1
|
Yaribeygi H, Maleki M, Forouzanmehr B, Kesharwani P, Jamialahmadi T, Karav S, Sahebkar A. Exploring the antioxidant properties of semaglutide: A comprehensive review. J Diabetes Complications 2024; 38:108906. [PMID: 39549371 DOI: 10.1016/j.jdiacomp.2024.108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/02/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
Patients with diabetes commonly experience an aberrant production of free radicals and weakened antioxidative defenses, making them highly susceptible to oxidative stress development. This, in turn, can induce and promote diabetic complications. Therefore, utilizing antidiabetic agents with antioxidative properties can offer dual benefits by addressing hyperglycemia and reducing oxidative damage. Semaglutide, a recently approved oral form of glucagon-like peptide-1 (GLP-1) analogues, has shown potent antidiabetic effects. Additionally, recent studies have suggested that it possesses antioxidative properties. However, the exact effects and the molecular pathways involved are not well understood. In this review, we present the latest findings on the antioxidative impacts of semaglutide and draw conclusions about the mechanisms involved.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behina Forouzanmehr
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Thompson MD, Reiner-Link D, Berghella A, Rana BK, Rovati GE, Capra V, Gorvin CM, Hauser AS. G protein-coupled receptor (GPCR) pharmacogenomics. Crit Rev Clin Lab Sci 2024; 61:641-684. [PMID: 39119983 DOI: 10.1080/10408363.2024.2358304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/03/2023] [Accepted: 05/18/2024] [Indexed: 08/10/2024]
Abstract
The field of pharmacogenetics, the investigation of the influence of one or more sequence variants on drug response phenotypes, is a special case of pharmacogenomics, a discipline that takes a genome-wide approach. Massively parallel, next generation sequencing (NGS), has allowed pharmacogenetics to be subsumed by pharmacogenomics with respect to the identification of variants associated with responders and non-responders, optimal drug response, and adverse drug reactions. A plethora of rare and common naturally-occurring GPCR variants must be considered in the context of signals from across the genome. Many fundamentals of pharmacogenetics were established for G protein-coupled receptor (GPCR) genes because they are primary targets for a large number of therapeutic drugs. Functional studies, demonstrating likely-pathogenic and pathogenic GPCR variants, have been integral to establishing models used for in silico analysis. Variants in GPCR genes include both coding and non-coding single nucleotide variants and insertion or deletions (indels) that affect cell surface expression (trafficking, dimerization, and desensitization/downregulation), ligand binding and G protein coupling, and variants that result in alternate splicing encoding isoforms/variable expression. As the breadth of data on the GPCR genome increases, we may expect an increase in the use of drug labels that note variants that significantly impact the clinical use of GPCR-targeting agents. We discuss the implications of GPCR pharmacogenomic data derived from the genomes available from individuals who have been well-phenotyped for receptor structure and function and receptor-ligand interactions, and the potential benefits to patients of optimized drug selection. Examples discussed include the renin-angiotensin system in SARS-CoV-2 (COVID-19) infection, the probable role of chemokine receptors in the cytokine storm, and potential protease activating receptor (PAR) interventions. Resources dedicated to GPCRs, including publicly available computational tools, are also discussed.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - David Reiner-Link
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alessandro Berghella
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brinda K Rana
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - G Enrico Rovati
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valerie Capra
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Allen BG, Merlen C, Branco AF, Pétrin D, Hébert TE. Understanding the impact of nuclear-localized GPCRs on cellular signalling. Cell Signal 2024; 123:111358. [PMID: 39181220 DOI: 10.1016/j.cellsig.2024.111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
G protein-coupled receptors (GPCRs) have historically been associated with signalling events driven from the plasma membrane. More recently, signalling from endosomes has been recognized as a feature of internalizing receptors. However, there was little consideration given to the notion that GPCRs can be targeted to distinct subcellular locations that did not involve an initial trafficking to the cell surface. Here, we focus on the evidence for and the potential impact of GPCR signalling specifically initiated from the nuclear membrane. We also discuss the possibilities for selectively targeting this and other internal pools of receptors as novel venues for drug discovery.
