1
|
Schmidt H, Schick L, Podlech J, Renzaho A, Lieb B, Diederich S, Hankeln T, Plachter B, Kriege O. Adaptive evolution of SARS-CoV-2 during a persistent infection for 521 days in an immunocompromised patient. NPJ Genom Med 2025; 10:4. [PMID: 39820045 PMCID: PMC11739519 DOI: 10.1038/s41525-025-00463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/09/2025] [Indexed: 01/19/2025] Open
Abstract
Immunocompromised patients struggle to adequately clear viral infections, offering the virus the opportunity to adapt to the immune system in the host. Here we present a case study of a patient undergoing allogeneic hematopoietic stem cell transplantation with a 521-day follow-up of a SARS-CoV-2 infection with the BF.7.21 variant. Virus samples from five time points were submitted to whole genome sequencing. Between the first detection of SARS-CoV-2 infection and its clearance, the patient's virus population acquired 34 amino acid substitutions and 8 deletions in coding regions. With 11 amino acid substitutions in the receptor binding domain of the virus' spike protein, substitutions were 15 times more abundant than expected for a random distribution in this highly functional region. Amongst them were the substitutions S:K417T, S:N440S, S:K444R, S:V445A, S:G446N, S:L452Q, S:N460K, and S:E484V at positions that are notorious for their resistance-mediating effects. The substitution patterns found indicate ongoing adaptive evolution.
Collapse
Affiliation(s)
- Hanno Schmidt
- Sequencing Consortium, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Institute of Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Institute for Quantitative and Computational Biosciences, Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Lea Schick
- Third Department of Medicine-Hematology, Internal Oncology, and Pneumology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jürgen Podlech
- Institute of Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Angélique Renzaho
- Sequencing Consortium, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Bettina Lieb
- Sequencing Consortium, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- StarSEQ GmbH, Mainz, Germany
| | - Stefan Diederich
- Sequencing Consortium, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Hankeln
- Sequencing Consortium, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Organismal and Molecular Evolutionary Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Bodo Plachter
- Sequencing Consortium, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Oliver Kriege
- Third Department of Medicine-Hematology, Internal Oncology, and Pneumology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
2
|
Li L, Li C, Li N, Zou D, Zhao W, Luo H, Xue Y, Zhang Z, Bao Y, Song S. Machine Learning Early Detection of SARS-CoV-2 High-Risk Variants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405058. [PMID: 39401400 PMCID: PMC11615786 DOI: 10.1002/advs.202405058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/03/2024] [Indexed: 12/06/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved many high-risk variants, resulting in repeated COVID-19 waves over the past years. Therefore, accurate early warning of high-risk variants is vital for epidemic prevention and control. However, detecting high-risk variants through experimental and epidemiological research is time-consuming and often lags behind the emergence and spread of these variants. In this study, HiRisk-Detector a machine learning algorithm based on haplotype network, is developed for computationally early detecting high-risk SARS-CoV-2 variants. Leveraging over 7.6 million high-quality and complete SARS-CoV-2 genomes and metadata, the effectiveness, robustness, and generalizability of HiRisk-Detector are validated. First, HiRisk-Detector is evaluated on actual empirical data, successfully detecting all 13 high-risk variants, preceding World Health Organization announcements by 27 days on average. Second, its robustness is tested by reducing sequencing intensity to one-fourth, noting only a minimal delay of 3.8 days, demonstrating its effectiveness. Third, HiRisk-Detector is applied to detect risks among SARS-CoV-2 Omicron variant sub-lineages, confirming its broad applicability and high ROC-AUC and PR-AUC performance. Overall, HiRisk-Detector features powerful capacity for early detection of high-risk variants, bearing great utility for any public emergency caused by infectious diseases or viruses.
