1
|
Salomo-Coll C, Jimenez-Moreno N, Wilkinson S. Lysosomal Degradation of ER Client Proteins by ER-phagy and Related Pathways. J Mol Biol 2025:169035. [PMID: 39993592 DOI: 10.1016/j.jmb.2025.169035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
The endoplasmic reticulum (ER) is a major site of cellular protein synthesis. Degradation of overabundant, misfolded, aggregating or unwanted proteins is required to maintain proteostasis and avoid the deleterious consequences of aberrant protein accumulation, at a cellular and organismal level. While extensive research has shown an important role for proteasomally-mediated, ER-associated degradation (ERAD) in maintaining proteostasis, it is becoming clear that there is a substantial role for lysosomal degradation of "client" proteins from the ER lumen or membrane (ER-to-lysosome degradation, ERLAD). Here we provide a brief overview of the broad categories of ERLAD - predominantly ER-phagy (ER autophagy) pathways and related processes. We collate the client proteins known to date, either individual species or categories of proteins. Where known, we summarise the molecular mechanisms by which they are selected for degradation, and the setting in which lysosomal degradation of the client(s) is important for correct cell or tissue function. Finally, we highlight the questions that remain open in this area.
Collapse
Affiliation(s)
- Carla Salomo-Coll
- CRUK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU, United Kingdom
| | - Natalia Jimenez-Moreno
- CRUK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU, United Kingdom
| | - Simon Wilkinson
- CRUK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU, United Kingdom.
| |
Collapse
|
2
|
Tan S, Yang W, Ren Z, Peng Q, Xu X, Jiang X, Wu Z, Oyang L, Luo X, Lin J, Xia L, Peng M, Wu N, Tang Y, Han Y, Liao Q, Zhou Y. Noncoding RNA-encoded peptides in cancer: biological functions, posttranslational modifications and therapeutic potential. J Hematol Oncol 2025; 18:20. [PMID: 39972384 PMCID: PMC11841355 DOI: 10.1186/s13045-025-01671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
In the present era, noncoding RNAs (ncRNAs) have become a subject of considerable scientific interest, with peptides encoded by ncRNAs representing a particularly promising avenue of investigation. The identification of ncRNA-encoded peptides in human cancers is increasing. These peptides regulate cancer progression through multiple molecular mechanisms. Here, we delineate the patterns of diverse ncRNA-encoded peptides and provide a synopsis of the methodologies employed for the identification of ncRNAs that possess the capacity to encode these peptides. Furthermore, we discuss the impacts of ncRNA-encoded peptides on the biological behavior of cancer cells and the underlying molecular mechanisms. In conclusion, we describe the prospects of ncRNA-encoded peptides in cancer and the challenges that need to be overcome.
Collapse
Affiliation(s)
- Shiming Tan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Wenjuan Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Zongyao Ren
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Qiu Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xuemeng Xu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xianjie Jiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Zhu Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Linda Oyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xia Luo
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Jinguan Lin
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Longzheng Xia
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Mingjing Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Nayiyuan Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Yanyan Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Yaqian Han
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
| | - Qianjin Liao
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China.
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
3
|
Sanz-Martinez P, Berkane R, Stolz A. Function of CSNK2/CK2 selectively affects the endoplasmic reticulum and the Golgi apparatus in mtor-mediated autophagy induction. Autophagy 2025; 21:480-486. [PMID: 39178915 PMCID: PMC11760280 DOI: 10.1080/15548627.2024.2395725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/03/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
Selective macroautophagy/autophagy of the endoplasmic reticulum, known as reticulophagy/ER-phagy, is essential to maintain ER homeostasis. We recently showed that members of the autophagy receptor family RETREG/FAM134 are regulated by phosphorylation-dependent ubiquitination. In an unbiased screen we had identified several kinases downstream of MTOR with profound impact on reticulophagy flux, including ATR and CSNK2/CK2. Inhibition of CSNK2 by SGC-CK2-1 prevented regulatory ubiquitination of RETREG1/FAM134B and RETREG3/FAM134C upon autophagy activation as well as the formation of high-density RETREG1- and RETREG3-clusters. Here we report on additional resource data of global proteomics upon CSNK2 and ATR inhibition, respectively. Our data suggests that the function of CSNK2 is mainly limited to the ER/reticulophagy and Golgi/Golgiphagy, while ATR inhibition by VE-822 affects the vast majority of organelles/selective autophagy pathways.Abbreviation: ATRi: ATR inhibitor VE-822; CSNK2i: CSNK2 inhibitor SGC-CK2-1; ER: endoplasmic reticulum.