Collapse
Affiliation(s)
- Bruce G Allen
- Montreal Heart Institute, Montréal, Québec H1T 1C8, Canada; Departments of Biochemistry and Molecular Medicine, Medicine, Pharmacology and Physiology, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | | | - Ana F Branco
- Montreal Heart Institute, Montréal, Québec H1T 1C8, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.
| |
Collapse
|
4
|
Weitzberg E, Ingelman-Sundberg M, Lundberg JO, Engberg G, Schulte G, Lauschke VM. The 75-Year Anniversary of the Department of Physiology and Pharmacology at Karolinska Institutet-Examples of Recent Accomplishments and Future Perspectives. Pharmacol Rev 2024; 76:1089-1101. [PMID: 39414365 DOI: 10.1124/pharmrev.124.001433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 10/18/2024] Open
Abstract
Karolinska Institutet is a medical university encompassing 21 departments distributed across three departmental or campus groups. Pharmacological research has a long and successful tradition at the institute with a multitude of seminal findings in the areas of neuronal control of vasodilatation, cardiovascular pharmacology, neuropsychopharmacology, receptor pharmacology, and pharmacogenomics that resulted in, among many other recognitions, two Nobel prizes in Physiology and Medicine, one in 1970 to Ulf von Euler for his discovery of the processes involved in storage, release, and inactivation of neurotransmitters and the other in 1982 to Sune Bergström and Bengt Samuelsson for their work on prostaglandins and the discovery of leukotrienes. Pharmacology at Karolinska Institutet has over the last decade been ranked globally among the top 10 according to the QS World University Ranking. With the Department of Physiology and Pharmacology now celebrating its 75-year anniversary, we wanted to take this as an opportunity to showcase recent research achievements and how they paved the way for current activities at the department. We emphasize examples from preclinical and clinical research where the dpartment's integrative environment and robust infrastructure have successfully facilitated the translation of findings into clinical applications and patient benefits. The close collaboration between preclinical scientists and clinical researchers across various disciplines, along with a strong network of partnerships within the department and beyond, positions us to continue leading world-class pharmacological research at the Department of Physiology and Pharmacology for decades to come. SIGNIFICANCE STATEMENT: Pharmacological research at Karolinska Institutet has a long and successful history. Given the 75-year anniversary of the Department of Physiology and Pharmacology, this perspective provides an overview of recent departmental achievements and future trajectories. For these developments, interdisciplinary and intersectoral collaborations and a clear focus on result translation are key elements to continue its legacy of world-leading pharmacological research.
Collapse
Affiliation(s)
- Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| |
Collapse
|
5
|
Kotliar IB, Bendes A, Dahl L, Chen Y, Saarinen M, Ceraudo E, Dodig-Crnković T, Uhlén M, Svenningsson P, Schwenk JM, Sakmar TP. Multiplexed mapping of the interactome of GPCRs with receptor activity-modifying proteins. SCIENCE ADVANCES 2024; 10:eado9959. [PMID: 39083597 PMCID: PMC11290489 DOI: 10.1126/sciadv.ado9959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
Receptor activity-modifying proteins (RAMPs) form complexes with G protein-coupled receptors (GPCRs) and may regulate their cellular trafficking and pharmacology. RAMP interactions have been identified for about 50 GPCRs, but only a few GPCR-RAMP complexes have been studied in detail. To elucidate a comprehensive GPCR-RAMP interactome, we created a library of 215 dual epitope-tagged (DuET) GPCRs representing all GPCR subfamilies and coexpressed each GPCR with each of the three RAMPs. Screening the GPCR-RAMP pairs with customized multiplexed suspension bead array (SBA) immunoassays, we identified 122 GPCRs that showed strong evidence for interaction with at least one RAMP. We screened for interactions in three cell lines and found 23 endogenously expressed GPCRs that formed complexes with RAMPs. Mapping the GPCR-RAMP interactome expands the current system-wide functional characterization of RAMP-interacting GPCRs to inform the design of selective therapeutics targeting GPCR-RAMP complexes.
Collapse
Affiliation(s)
- Ilana B. Kotliar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Annika Bendes
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Leo Dahl
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Yuanhuang Chen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Marcus Saarinen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, USA
| | - Tea Dodig-Crnković
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Basal and Clinical Neuroscience, King’s College London, London, UK
| | - Jochen M. Schwenk
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Thomas P. Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, USA
- Department of Neurobiology, Care Sciences and Society, Section for Neurogeriatrics, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
6
|
van Niekerk G, Coelmont L, Alpizar YA, Kelchtermans L, Broeckhoven E, Dallmeier K. GLP-1R agonist therapy and vaccine response: Neglected implications. Cytokine Growth Factor Rev 2024; 78:14-24. [PMID: 39025754 DOI: 10.1016/j.cytogfr.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs), such as semaglutide (Ozempic®), have emerged as effective treatments for diabetes and weight management. However, recent evidence indicates that GLP-1R signalling influences various tissues, including the immune system. Notably, GLP-1 has a short half-life (< 5 minutes) and exists in the picomolar range, while GLP-1RAs like semaglutide have extended half-lives of several days and are administered at supraphysiological doses. This review explores the potential impact of these medications on vaccine efficacy. We examine evidence suggesting that GLP-1RAs may attenuate vaccine responses through direct effects on immune cells and modulation of other tissues. Additionally, we discuss how GLP-1R signalling may create a tolerogenic environment, potentially reducing vaccine immunogenicity. Given the widespread use of GLP-1RAs, it is crucial to understand their impact on immune responses and the translational implications for vaccination outcomes.