Collapse
Affiliation(s)
- Lun Li
- China National Center for BioinformationBeijing100101China
- National Genomics Data CenterBeijing Institute of GenomicsChinese Academy of SciencesBeijing100101China
| | - Cuiping Li
- China National Center for BioinformationBeijing100101China
- National Genomics Data CenterBeijing Institute of GenomicsChinese Academy of SciencesBeijing100101China
| | - Na Li
- China National Center for BioinformationBeijing100101China
- National Genomics Data CenterBeijing Institute of GenomicsChinese Academy of SciencesBeijing100101China
| | - Dong Zou
- China National Center for BioinformationBeijing100101China
- National Genomics Data CenterBeijing Institute of GenomicsChinese Academy of SciencesBeijing100101China
| | - Wenming Zhao
- China National Center for BioinformationBeijing100101China
- National Genomics Data CenterBeijing Institute of GenomicsChinese Academy of SciencesBeijing100101China
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hong Luo
- China National Center for BioinformationBeijing100101China
- National Genomics Data CenterBeijing Institute of GenomicsChinese Academy of SciencesBeijing100101China
| | - Yongbiao Xue
- China National Center for BioinformationBeijing100101China
- National Genomics Data CenterBeijing Institute of GenomicsChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zhang Zhang
- China National Center for BioinformationBeijing100101China
- National Genomics Data CenterBeijing Institute of GenomicsChinese Academy of SciencesBeijing100101China
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yiming Bao
- China National Center for BioinformationBeijing100101China
- National Genomics Data CenterBeijing Institute of GenomicsChinese Academy of SciencesBeijing100101China
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Shuhui Song
- China National Center for BioinformationBeijing100101China
- National Genomics Data CenterBeijing Institute of GenomicsChinese Academy of SciencesBeijing100101China
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
3
|
Sigal A, Neher RA, Lessells RJ. The consequences of SARS-CoV-2 within-host persistence. Nat Rev Microbiol 2024:10.1038/s41579-024-01125-y. [PMID: 39587352 DOI: 10.1038/s41579-024-01125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
SARS-CoV-2 causes an acute respiratory tract infection that resolves in most people in less than a month. Yet some people with severely weakened immune systems fail to clear the virus, leading to persistent infections with high viral titres in the respiratory tract. In a subset of cases, persistent SARS-CoV-2 replication results in an accelerated accumulation of adaptive mutations that confer escape from neutralizing antibodies and enhance cellular infection. This may lead to the evolution of extensively mutated SARS-CoV-2 variants and introduce an element of chance into the timing of variant evolution, as variant formation may depend on evolution in a single person. Whether long COVID is also caused by persistence of replicating SARS-CoV-2 is controversial. One line of evidence is detection of SARS-CoV-2 RNA and proteins in different body compartments long after SARS-CoV-2 infection has cleared from the upper respiratory tract. However, thus far, no replication competent virus has been cultured from individuals with long COVID who are immunocompetent. In this Review, we consider mechanisms of viral persistence, intra-host evolution in persistent infections, the connection of persistent infections with SARS-CoV-2 variants and the possible role of SARS-CoV-2 persistence in long COVID. Understanding persistent infections may therefore resolve much of what is still unclear in COVID-19 pathophysiology, with possible implications for other emerging viruses.
Collapse
Affiliation(s)
- Alex Sigal
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
- Africa Health Research Institute, Durban, South Africa.
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Richard A Neher
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Richard J Lessells
- KwaZulu-Natal Research Innovation & Sequencing Platform, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| |
Collapse
|
4
|
Schoefbaenker M, Günther T, Lorentzen EU, Romberg ML, Hennies MT, Neddermeyer R, Müller MM, Mellmann A, Bojarzyn CR, Lenz G, Stelljes M, Hrincius ER, Vollenberg R, Ludwig S, Tepasse PR, Kühn JE. Characterisation of the antibody-mediated selective pressure driving intra-host evolution of SARS-CoV-2 in prolonged infection. PLoS Pathog 2024; 20:e1012624. [PMID: 39405332 PMCID: PMC11508484 DOI: 10.1371/journal.ppat.1012624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/25/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
Neutralising antibodies against the SARS-CoV-2 spike (S) protein are major determinants of protective immunity, though insufficient antibody responses may cause the emergence of escape mutants. We studied the humoral immune response causing intra-host evolution in a B-cell depleted, haemato-oncologic patient experiencing clinically severe, prolonged SARS-CoV-2 infection with a virus of lineage B.1.177.81. Following bamlanivimab treatment at an early stage of infection, the patient developed a bamlanivimab-resistant mutation, S:S494P. After five weeks of apparent genetic stability, the emergence of additional substitutions and deletions within the N-terminal domain (NTD) and the receptor binding domain (RBD) of S was observed. Notably, the composition and frequency of escape mutations changed in a short period with an unprecedented dynamic. The triple mutant S:Delta141-4 E484K S494P became dominant until virus elimination. Routine serology revealed no evidence of an antibody response in the patient. A detailed analysis of the variant-specific immune response by pseudotyped virus neutralisation test, surrogate virus neutralisation test, and immunoglobulin-capture enzyme immunoassay showed that the onset of an IgM-dominated antibody response coincided with the appearance of escape mutations. The formation of neutralising antibodies against S:Delta141-4 E484K S494P correlated with virus elimination. One year later, the patient experienced clinically mild re-infection with Omicron BA.1.18, which was treated with sotrovimab and resulted in an increase in Omicron-reactive antibodies. In conclusion, the onset of an IgM-dominated endogenous immune response in an immunocompromised patient coincided with the appearance of additional mutations in the NTD and RBD of S in a bamlanivimab-resistant virus. Although virus elimination was ultimately achieved, this humoral immune response escaped detection by routine diagnosis and created a situation temporarily favouring the rapid emergence of various antibody escape mutants with known epidemiological relevance.