Collapse
Affiliation(s)
- Pablo Sanz-Martinez
- Institute of Biochemistry 2 (IBC2), Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Rayene Berkane
- Institute of Biochemistry 2 (IBC2), Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Alexandra Stolz
- Institute of Biochemistry 2 (IBC2), Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Buonomo V, Lohachova K, Reggio A, Cano-Franco S, Cillo M, Santorelli L, Venditti R, Polishchuk E, Peluso I, Brunello L, Cirillo C, Petrosino S, Silva M, De Cegli R, Di Bartolomeo S, Gargioli C, Swuec P, Cortese M, Stolz A, Bhaskara RM, Grumati P. Two FAM134B isoforms differentially regulate ER dynamics during myogenesis. EMBO J 2025; 44:1039-1073. [PMID: 39762646 PMCID: PMC11832904 DOI: 10.1038/s44318-024-00356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 02/19/2025] Open
Abstract
Endoplasmic reticulum (ER) plasticity and ER-phagy are intertwined processes essential for maintaining ER dynamics. We investigated the interplay between two isoforms of the ER-phagy receptor FAM134B in regulating ER remodeling in differentiating myoblasts. During myogenesis, the canonical FAM134B1 is degraded, while its isoform FAM134B2 is transcriptionally upregulated. The switch, favoring FAM134B2, is an important regulator of ER morphology during myogenesis. FAM134B2 partial reticulon homology domain, with its rigid conformational characteristics, enables efficient ER reshaping. FAM134B2 action increases in the active phase of differentiation leading to ER restructuring via ER-phagy, which then reverts to physiological levels when myotubes are mature and the ER is reorganized. Knocking out both FAM134B isoforms in myotubes results in an aberrant proteome landscape and the formation of dilated ER structures, both of which are rescued by FAM134B2 re-expression. Our results underscore how the fine-tuning of FAM134B isoforms and ER-phagy orchestrate the ER dynamics during myogenesis providing insights into the molecular mechanisms governing ER homeostasis in muscle cells.
Collapse
Affiliation(s)
- Viviana Buonomo
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy
- Department of Clinical Medicine and Surgery, Federico II University, 80131, Naples, Italy
| | - Kateryna Lohachova
- Institute of Biochemistry II, School of Medicine, Goethe University, 60590, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, 60438, Frankfurt am Main, Germany
| | - Alessio Reggio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy
- Saint Camillus International University of Health Sciences, 00131, Rome, Italy
| | - Sara Cano-Franco
- Institute of Biochemistry II, School of Medicine, Goethe University, 60590, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, 60438, Frankfurt am Main, Germany
| | - Michele Cillo
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy
- Department of Clinical Medicine and Surgery, Federico II University, 80131, Naples, Italy
| | - Lucia Santorelli
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy
| | - Rossella Venditti
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, 80131, Naples, Italy
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy
| | - Ivana Peluso
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy
| | - Lorene Brunello
- Institute of Biochemistry II, School of Medicine, Goethe University, 60590, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, 60438, Frankfurt am Main, Germany
| | - Carmine Cirillo
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy
| | - Sara Petrosino
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, 00136, Rome, Italy
| | - Malan Silva
- Cryo-Electron Microscopy Unit, National Facility for Structural Biology, Human Technopole, 20157, Milan, Italy
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy
| | | | - Cesare Gargioli
- Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Paolo Swuec
- Cryo-Electron Microscopy Unit, National Facility for Structural Biology, Human Technopole, 20157, Milan, Italy
| | - Mirko Cortese
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy
- DISTABiF, University Luigi Vanvitelli, 81100, Caserta, Italy
| | - Alexandra Stolz
- Institute of Biochemistry II, School of Medicine, Goethe University, 60590, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, 60438, Frankfurt am Main, Germany
| | - Ramachandra M Bhaskara
- Institute of Biochemistry II, School of Medicine, Goethe University, 60590, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, 60438, Frankfurt am Main, Germany
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy.
