretreatment with the KOR antagonist aticaprant (ATIC). U50 reduced both the amplitude and width of spontaneous signals in males, but only reduced width in females. Further, the slope of the correlation between amplitude and width was increased in both sexes, suggesting that DA uptake rates were increased. U50 also reduced the frequency of signals in both males and females. All effects of KOR activation were stronger in males. Overall, KORs exerted significant inhibitory control over spontaneous DA signaling, acting through at least three mechanisms - inhibiting DA release, promoting DAT-mediated uptake, and reducing the frequency of signals.
Collapse
Affiliation(s)
- Conner W Wallace
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Katherine M Holleran
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Clare Y Slinkard
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Samuel W Centanni
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Sara R Jones
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|