Collapse
Affiliation(s)
- Gustav van Niekerk
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Lotte Coelmont
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Yeranddy A Alpizar
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Lara Kelchtermans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Elias Broeckhoven
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium.
| |
Collapse
|
7
|
Teitelman G. A Controversy Regarding the Identity of the Enzyme That Mediates Glucagon-Like Peptide 1 Synthesis in Human Alpha Cells. J Histochem Cytochem 2024; 72:545-550. [PMID: 39248433 PMCID: PMC11425746 DOI: 10.1369/00221554241274879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/19/2024] [Indexed: 09/10/2024] Open
Abstract
Processing of proglucagon into glucagon-like peptide-1 (GLP-1) and GLP-2 in intestinal L cells is mediated by the prohormone convertase 1/3 (PC1/3) while PC2 is responsible for the synthesis of glucagon in pancreatic alpha cells. While GLP-1 is also produced by alpha cells, the identity of the convertase involved in its synthesis is still unsettled. It also remains to be determined whether all alpha cells produce the incretin. The aims of this study were first, to elucidate the identity of the proconvertase responsible for GLP-1 production in human alpha cells, and second, to ascertain whether the number of glucagon cells expressing GLP-1 increase during diabetes. To answer these questions, sections of pancreas from donors' non-diabetic controls, type 1 and type 2 diabetes were processed for double-labelled immunostaining of glucagon and GLP-1 and of each hormone and either PC1 or PC2. Stained sections were examined by confocal microscopy. It was found that all alpha cells of islets from those three groups expressed GLP-1 and PC2 but not PC1/3. This observation supports the view that PC2 is the convertase involved in GLP-1 synthesis in all human glucagon cells and suggests that the regulation of its activity may have important clinical application in diabetes.
Collapse
|
8
|
Kizilkaya HS, Sørensen KV, Madsen JS, Lindquist P, Douros JD, Bork-Jensen J, Berghella A, Gerlach PA, Gasbjerg LS, Mokrosiński J, Mowery SA, Knerr PJ, Finan B, Campbell JE, D'Alessio DA, Perez-Tilve D, Faas F, Mathiasen S, Rungby J, Sørensen HT, Vaag A, Nielsen JS, Holm JC, Lauenborg J, Damm P, Pedersen O, Linneberg A, Hartmann B, Holst JJ, Hansen T, Wright SC, Lauschke VM, Grarup N, Hauser AS, Rosenkilde MM. Characterization of genetic variants of GIPR reveals a contribution of β-arrestin to metabolic phenotypes. Nat Metab 2024; 6:1268-1281. [PMID: 38871982 PMCID: PMC11272584 DOI: 10.1038/s42255-024-01061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/02/2024] [Indexed: 06/15/2024]
Abstract
Incretin-based therapies are highly successful in combatting obesity and type 2 diabetes1. Yet both activation and inhibition of the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) in combination with glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) activation have resulted in similar clinical outcomes, as demonstrated by the GIPR-GLP-1R co-agonist tirzepatide2 and AMG-133 (ref. 3) combining GIPR antagonism with GLP-1R agonism. This underlines the importance of a better understanding of the GIP system. Here we show the necessity of β-arrestin recruitment for GIPR function, by combining in vitro pharmacological characterization of 47 GIPR variants with burden testing of clinical phenotypes and in vivo studies. Burden testing of variants with distinct ligand-binding capacity, Gs activation (cyclic adenosine monophosphate production) and β-arrestin 2 recruitment and internalization shows that unlike variants solely impaired in Gs signalling, variants impaired in both Gs and β-arrestin 2 recruitment contribute to lower adiposity-related traits. Endosomal Gs-mediated signalling of the variants shows a β-arrestin dependency and genetic ablation of β-arrestin 2 impairs cyclic adenosine monophosphate production and decreases GIP efficacy on glucose control in male mice. This study highlights a crucial impact of β-arrestins in regulating GIPR signalling and overall preservation of biological activity that may facilitate new developments in therapeutic targeting of the GIPR system.