- Department of Clinical Medicine and Surgery, Federico II University, 80131, Naples, Italy.
| |
Collapse
|
5
|
Palma A, Reggio A. Signaling Regulation of FAM134-Dependent ER-Phagy in Cells. J Cell Physiol 2025; 240:e31492. [PMID: 39584582 PMCID: PMC11747952 DOI: 10.1002/jcp.31492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/26/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
The endoplasmic reticulum (ER) is a pivotal organelle responsible for protein and lipid synthesis, calcium homeostasis, and protein quality control within eukaryotic cells. To maintain cellular health, damaged or excess portions of the ER must be selectively degraded via a process known as selective autophagy, or ER-phagy. This specificity is driven by a network of protein receptors and regulatory mechanisms. In this review, we explore the molecular mechanisms governing ER-phagy, with a focus on the FAM134 family of ER-resident ER-phagy receptors. We discuss the molecular pathways and Posttranslational modifications that regulate receptor activation and clustering, and how these modifications fine-tune ER-phagy in response to stress. This review provides a concise understanding of how ER-phagy contributes to cellular homeostasis and highlights the need for further studies in models where ER stress and autophagy are dysregulated.
Collapse
Affiliation(s)
- Alessandro Palma
- Department of Biology and Biotechnologies “Charles Darwin”Sapienza University of RomeRomeItaly
| | - Alessio Reggio
- Saint Camillus International University of Health SciencesRomeItaly
| |
Collapse
|
6
|
Wilson A, McCormick C. Reticulophagy and viral infection. Autophagy 2025; 21:3-20. [PMID: 39394962 DOI: 10.1080/15548627.2024.2414424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
All viruses are obligate intracellular parasites that use host machinery to synthesize viral proteins. In infected eukaryotes, viral secreted and transmembrane proteins are synthesized at the endoplasmic reticulum (ER). Many viruses refashion ER membranes into bespoke factories where viral products accumulate while evading host pattern recognition receptors. ER processes are tightly regulated to maintain cellular homeostasis, so viruses must either conform to ER regulatory mechanisms or subvert them to ensure efficient viral replication. Reticulophagy is a catabolic process that directs lysosomal degradation of ER components. There is accumulating evidence that reticulophagy serves as a form of antiviral defense; we call this defense "xERophagy" to acknowledge its relationship to xenophagy, the catabolic degradation of microorganisms by macroautophagy/autophagy. In turn, viruses can subvert reticulophagy to suppress host antiviral responses and support efficient viral replication. Here, we review the evidence for functional interplay between viruses and the host reticulophagy machinery.Abbreviations: AMFR: autocrine motility factor receptor; ARF4: ADP-ribosylation factor 4; ARL6IP1: ADP-ribosylation factor-like 6 interacting protein 1; ATL3: atlastin GTPase 3; ATF4: activating transcription factor 4; ATF6: activating transcription factor 6; BPIFB3: BPI fold containing family B, member 3; CALCOCO1: calcium binding and coiled coil domain 1; CAMK2B: calcium/calmodulin-dependent protein kinase II, beta; CANX: calnexin; CDV: canine distemper virus; CCPG1: cell cycle progression 1; CDK5RAP3/C53: CDK5 regulatory subunit associated protein 3; CIR: cargo-interacting region; CoV: coronavirus; CSNK2/CK2: casein kinase 2; CVB3: coxsackievirus B3; DAPK1: death associated protein kinase 1; DENV: dengue virus; DMV: double-membrane vesicles; EBOV: Ebola virus; EBV: Epstein-Barr Virus; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EMCV: encephalomyocarditis virus; EMV: extracellular microvesicle; ER: endoplasmic reticulum; ERAD: ER-associated degradation; ERN1/IRE1: endoplasmic reticulum to nucleus signalling 1; EV: extracellular vesicle; EV71: enterovirus 71; FIR: RB1CC1/FIP200-interacting region; FMDV: foot-and-mouth disease virus; HCMV: human cytomegalovirus; HCV: hepatitis C virus; HMGB1: high mobility group box 1; HSPA5/BiP: heat shock