Collapse
Affiliation(s)
| | - Theresa Günther
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Eva Ulla Lorentzen
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | | | - Marc Tim Hennies
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Rieke Neddermeyer
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | | | - Alexander Mellmann
- Institute of Hygiene, University Hospital Muenster, University of Muenster, Muenster, Germany
| | | | - Georg Lenz
- Department of Medicine A, Haematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Matthias Stelljes
- Department of Medicine A, Haematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | | | - Richard Vollenberg
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Phil-Robin Tepasse
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Muenster, Muenster, Germany
| | - Joachim Ewald Kühn
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| |
Collapse
|
5
|
Ruotolo L, Silenzi S, Mola B, Ortalli M, Lazzarotto T, Rossini G. Case reports of persistent SARS-CoV-2 infection outline within-host viral evolution in immunocompromised patients. Virol J 2024; 21:210. [PMID: 39227954 PMCID: PMC11373299 DOI: 10.1186/s12985-024-02483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND SARS-CoV-2 is responsible for the ongoing global pandemic, and the continuous emergence of novel variants threatens fragile populations, such as immunocompromised patients. This subgroup of patients seems to be seriously affected by intrahost viral changes, as the pathogens, which are keen to cause replication inefficiency, affect the impaired immune system, preventing efficient clearance of the virus. Therefore, these patients may represent an optimal reservoir for the development of new circulating SARS-CoV-2 variants. The following study aimed to investigate genomic changes in SARS-CoV-2-positive immunocompromised patients over time. METHODS SARS-CoV-2-positive nasopharyngeal swabs were collected at different time points for each patient (patient A and patient B), extracted and then analyzed through next-generation sequencing (NGS). The resulting sequences were examined to determine mutation frequencies, describing viral evolution over time. CASE PRESENTATION Patient A was a 53-year-old patient with onco-hematological disease with prolonged infection lasting for 51 days from May 28th to July 18th, 2022. Three confirmed SARS-CoV-2-positive samples were collected on May 28th, June 15th and July 4th. Patient B was 75 years old and had onco-hematological disease with prolonged infection lasting for 146 days. Two confirmed positive SARS-CoV-2 samples were collected at the following time points: May 21st and August 18th. CONCLUSION Heat map construction provided evidence of gain and/or loss of mutations over time for both patients, suggesting within-host genomic evolution of the virus. In addition, mutation polymorphisms and changes in the SARS-CoV-2 lineage were observed in Patient B. Sequence analysis revealed high mutational pattern variability, reflecting the high complexity of viral replication dynamics in fragile patients.
Collapse
Affiliation(s)
- Luca Ruotolo
- Microbiology Unit, DIMEC, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Silvia Silenzi
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Beatrice Mola
- Microbiology Unit, DIMEC, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Margherita Ortalli
- Microbiology Unit, DIMEC, Alma Mater Studiorum Università di Bologna, Bologna, Italy
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tiziana Lazzarotto
- Microbiology Unit, DIMEC, Alma Mater Studiorum Università di Bologna, Bologna, Italy.