Collapse
Affiliation(s)
- Hüsün S Kizilkaya
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kimmie V Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob S Madsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Lindquist
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan D Douros
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
- Indiana Biosciences Research Institute Indianapolis, Indianapolis, IN, USA
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alessandro Berghella
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Peter A Gerlach
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lærke S Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Stephanie A Mowery
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
- Indiana Biosciences Research Institute Indianapolis, Indianapolis, IN, USA
| | - Patrick J Knerr
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
- Indiana Biosciences Research Institute Indianapolis, Indianapolis, IN, USA
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University Durham, Durham, NC, USA
| | - David A D'Alessio
- Duke Molecular Physiology Institute, Duke University Durham, Durham, NC, USA
| | - Diego Perez-Tilve
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Felix Faas
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe Mathiasen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Rungby
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Henrik T Sørensen
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
- Department of Epidemiology, Boston University, Boston, MA, USA
| | - Allan Vaag
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - Jens S Nielsen
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jens-Christian Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, Holbæk, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeannet Lauenborg
- Department of Obstetrics and Gynecology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Peter Damm
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark
- Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Department of Medicine, Gentofte Hospital, Copenhagen, Denmark
| | - Allan Linneberg
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shane C Wright
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Rosenkilde MM, Lindquist P, Kizilkaya HS, Gasbjerg LS. GIP-derived GIP receptor antagonists - a review of their role in GIP receptor pharmacology. Peptides 2024; 177:171212. [PMID: 38608836 DOI: 10.1016/j.peptides.2024.171212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Surprisingly, agonists, as well as antagonists of the glucose-dependent insulinotropic polypeptide receptor (GIPR), are currently being used or investigated as treatment options for type 2 diabetes and obesity - and both, when combined with glucagon-like peptide 1 receptor (GLP-1R) agonism, enhance GLP-1-induced glycemia and weight loss further. This paradox raises several questions regarding not only the mechanisms of actions of GIP but also the processes engaged during the activation of both the GIP and GLP-1 receptors. Here, we provide an overview of studies of the properties and actions of peptide-derived GIPR antagonists, focusing on GIP(3-30)NH2, a naturally occurring N- and C-terminal truncation of GIP(1-42). GIP(3-30)NH2 was the first GIPR antagonist administered to humans. GIP(3-30)NH2 and a few additional antagonists, like Pro3-GIP, have been used in both in vitro and in vivo studies to elucidate the molecular and cellular consequences of GIPR inhibition, desensitization, and internalization and, at a larger scale, the role of the GIP system in health and disease. We provide an overview of these studies combined with recent knowledge regarding the effects of naturally occurring variants of the GIPR system and species differences within the GIP system to enhance our understanding of the GIPR as a drug target.
Collapse
Affiliation(s)
- Mette Marie Rosenkilde
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Peter Lindquist
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hüsün Sheyma Kizilkaya
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lærke Smidt Gasbjerg
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Liu S, Anderson PJ, Rajagopal S, Lefkowitz RJ, Rockman HA. G Protein-Coupled Receptors: A Century of Research and Discovery. Circ Res 2024; 135:174-197. [PMID: 38900852 PMCID: PMC11192237 DOI: 10.1161/circresaha.124.323067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
GPCRs (G protein-coupled receptors), also known as 7 transmembrane domain receptors, are the largest receptor family in the human genome, with ≈800 members. GPCRs regulate nearly every aspect of human physiology and disease, thus serving as important drug targets in cardiovascular disease. Sharing a conserved structure comprised of 7 transmembrane α-helices, GPCRs couple to heterotrimeric G-proteins, GPCR kinases, and β-arrestins, promoting downstream signaling through second messengers and other intracellular signaling pathways. GPCR drug development has led to important cardiovascular therapies, such as antagonists of β-adrenergic and angiotensin II receptors for heart failure and hypertension, and agonists of the glucagon-like peptide-1 receptor for reducing adverse cardiovascular events and other emerging indications. There continues to be a major interest in GPCR drug development in cardiovascular and cardiometabolic disease, driven by advances in GPCR mechanistic studies and structure-based drug design. This review recounts the rich history of GPCR research, including the current state of clinically used GPCR drugs, and highlights newly discovered aspects of GPCR biology and promising directions for future investigation. As additional mechanisms for regulating GPCR signaling are uncovered, new strategies for targeting these ubiquitous receptors hold tremendous promise for the field of cardiovascular medicine.