protein 5; IFN: interferon; IFNG/IFN-γ: interferon gamma; KSHV: Kaposi's sarcoma-associated herpesvirus; LIR: MAP1LC3/LC3-interacting region; LNP: lunapark, ER junction formation factor; MAP1LC3: microtubule-associated protein 1 light chain 3; MAP3K5/ASK1: mitogen-activated protein kinase kinase kinase 5; MAPK/JNK: mitogen-activated protein kinase; MeV: measles virus; MHV: murine hepatitis virus; NS: non-structural; PDIA3: protein disulfide isomerase associated 3; PRR: pattern recognition receptor; PRRSV: porcine reproductive and respiratory syndrome virus; RB1CC1/FIP200: RB1-inducible coiled-coil 1; RETREG1/FAM134B: reticulophagy regulator 1; RHD: reticulon homology domain; RTN3: reticulon 3; RTN3L: reticulon 3 long; sAIMs: shuffled Atg8-interacting motifs; SARS-CoV: severe acute respiratory syndrome coronavirus; SINV: Sindbis virus; STING1: stimulator of interferon response cGAMP interactor 1; SVV: Seneca Valley virus; SV40: simian virus 40; TEX264: testis expressed gene 264 ER-phagy receptor; TFEB: transcription factor EB; TRAF2: TNF receptor-associated factor 2; UIM: ubiquitin-interacting motif; UFM1: ubiquitin-fold modifier 1; UPR: unfolded protein response; VAPA: vesicle-associated membrane protein, associated protein A; VAPB: vesicle-associated membrane protein, associated protein B and C; VZV: varicella zoster virus; WNV: West Nile virus; XBP1: X-box binding protein 1; XBP1s: XBP1 spliced; xERophagy: xenophagy involving reticulophagy; ZIKV: Zika virus.
Collapse
Affiliation(s)
- Alexa Wilson
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Craig McCormick
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
7
|
Mo J, Su C, Li P, Yang Z, Tao R, Liu Q, Yuan C, Xu L, Ge Q, Ning D, Liang H, Zhu H, Luo Y, Chen X, Chen J, Zhang B. CKAP4 in hepatocellular carcinoma: competitive RETREG1/FAM134B binding, reticulophagy regulation, and cancer progression. Autophagy 2024:1-20. [PMID: 39689859 DOI: 10.1080/15548627.2024.2435236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
RETREG1/FAM134B is known for its role as a reticulophagy receptor. Our previous study established that RETREG1 is upregulated in hepatocellular carcinoma (HCC) and contributes to disease progression by activating the AKT signaling pathway. However, the specific mechanisms underlying the elevated expression of RETREG1 in HCC remain unclear. This study unveils the interaction of RETREG1 with CKAP4 and TRIM21. We demonstrated that TRIM21 ubiquitinates RETREG1 at K247 and K252, facilitating its proteasomal degradation. Conversely, CKAP4 shields RETREG1 from degradation by competitively binding to it, revealing a novel post-translational modification mechanism for RETREG1. By modulating RETREG1 expression, CKAP4, and TRIM21 intricately regulate reticulophagy. Additionally, we observed that stress-induced TRIM21 upregulation mitigates the function of RETREG1 to restore ER stress equilibrium. The oncogenic potential of CKAP4 in HCC was demonstrated using various animal models. Clinical sample analyses suggested that CKAP4 is a potential biomarker for HCC prognosis and diagnosis.Abbreviation: AKT: thymoma viral proto-oncogene; aa: amino acid; bp: base pair; CHX: cycloheximide; co-IP: co-Immunoprecipitation; CQ: chloroquine; CKAP4: cytoskeleton-associated protein 4; DKK1: dickkopf WNT signaling pathway inhibitor 1; DUBs: deubiquitinating enzymes; EBSS: Earle's balanced salt solution; EGFP: enhanced green fluorescent protein; ER: endoplasmic reticulum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HCC: hepatocellular carcinoma; HFD: high-fat diet; HiTV: hyperdynamic tail vein injection; IF: immunofluorescence; IHC: immunohistochemistry; IP-MS: immunoprecipitation-mass spectrometry; LIR: LC3-interacting region; mAbs: monoclonal antibodies; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; mCherry: monomeric cherry; oe: overexpression; PDX: patient-derived tumor xenograft; reticulophagy: endoplasmic reticulum selective autophagy; RETREG1: reticulophagy regulator 1; RHD: reticulon-homology domain; Tg: thapsigargin; Tm: tunicamycin; TRIM21: tripartite motif-containing 21; UB: ubiquitin; WT: wild-type.