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Giada Rossini
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
6
|
Das R, Karyakarte RP, Joshi S, Joy M, Sadre A. Persistent COVID-19 Infection in an Immunocompromised Host: A Case Report. Cureus 2024; 16:e68679. [PMID: 39371780 PMCID: PMC11452762 DOI: 10.7759/cureus.68679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
This case report highlights the prolonged SARS-CoV-2 reverse transcriptase polymerase chain reaction positivity in a 32-year-old immunocompromised male with a history of kidney transplants and chronic kidney disease. The whole genome sequencing of nasopharyngeal samples for SARS-CoV-2 collected 12 days apart showed the presence of the BA.1.1 Omicron variant. It revealed evidence of intra-host viral evolution, showing the development and loss of specific mutations over time. This report emphasizes the need for continuous monitoring strategies for immunocompromised patients, as they may serve as reservoirs for viral evolution and potentially give rise to immune escape variants.
Collapse
Affiliation(s)
- Rashmita Das
- Microbiology, Byramjee Jeejeebhoy Government Medical College and Sassoon General Hospitals, Pune, IND
| | - Rajesh P Karyakarte
- Microbiology, Byramjee Jeejeebhoy Government Medical College and Sassoon General Hospitals, Pune, IND
| | - Suvarna Joshi
- Microbiology, Byramjee Jeejeebhoy Government Medical College and Sassoon General Hospitals, Pune, IND
| | - Marie Joy
- Microbiology, Byramjee Jeejeebhoy Government Medical College and Sassoon General Hospitals, Pune, IND
| | | |
Collapse
|
7
|
El Moussaoui M, Bontems S, Meex C, Hayette MP, Lejeune M, Hong SL, Dellicour S, Moutschen M, Cambisano N, Renotte N, Bours V, Darcis G, Artesi M, Durkin K. Intrahost evolution leading to distinct lineages in the upper and lower respiratory tracts during SARS-CoV-2 prolonged infection. Virus Evol 2024; 10:veae073. [PMID: 39399151 PMCID: PMC11470753 DOI: 10.1093/ve/veae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/18/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024] Open
Abstract
Accumulating evidence points to persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in immunocompromised individuals as a source of novel lineages. While intrahost evolution of the virus in chronically infected patients has previously been reported, existing knowledge is primarily based on samples from the nasopharynx. In this study, we investigate the intrahost evolution and genetic diversity that accumulated during a prolonged SARS-CoV-2 infection with the Omicron BF.7 sublineage, which is estimated to have persisted for >1 year in an immunosuppressed patient. Based on the sequencing of eight samples collected at six time points, we identified 87 intrahost single-nucleotide variants, 2 indels, and a 362-bp deletion. Our analysis revealed distinct viral genotypes in the nasopharyngeal (NP), endotracheal aspirate, and bronchoalveolar lavage samples. This suggests that NP samples may not offer a comprehensive representation of the overall intrahost viral diversity. Our findings not only demonstrate that the Omicron BF.7 sublineage can further diverge from its already exceptionally mutated state but also highlight that patients chronically infected with SARS-CoV-2 can develop genetically specific viral populations across distinct anatomic compartments. This provides novel insights into the intricate nature of viral diversity and evolution dynamics in persistent infections.
