1
|
Bekiş DF, Thomas-Hargreaves LR, Ivlev SI, Buchner MR. Multinuclear beryllium amide and imide complexes: structure, properties and bonding. Dalton Trans 2024; 53:15551-15564. [PMID: 39229744 DOI: 10.1039/d4dt02269f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The beryllium amide and imide complexes [Be(HNMes)2]3, [(py)2Be(HNMes)2], [Be(HNDipp)2]2, [Be(NPh2)(μ2-HNDipp)]2 and [Be(NCPh2)2]3 have been prepared and characterised with NMR and IR spectroscopy as well as single crystal X-ray diffraction. Analysis of the localised molecular orbitals (LMOs) and intrinsic atomic orbital (IAO) atomic charges in the framework of the intrinsic bond orbital (IBO) localization method revealed a covalent bonding network consisting of 2-electron-2-centre and 2-electron-3-centre σ bonds, in which one electron pair of the anionic N-donor ligands is involved. The electron deficiency at the beryllium atoms is partially compensated through additional electron donation from the lone pair at the nitrogen atoms.
Collapse
Affiliation(s)
- Deniz F Bekiş
- Anorganische Chemie, Nachwuchsgruppe Hauptgruppenmetallchemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| | - Lewis R Thomas-Hargreaves
- Anorganische Chemie, Nachwuchsgruppe Hauptgruppenmetallchemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| | - Sergei I Ivlev
- Anorganische Chemie, Nachwuchsgruppe Hauptgruppenmetallchemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| | - Magnus R Buchner
- Anorganische Chemie, Nachwuchsgruppe Hauptgruppenmetallchemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| |
Collapse
|
2
|
Buchner MR, Müller M, Ivlev SI. Multinuclear Beryllium Chloro Carboxylates. Inorg Chem 2024. [PMID: 39253792 DOI: 10.1021/acs.inorgchem.4c03103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Reaction of 1 equiv of BeCl2 with mesityl (Mes) or o-tolyl (o-Tol) carboxylic acid in benzene gives hexanuclear heterocyles [BeCl(MesCO2)]6 and [BeCl(o-TolCO2)]6, respectively. Small amounts of the oxocarboxylates [Be4O(MesCO2)6] and [Be4O(o-TolCO2)6] are also formed. If chloroform is used as the solvent, a mixture of these complexes together with the unprecedented tertranuclear cage compounds [Be4Cl2(MesCO2)6] and [Be4Cl2(o-TolCO2)6] is obtained.
Collapse
Affiliation(s)
- Magnus R Buchner
- Fachbereich Chemie, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Matthias Müller
- Fachbereich Chemie, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Sergei I Ivlev
- Fachbereich Chemie, Philipps-Universität Marburg, 35043 Marburg, Germany
| |
Collapse
|
3
|
Pearce KG, Neale SE, Mahon MF, McMullin CL, Hill MS. Alkali metal reduction of crown ether encapsulated alkali metal cations. Chem Commun (Camb) 2024; 60:8391-8394. [PMID: 39037395 DOI: 10.1039/d4cc02725f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
[{SiNDipp}BeClM]2 ({SiNDipp} = {CH2SiMe2N(Dipp)}2; M = Li, Na, K, Rb) are converted to ionic species by treatment with a crown ether. Whereas the lithium derivative reacts with Na or K to provide [{SiNDipp}BeCl]-[M(12-cr-4)2]+ (M = Na, K), the resultant sodium species is resistant to reduction by potassium. These observations are rationalised by a hybrid experimental/theoretical analysis.
Collapse
Affiliation(s)
- Kyle G Pearce
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Samuel E Neale
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Mary F Mahon
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Claire L McMullin
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Michael S Hill
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
4
|
Nguyen DT, Helling C, Jones C. Synthesis and Characterization of Bulky 1,3-Diamidopropane Complexes of Group 2 Metals (Be-Sr). Chem Asian J 2024; 19:e202400498. [PMID: 38760323 DOI: 10.1002/asia.202400498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/19/2024]
Abstract
Reaction of lithium 1,3-diamidopropane Li2(TripNCN) (TripNCN=[{(Trip)NCH2}2CH2]2-, Trip=2,4,6-triisopropylphenyl) with BeBr2(OEt2)2 gave the diamido beryllium complex, [(TripNCN)Be(OEt2)]. Deprotonation reactions between the bulkier 1,3-diaminopropane (TCHPNCN)H2 (TCHPNCN=[{(TCHP)NCH2}2CH2]2-, TCHP=2,4,6-tricyclohexylphenyl) and magnesium alkyls afforded the adduct complexes [(TCHPNCN)Mg(OEt2)] and [(TCHPNCN)Mg(THF)2], depending on the reaction conditions employed. Treating [(TCHPNCN)Mg(THF)2] with the N-heterocyclic carbene :C{(MeNCMe)2} (TMC) gave [(TCHPNCN)Mg(TMC)2] via substitution of the THF ligands. Reactions of (ArNCN)H2 (Ar=Trip or TCHP) with Mg{CH2(SiMe3)}2, in the absence of Lewis bases, yielded the N-bridged dimers [{(ArNCN)Mg}2]. Salt metathesis reactions between alkali metal salts M2(TCHPNCN) (M=Li or K) and CaI2 or SrI2 led to the THF adduct compounds [(TCHPNCN)Ca(THF)3] and [(TCHPNCN)Sr(THF)4], the differing number of THF ligands in which is a result of the different sizes of the metals involved. The described complexes hold potential as precursors to kinetically protected, low oxidation state group 2 metal species.