Collapse
Affiliation(s)
- Jie Mo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Chen Su
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Pengcheng Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Zhenhua Yang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ran Tao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Chaoyi Yuan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Lei Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Qianyun Ge
- Department of Pediatric Surgery, The Children's Hospital of Fudan University, Shanghai, P.R. China
| | - Deng Ning
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Haidan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yan Luo
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
8
|
Li R, Zhang J, Ji S, Fang J, Ji X, Zeng Y, Liu N, Wu W, Liu S. Qingre Huoxue decoction attenuates myocardial ischemia‒reperfusion injury by regulating the autophagy‒endoplasmic reticulum stress axis via FAM134B-mediated ER-phagy. Front Pharmacol 2024; 15:1447610. [PMID: 39664523 PMCID: PMC11632235 DOI: 10.3389/fphar.2024.1447610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/25/2024] [Indexed: 12/13/2024] Open
Abstract
Background Autophagy‒endoplasmic reticulum (ER) stress axis dysregulation is linked to myocardial ischemia‒reperfusion injury (MIRI), which counteracts the benefits of acute myocardial infarction (AMI) reperfusion therapy. Qingre Huoxue decoction (QRHX) improves the short- and long-term prognosis of AMI after percutaneous coronary intervention and alleviates myocardial injury in AMI rats by stimulating autophagy via the PI3K/Akt pathway. We aimed to further explore the efficacy of QRHX in treating MIRI and its regulatory relationship with FAM134B-mediated ER-phagy. Materials and methods Rats were administered different concentrations of QRHX for 2 weeks, and then MIRI was induced. Ultra-performance liquid chromatography‒tandem mass spectrometry (UPLC‒MS) was used to examine the levels of the main pharmacological metabolites of the serum of rats treated with QRHX. H9c2 cells were pretreated with QRHX-mediating serum (QRHX-MS) for 24 h before being exposed to hypoxia/reoxygenation (H/R). The mechanisms underlying the effects of QRHX-MS were further studied via rescue experiments involving FAM134B knockdown. The myocardial infarct size, cardiac function, morphology and the expression of apoptosis-, autophagy-, and ER stress-related proteins and genes were assessed. The colocalization of autophagosomes with lysosomes and the localization of proteins involved in ER-phagy or autophagic flux was examined. Results QRHX decreased the myocardial infarct size and oxidative stress, improved cardiac function and alleviated morphological changes in a dose-dependent manner in MIRI rats by promoting autophagic flux to inhibit ER stress and ER stress-related apoptosis, which was related to FAM134B-mediated ER-phagy, as revealed by autophagy analysis. UPLC‒MS analysis of QRHX-MS revealed 20 major active metabolites of QRHX-MS, including baicalin, cryptotanshinone, 3,4-dihydroxybenzaldehyde and caffeic acid. QRHX-MS attenuated H/R-induced cardiomyocyte injury and apoptosis by increasing autophagic flux to suppress ER stress and ER stress-related apoptotic protein and gene expression. When autophagic flux was inhibited or FAM134B was knocked down in H9c2 cells followed by QRHX-MS pretreatment, the protective effect of QRHX was partially reversed. Conclusion QRHX alleviates myocardial injury, apoptosis and infarct size expansion in MIRI by regulating the autophagy‒ER stress axis via FAM134B-mediated ER-phagy.