Collapse
Affiliation(s)
- Samuel Liu
- Department of Medicine, Duke University Medical
Center
| | - Preston J. Anderson
- Cell and Molecular Biology (CMB), Duke University, Durham,
NC, 27710, USA
- Duke Medical Scientist Training Program, Duke University,
Durham, NC, 27710, USA
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical
Center
- Cell and Molecular Biology (CMB), Duke University, Durham,
NC, 27710, USA
- Deparment of Biochemistry Duke University, Durham, NC,
27710, USA
| | - Robert J. Lefkowitz
- Department of Medicine, Duke University Medical
Center
- Deparment of Biochemistry Duke University, Durham, NC,
27710, USA
- Howard Hughes Medical Institute, Duke University Medical
Center, Durham, North Carolina 27710, USA
| | - Howard A. Rockman
- Department of Medicine, Duke University Medical
Center
- Cell and Molecular Biology (CMB), Duke University, Durham,
NC, 27710, USA
| |
Collapse
|
11
|
Wright SC, Avet C, Gaitonde SA, Muneta-Arrate I, Le Gouill C, Hogue M, Breton B, Koutsilieri S, Diez-Alarcia R, Héroux M, Lauschke VM, Bouvier M. Conformation- and activation-based BRET sensors differentially report on GPCR-G protein coupling. Sci Signal 2024; 17:eadi4747. [PMID: 38889226 DOI: 10.1126/scisignal.adi4747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
G protein-coupled receptors (GPCRs) regulate cellular signaling processes by coupling to diverse combinations of heterotrimeric G proteins composed of Gα, Gβ, and Gγ subunits. Biosensors based on bioluminescence resonance energy transfer (BRET) have advanced our understanding of GPCR functional selectivity. Some BRET biosensors monitor ligand-induced conformational changes in the receptor or G proteins, whereas others monitor the recruitment of downstream effectors to sites of G protein activation. Here, we compared the ability of conformation-and activation-based BRET biosensors to assess the coupling of various class A and B GPCRs to specific Gα proteins in cultured cells. These GPCRs included serotonin 5-HT2A and 5-HT7 receptors, the GLP-1 receptor (GLP-1R), and the M3 muscarinic receptor. We observed different signaling profiles between the two types of sensors, highlighting how data interpretation could be affected by the nature of the biosensor. We also found that the identity of the Gβγ subunits used in the assay could differentially influence the selectivity of a receptor toward Gα subtypes, emphasizing the importance of the receptor-Gβγ pairing in determining Gα coupling specificity. Last, the addition of epitope tags to the receptor could affect stoichiometry and coupling selectivity and yield artifactual findings. These results highlight the need for careful sensor selection and experimental design when probing GPCR-G protein coupling.
Collapse
Affiliation(s)
- Shane C Wright
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Charlotte Avet
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Supriya A Gaitonde
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Itziar Muneta-Arrate
- Department of Pharmacology, University of the Basque Country UPV/EHU, 48940 Leioa, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, 28029 Madrid, Spain
| | - Christian Le Gouill
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Mireille Hogue
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Billy Breton
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Stefania Koutsilieri
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country UPV/EHU, 48940 Leioa, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, 28029 Madrid, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Madeleine Héroux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
12
|
Yaribeygi H, Maleki M, Jamialahmadi T, Sahebkar A. Anti-inflammatory benefits of semaglutide: State of the art. J Clin Transl Endocrinol 2024; 36:100340. [PMID: 38576822 PMCID: PMC10992717 DOI: 10.1016/j.jcte.2024.100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Individuals with diabetes often have chronic inflammation and high levels of inflammatory cytokines, leading to insulin resistance and complications. Anti-inflammatory agents are proposed to prevent these issues, including using antidiabetic medications with anti-inflammatory properties like semaglutide, a GLP-1 analogue. Semaglutide not only lowers glucose but also shows potential anti-inflammatory effects. Studies suggest it can modulate inflammatory responses and benefit those with diabetes. However, the exact mechanisms of its anti-inflammatory effects are not fully understood. This review aims to discuss the latest findings on semaglutide's anti-inflammatory effects and the potential pathways involved.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Tong M, Liu Z, Li J, Wei X, Shi W, Liang C, Yu C, Huang R, Lin Y, Wang X, Wang S, Wang Y, Huang J, Wang Y, Li T, Qin J, Zhan D, Ji ZL. PhosMap: An ensemble bioinformatic platform to empower interactive analysis of quantitative phosphoproteomics. Comput Biol Med 2024; 174:108391. [PMID: 38613887 DOI: 10.1016/j.compbiomed.2024.