Collapse
Affiliation(s)
- Dat T Nguyen
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia
| | - Christoph Helling
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia
| | - Cameron Jones
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia
| |
Collapse
|
5
|
Gentner T, Ballmann GM, Banerjee S, Kennedy AR, Robertson SD, Mulvey RE. Application of Bis(amido)alkyl Magnesiates toward the Synthesis of Molecular Rubidium and Cesium Hydrido-magnesiates. Organometallics 2024; 43:1393-1401. [PMID: 38938897 PMCID: PMC11200325 DOI: 10.1021/acs.organomet.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
Rubidium and cesium are the least studied naturally occurring s-block metals in organometallic chemistry but are in plentiful supply from a sustainability viewpoint as highlighted in the periodic table of natural elements published by the European Chemical Society. This underdevelopment reflects the phenomenal success of organometallic compounds of lithium, sodium, and potassium, but interest in heavier congeners has started to grow. Here, the synthesis and structures of rubidium and cesium bis(amido)alkyl magnesiates [(AM)MgN'2alkyl]∞, where N' is the simple heteroamide -N(SiMe3)(Dipp), and alkyl is nBu or CH2SiMe3, are reported. More stable than their nBu analogues, the reactivities of the CH2SiMe3 magnesiates toward 1,4-cyclohexadiene are revealed. Though both reactions produce target hydrido-magnesiates [(AM)MgN'2H]2 in crystalline form amenable to X-ray diffraction study, the cesium compound could only be formed in a trace quantity. These studies showed that the bulk of the -N(SiMe3)(Dipp) ligand was sufficient to restrict both compounds to dimeric structures. Bearing some resemblance to inverse crown complexes, each structure has [(AM)(N)(Mg)(N)]2 ring cores but differ in having no AM-N bonds, instead Rb and Cs complete the rings by engaging in multihapto interactions with Dipp π-clouds. Moreover, their hydride ions occupy μ3-(AM)2Mg environments, compared to μ2-Mg2 environments in inverse crowns.
Collapse
Affiliation(s)
- Thomas
X. Gentner
- WestCHEM, Department of Pure
and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K.
| | - Gerd M. Ballmann
- WestCHEM, Department of Pure
and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K.
| | - Sumanta Banerjee
- WestCHEM, Department of Pure
and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K.
| | - Alan R. Kennedy
- WestCHEM, Department of Pure
and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K.
| | - Stuart D. Robertson
- WestCHEM, Department of Pure
and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K.
| | - Robert E. Mulvey
- WestCHEM, Department of Pure
and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K.
| |
Collapse
|
6
|
Evans MJ, Jones C. Low oxidation state and hydrido group 2 complexes: synthesis and applications in the activation of gaseous substrates. Chem Soc Rev 2024; 53:5054-5082. [PMID: 38595211 DOI: 10.1039/d4cs00097h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Numerous industrial processes utilise gaseous chemical feedstocks to produce useful chemical products. Atmospheric and other small molecule gases, including anthropogenic waste products (e.g. carbon dioxide), can be viewed as sustainable building blocks to access value-added chemical commodities and materials. While transition metal complexes have been well documented in the reduction and transformation of these substrates, molecular complexes of the terrestrially abundant alkaline earth metals have also demonstrated promise with remarkable reactivity reported towards an array of industrially relevant gases over the past two decades. This review covers low oxidation state and hydrido group 2 complexes and their role in the reduction and transformation of a selection of important gaseous substrates towards value-added chemical products.