Collapse
Affiliation(s)
- Rui Li
- Department of Emergency, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiechun Zhang
- Department of Intensive Care Unit, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shuliang Ji
- Department of Traditional Chinese Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Junfeng Fang
- Department of Emergency, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaodong Ji
- Department of Emergency, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yanping Zeng
- Department of Emergency, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, China
| | - Nan Liu
- Department of Emergency, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei Wu
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Cardiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shiyi Liu
- Department of Emergency, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Zheng Y, Zhou Z, Liu M, Chen Z. Targeting selective autophagy in CNS disorders by small-molecule compounds. Pharmacol Ther 2024; 263:108729. [PMID: 39401531 DOI: 10.1016/j.pharmthera.2024.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/27/2024]
Abstract
Autophagy functions as the primary cellular mechanism for clearing unwanted intracellular contents. Emerging evidence suggests that the selective elimination of intracellular organelles through autophagy, compared to the increased bulk autophagic flux, is crucial for the pathological progression of central nervous system (CNS) disorders. Notably, autophagic removal of mitochondria, known as mitophagy, is well-understood in an unhealthy brain. Accumulated data indicate that selective autophagy of other substrates, including protein aggregates, liposomes, and endoplasmic reticulum, plays distinctive roles in various pathological stages. Despite variations in substrates, the molecular mechanisms governing selective autophagy can be broadly categorized into two types: ubiquitin-dependent and -independent pathways, both of which can be subjected to regulation by small-molecule compounds. Notably, natural products provide the remarkable possibility for future structural optimization to regulate the highly selective autophagic clearance of diverse substrates. In this context, we emphasize the selectivity of autophagy in regulating CNS disorders and provide an overview of chemical compounds capable of modulating selective autophagy in these disorders, along with the underlying mechanisms. Further exploration of the functions of these compounds will in turn advance our understanding of autophagic contributions to brain disorders and illuminate precise therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhuchen Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Mengting Liu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
10
|
Duan Y, Liu D, Yu H, Zhang S, Xia Y, Du Z, Qin Y, Wang Y, Ma X, Liu H, Du Y. Transcription and post-translational mechanisms: dual regulation of adiponectin-mediated Occludin expression in diabetes. Cell Biosci 2024; 14:126. [PMID: 39354565 PMCID: PMC11443667 DOI: 10.1186/s13578-024-01306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Occludin, a crucial component of tight junctions, has emerged as a promising biomarker for the diagnosis of acute ischemic disease, highlighting its significant potential in clinical applications. In the diabetes, Occludin serves as a downstream target gene intricately regulated by the adiponectin (APN) signaling pathway. However, the specific mechanism by which adiponectin regulates Occludin expression remains unclear. METHODS AND RESULTS Endothelial-specific Ocln knockdown reduced APN-mediated blood flow recovery after femoral artery ligation and nullified APN's protection against high-fat diet (HFD)-triggered apoptosis and angiogenesis inhibition in vivo. Mechanically, we have meticulously elucidated APN's regulatory role in Occludin expression through a comprehensive analysis spanning transcriptional and post-translational dimensions. Foxo1 has been elucidated as a crucial transcriptional regulator of Occludin that is modulated by the APN/APPL1 signaling axis, as evidenced by validation through ChIP-qPCR assays and Western blot analysis. APN hindered Occludin degradation via the ubiquitin-proteasome pathway. Mass spectrometry analysis has recently uncovered a novel phosphorylation site, Tyr467, on Occludin. This site responds to APN, playing a crucial role in inhibiting Occludin ubiquitination by APN. The anti-apoptotic and pro-angiogenic effects of APN were attenuated in vitro and in vivo following Foxo1 knockdown or expression of a non-phosphorylatable mutant, OccludinY467A. Clinically, elevated plasma concentrations of Occludin were observed in patients with diabetes. A significant negative correlation was found between Occludin levels and APN concentrations. CONCLUSION Our study proposes that APN modulates Occludin expression through mechanisms involving both transcriptional and post-translational interactions, thereby conferring a protective effect on endothelial integrity within diabetic vasculature.