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Liquid chromatography-mass spectrometry (LC-MS)-based quantitative phosphoproteomics has been widely used to detect thousands of protein phosphorylation modifications simultaneously from the biological specimens. However, the complicated procedures for analyzing phosphoproteomics data has become a bottleneck to widening its application. METHODS Here, we develop PhosMap, a versatile and scalable tool to accomplish phosphoproteomics data analysis. A standardized phosphorylation data format was created for data analyses, from data preprocessing to downstream bioinformatic analyses such as dimension reduction, differential phosphorylation analysis, kinase activity, survival analysis, and so on. For better usability, we distribute PhosMap as a Docker image for easy local deployment upon any of Windows, Linux, and Mac system. RESULTS The source code is deposited at https://github.com/BADD-XMU/PhosMap. A free PhosMap webserver (https://huggingface.co/spaces/Bio-Add/PhosMap), with easy-to-follow fashion of dashboards, is curated for interactive data analysis. CONCLUSIONS PhosMap fills the technical gap of large-scale phosphorylation research by empowering researchers to process their own phosphoproteomics data expediently and efficiently, and facilitates better data interpretation.
Collapse
Affiliation(s)
- Mengsha Tong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zan Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiaao Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xin Wei
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Wenhao Shi
- Analysis Center, Chemistry Department, Tsinghua University, Beijing, 100084, China
| | - Chenyu Liang
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chunyu Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Rongting Huang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yuxiang Lin
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xinkang Wang
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shun Wang
- Departments of Pathology, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi Wang
- Beijing Pineal Diagnostics Co., Ltd., Beijing, 102206, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jialiang Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yini Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Jun Qin
- Beijing Pineal Diagnostics Co., Ltd., Beijing, 102206, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Dongdong Zhan
- Beijing Pineal Diagnostics Co., Ltd., Beijing, 102206, China.
| | - Zhi-Liang Ji
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
14
|
Kotliar IB, Bendes A, Dahl L, Chen Y, Saarinen M, Ceraudo E, Dodig-Crnković T, Uhle’n M, Svenningsson P, Schwenk JM, Sakmar TP. Expanding the GPCR-RAMP interactome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568247. [PMID: 38045268 PMCID: PMC10690247 DOI: 10.1101/2023.11.22.568247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Receptor activity-modifying proteins (RAMPs) can form complexes with G protein-coupled receptors (GPCRs) and regulate their cellular trafficking and pharmacology. RAMP interactions have been identified for about 50 GPCRs, but only a few GPCR-RAMP complexes have been studied in detail. To elucidate a complete interactome between GPCRs and the three RAMPs, we developed a customized library of 215 Dual Epitope-Tagged (DuET) GPCRs representing all GPCR subfamilies. Using a multiplexed suspension bead array (SBA) assay, we identified 122 GPCRs that showed strong evidence for interaction with at least one RAMP. We screened for native interactions in three cell lines and found 23 GPCRs that formed complexes with RAMPs. Mapping the GPCR-RAMP interactome expands the current system-wide functional characterization of RAMP-interacting GPCRs to inform the design of selective GPCR-targeted therapeutics.
Collapse
Affiliation(s)
- Ilana B. Kotliar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University; 1230 York Ave., New York, 10065, USA
| | - Annika Bendes
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology; Solna, 171 65, Sweden
| | - Leo Dahl
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology; Solna, 171 65, Sweden
| | - Yuanhuang Chen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University; 1230 York Ave., New York, 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Marcus Saarinen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University; 1230 York Ave., New York, 10065, USA
| | - Tea Dodig-Crnković
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology; Solna, 171 65, Sweden
| | - Mathias Uhle’n
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology; Solna, 171 65, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Basal and Clinical Neuroscience, King’s College London, London, UK
| | - Jochen M. Schwenk
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology; Solna, 171 65, Sweden
| | - Thomas P. Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University; 1230 York Ave., New York, 10065, USA
- Department of Neurobiology, Care Sciences and Society, Section for Neurogeriatrics, Karolinska Institutet; Solna, 171 64, Sweden
| |
Collapse
|