Collapse
Affiliation(s)
- Matthew J Evans
- School of Chemistry, Monash University, PO Box 23, Melbourne, Victoria, 3800, Australia.
| | - Cameron Jones
- School of Chemistry, Monash University, PO Box 23, Melbourne, Victoria, 3800, Australia.
| |
Collapse
|
7
|
Kreutzer J. Borates expand their reduction power. Commun Chem 2024; 7:92. [PMID: 38664475 PMCID: PMC11045742 DOI: 10.1038/s42004-024-01171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
|
8
|
Liu HY, Neale SE, Hill MS, Mahon MF, McMullin CL, Richards E. [{SiN Dipp}MgNa] 2: A Potent Molecular Reducing Agent. Organometallics 2024; 43:879-888. [PMID: 38665773 PMCID: PMC11041119 DOI: 10.1021/acs.organomet.4c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
The bimetallic species, [{SiNDipp}MgNa]2 [{SiNDipp} = {CH2SiMe2N(Dipp)}2; (Dipp = 2,6-i-Pr2C6H3)], is shown to be a potent reducing agent, able to effect one- or two-electron reduction of either dioxygen, TEMPO, anthracene, benzophenone, or diphenylacetylene. In most cases, the bimetallic reaction products imply that the dissimilar alkaline metal centers react with a level of cooperativity. EPR analysis of the benzophenone-derived reaction and the concurrent isolation of [{SiNDipp}Mg(OCPh2)2], however, illustrate that treatment with such reducible, but O-basic, species can also result in reactivity in which the metals provide independent reaction products. The notable E-stereochemistry of the diphenylacetylene reduction product prompted a computational investigation of the PhC≡CPh addition. This analysis invokes a series of elementary steps that necessitate ring-opening via Mg+ → Na+ amido group migration of the SiNDipp ligand, providing insight into the previously observed lability of the bidentate dianion and its consequent proclivity toward macrocyclization.
Collapse
Affiliation(s)
- Han-Ying Liu
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Samuel E. Neale
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Michael S. Hill
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Mary F. Mahon
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Claire L. McMullin
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Emma Richards
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| |
Collapse
|
9
|
Li H, Yao J, Xu G, Yiu SM, Siu CK, Wang Z, Peng YK, Xie Y, Wang Y, Lu Z. Reduction of Li + within a borate anion. Nat Commun 2024; 15:2590. [PMID: 38519505 PMCID: PMC10960030 DOI: 10.1038/s41467-024-46948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Group 1 elements exhibit the lowest electronegativity values in the Periodic Table. The chemical reduction of Group 1 metal cations M+ to M(0) is extremely challenging. Common tetraaryl borates demonstrate limited redox properties and are prone to decomposition upon oxidation. In this study, by employing simple yet versatile bipyridines as ligands, we synthesized a series of redox-active borate anions characterized by NMR and X-ray single-crystal diffraction. Notably, the borate anion can realize the reduction of Li+, generating elemental lithium metal and boron radical, thereby demonstrating its potent reducing ability. Furthermore, it can serve as a powerful two-electron-reducing reagent and be readily applied in various reductive homo-coupling reactions and Birch reduction of acridine. Additionally, this borate anion demonstrates its catalytic ability in the selective two-electron reduction of CO2 into CO.
Collapse
Affiliation(s)
- Haokun Li
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Jiachen Yao
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Gan Xu
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Shek-Man Yiu
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Chi-Kit Siu
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Zhen Wang
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Yung-Kang Peng
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Yi Xie
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
| | - Ying Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
| | - Zhenpin Lu
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P. R. China.
| |
Collapse
|
10
|
Pearce KG, Hill MS, Mahon MF. Cesium Reduction of a Lithium Diamidochloroberyllate. Organometallics 2024; 43:432-437. [PMID: 38362487 PMCID: PMC10865438 DOI: 10.1021/acs.organomet.3c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Room temperature reaction of elemental cesium with the dimeric lithium chloroberyllate [{SiNDipp}BeClLi]2 [{SiNDipp} = {CH2SiMe2N(Dipp)}2, where Dipp = 2,6-di-isopropylphenyl, in C6D6 results in activation of the arene solvent. Although, in contrast to earlier observations of lithium and sodium metal reduction, the generation of a mooted cesium phenylberyllate could not be confirmed, this process corroborates a previous hypothesis that such beryllium-centered solvent activation also necessitates the formation of hydridoberyllium species. These observations are further borne out by the study of an analogous reaction performed in toluene, in which case the proposed generation of formally low oxidation state beryllium radical anion intermediates induces activation of a toluene sp3 C-H bond and the isolation of the polymeric cesium benzylberyllate, [Cs({SiNDipp}BeCH2C6H5)]∞.
Collapse
Affiliation(s)
- Kyle G. Pearce
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Michael S. Hill
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Mary F. Mahon
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| |
Collapse
|
11
|
Kreutzer J. Like will reduce like. Nat Rev Chem 2024:10.1038/s41570-024-00581-7. [PMID: 38263302 DOI: 10.1038/s41570-024-00581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
|