Collapse
Affiliation(s)
- Yanru Duan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Demin Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Huahui Yu
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, People's Republic of China
| | - Shihan Zhang
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, 100045, People's Republic of China
| | - Yihua Xia
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Zhiyong Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, People's Republic of China
| | - Yanwen Qin
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, People's Republic of China
| | - Yajing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing, China.
| | - Yunhui Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, People's Republic of China.
| |
Collapse
|
11
|
Wang X, Geng J, Rimal S, Sui Y, Pan J, Qin Z, Lu B. The p53 target DRAM1 modulates calcium homeostasis and ER stress by promoting contact between lysosomes and the ER through STIM1. Proc Natl Acad Sci U S A 2024; 121:e2400531121. [PMID: 39292746 PMCID: PMC11441506 DOI: 10.1073/pnas.2400531121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/27/2024] [Indexed: 09/20/2024] Open
Abstract
It is well established that DNA Damage Regulated Autophagy Modulator 1 (DRAM1), a lysosomal protein and a target of p53, participates in autophagy. The cellular functions of DRAM1 beyond autophagy remain elusive. Here, we show p53-dependent upregulation of DRAM1 in mitochondrial damage-induced Parkinson's disease (PD) models and exacerbation of disease phenotypes by DRAM1. We find that the lysosomal location of DRAM1 relies on its intact structure including the cytosol-facing C-terminal domain. Excess DRAM1 disrupts endoplasmic reticulum (ER) structure, triggers ER stress, and induces protective ER-phagy. Mechanistically, DRAM1 interacts with stromal interacting molecule 1 (STIM1) to tether lysosomes to the ER and perturb STIM1 function in maintaining intracellular calcium homeostasis. STIM1 overexpression promotes cellular health by restoring calcium homeostasis, ER stress response, ER-phagy, and AMP-activated protein kinase (AMPK)-Unc-51 like autophagy activating kinase 1 (ULK1) signaling in cells with excess DRAM1. Thus, by promoting organelle contact between lysosomes and the ER, DRAM1 modulates ER structure and function and cell survival under stress. Our results suggest that DRAM1 as a lysosomal protein performs diverse roles in cellular homeostasis and stress response. These findings may have significant implications for our understanding of the role of the p53/DRAM1 axis in human diseases, from cancer to neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiying Wang
- Department of Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ji Geng
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Suman Rimal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Yuxiu Sui
- Department of Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jie Pan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Zhenghong Qin
- Institute of Health Technology, Global Institute of Software Technology, Suzhou 215163, China
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, School of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
12
|
Jacomin AC, Dikic I. Membrane remodeling via ubiquitin-mediated pathways. Cell Chem Biol 2024; 31:1627-1635. [PMID: 39303699 DOI: 10.1016/j.chembiol.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
The dynamic process of membrane shaping and remodeling plays a vital role in cellular functions, with proteins and cellular membranes interacting intricately to adapt to various cellular needs and environmental cues. Ubiquitination-a posttranslational modification-was shown to be essential in regulating membrane structure and shape. It influences virtually all pathways relying on cellular membranes, such as endocytosis and autophagy by directing protein degradation, sorting, and oligomerization. Ubiquitin is mostly known as a protein modifier; however, it was reported that ubiquitin and ubiquitin-like proteins can associate directly with lipids, affecting membrane curvature and dynamics. In this review, we summarize some of the current knowledge on ubiquitin-mediated membrane remodeling in the context of endocytosis, autophagy, and ER-phagy.
Collapse
Affiliation(s)
- Anne-Claire Jacomin
- Goethe University Frankfurt, Medical Faculty, Institute of Biochemistry II, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
| | - Ivan Dikic
- Goethe University Frankfurt, Medical Faculty, Institute of Biochemistry II, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany; Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Strasse 15, 60438 Frankfurt Am Main, Germany.
| |
Collapse
|
13
|
Iavarone F, Zaninello M, Perrone M, Monaco M, Barth E, Gaedke F, Pizzo MT, Di Lorenzo G, Desiderio V, Sommella E, Merciai F, Salviati E, Campiglia P, Luongo L, De Leonibus E, Rugarli E, Settembre C. Fam134c and Fam134b shape axonal endoplasmic reticulum architecture in vivo. EMBO Rep 2024; 25:3651-3677. [PMID: 39039299 PMCID: PMC11316074 DOI: 10.1038/s44319-024-00213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024] Open
Abstract
Endoplasmic reticulum (ER) remodeling is vital for cellular organization. ER-phagy, a selective autophagy targeting ER, plays an important role in maintaining ER morphology and function. The FAM134 protein family, including FAM134A, FAM134B, and FAM134C, mediates ER-phagy. While FAM134B mutations are linked to hereditary sensory and autonomic neuropathy in humans, the physiological role of the other FAM134 proteins remains unknown. To address this, we investigate the roles of FAM134 proteins using single and combined knockouts (KOs) in mice. Single KOs in young mice show no major phenotypes; however, combined Fam134b and Fam134c deletion (Fam134b/cdKO), but not the combination including Fam134a deletion, leads to rapid neuromuscular and somatosensory degeneration, resulting in premature death. Fam134b/cdKO mice show rapid loss of motor and sensory axons in the peripheral nervous system. Long axons from Fam134b/cdKO mice exhibit expanded tubular ER with a transverse ladder-like appearance, whereas no obvious abnormalities are present in cortical ER. Our study unveils the critical roles of FAM134C and FAM134B in the formation of tubular ER network in axons of both motor and sensory neurons.
Collapse
Affiliation(s)
| | - Marta Zaninello
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Michela Perrone
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", Naples, Italy
| | | | - Esther Barth
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Felix Gaedke
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | | | | | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, 80138, Naples, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA, 84084, Italy
| | - Fabrizio Merciai
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA, 84084, Italy
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA, 84084, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA, 84084, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
- Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | - Elena Rugarli
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine, University of Cologne, Cologne, Germany.
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| |
Collapse
|
14
|
Stolz A. CSNK2/CK2 regulates selective autophagy of the endoplasmic reticulum. Autophagy 2024; 20:1694-1695. [PMID: 38511596 PMCID: PMC11210897 DOI: 10.1080/15548627.2024.2330037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/01/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024] Open
Abstract
Tuning and assimilation of endoplasmic reticulum (ER) content in each cell of the human body is an essential part of organismal homeostasis and adaptation to stress. As such, the lysosomal turnover of ER (reticulophagy) needs to be regulated in a spatio-temporal as well as cell-type specific manner. We recently identified CSNK2/CK2 (casein kinase 2) as the enzyme that phosphorylates the reticulophagy receptors RETREG1/FAM134B and RETREG3/FAM134C and regulates their activity. Phosphorylation of the receptors is a prerequisite for their subsequent functional ubiquitination and the formation of high-density clusters, presumably representing active macroautophagy/autophagy sites at the ER membrane. Consistently, treatment with kinase inhibitor SGC-CK2-1, knockdown of endogenous CSNK2, or mutation of respective phospho-sites prevents ubiquitination, the formation of high-density clusters as well as reticulophagy flux. We hypothesize that CSNK2 has a broader impact on ER and Golgi content in a cell-type and context-specific manner by orchestrating the activity of several autophagy receptors and potentially also factors of the ER-associated protein degradation pathway.
Collapse
Affiliation(s)
- Alexandra Stolz
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| |
Collapse
|