Collapse
Affiliation(s)
- Majdouline El Moussaoui
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Sebastien Bontems
- Department of Microbiology, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Cecile Meex
- Department of Microbiology, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Marie-Pierre Hayette
- Department of Microbiology, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Marie Lejeune
- Department of Hematology, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Samuel L Hong
- Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical and Epidemiological Virology, Rega Institute, KU Leuven, 49 Herestraat, Leuven 3000, Belgium
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical and Epidemiological Virology, Rega Institute, KU Leuven, 49 Herestraat, Leuven 3000, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, 50 Avenue Franklin Roosevelt, Bruxelles 1050, Belgium
| | - Michel Moutschen
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Nadine Cambisano
- Department of Human Genetics, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
- Laboratory of Human Genetics, GIGA Institute, University of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Nathalie Renotte
- Department of Human Genetics, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
- Laboratory of Human Genetics, GIGA Institute, University of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Vincent Bours
- Department of Human Genetics, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
- Laboratory of Human Genetics, GIGA Institute, University of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Gilles Darcis
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Maria Artesi
- Department of Human Genetics, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
- Laboratory of Human Genetics, GIGA Institute, University of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Keith Durkin
- Department of Human Genetics, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
- Laboratory of Human Genetics, GIGA Institute, University of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| |
Collapse
|
8
|
Wagner C, Kistler KE, Perchetti GA, Baker N, Frisbie LA, Torres LM, Aragona F, Yun C, Figgins M, Greninger AL, Cox A, Oltean HN, Roychoudhury P, Bedford T. Positive selection underlies repeated knockout of ORF8 in SARS-CoV-2 evolution. Nat Commun 2024; 15:3207. [PMID: 38615031 PMCID: PMC11016114 DOI: 10.1038/s41467-024-47599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/04/2024] [Indexed: 04/15/2024] Open
Abstract
Knockout of the ORF8 protein has repeatedly spread through the global viral population during SARS-CoV-2 evolution. Here we use both regional and global pathogen sequencing to explore the selection pressures underlying its loss. In Washington State, we identified transmission clusters with ORF8 knockout throughout SARS-CoV-2 evolution, not just on novel, high fitness viral backbones. Indeed, ORF8 is truncated more frequently and knockouts circulate for longer than for any other gene. Using a global phylogeny, we find evidence of positive selection to explain this phenomenon: nonsense mutations resulting in shortened protein products occur more frequently and are associated with faster clade growth rates than synonymous mutations in ORF8. Loss of ORF8 is also associated with reduced clinical severity, highlighting the diverse clinical impacts of SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Cassia Wagner
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Kathryn E Kistler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Garrett A Perchetti
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Noah Baker
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | - Frank Aragona
- Washington State Department of Health, Shoreline, WA, USA
| | - Cory Yun
- Washington State Department of Health, Shoreline, WA, USA
| | - Marlin Figgins
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| | - Alexander L Greninger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Alex Cox
- Washington State Department of Health, Shoreline, WA, USA
| | - Hanna N Oltean
- Washington State Department of Health, Shoreline, WA, USA
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
9
|
Álvarez-Herrera M, Sevilla J, Ruiz-Rodriguez P, Vergara A, Vila J, Cano-Jiménez P, González-Candelas F, Comas I, Coscollá M. VIPERA: Viral Intra-Patient Evolution Reporting and Analysis. Virus Evol 2024; 10:veae018. [PMID: 38510921 PMCID: PMC10953798 DOI: 10.1093/ve/veae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/02/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Viral mutations within patients nurture the adaptive potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during chronic infections, which are a potential source of variants of concern. However, there is no integrated framework for the evolutionary analysis of intra-patient SARS-CoV-2 serial samples. Herein, we describe Viral Intra-Patient Evolution Reporting and Analysis (VIPERA), a new software that integrates the evaluation of the intra-patient ancestry of SARS-CoV-2 sequences with the analysis of evolutionary trajectories of serial sequences from the same viral infection. We have validated it using positive and negative control datasets and have successfully applied it to a new case, which revealed population dynamics and evidence of adaptive evolution. VIPERA is available under a free software license at https://github.com/PathoGenOmics-Lab/VIPERA.
Collapse
Affiliation(s)
- Miguel Álvarez-Herrera
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia—CSIC), FISABIO Joint Research Unit ‘Infection and Public Health’, C/Agustín Escardino, 9, Paterna 46980, Spain
| | - Jordi Sevilla
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia—CSIC), FISABIO Joint Research Unit ‘Infection and Public Health’, C/Agustín Escardino, 9, Paterna 46980, Spain
| | - Paula Ruiz-Rodriguez
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia—CSIC), FISABIO Joint Research Unit ‘Infection and Public Health’, C/Agustín Escardino, 9, Paterna 46980, Spain
| | - Andrea Vergara
- Department of Clinical Microbiology, CDB, Hospital Clínic of Barcelona; University of Barcelona; ISGlobal, C. de Villarroel, 170, Barcelona 08007, Spain
- CIBER of Infectious Diseases (CIBERINFEC), Av. Monforte de Lemos, 3-5, Madrid 28029, Spain
| | - Jordi Vila
- Department of Clinical Microbiology, CDB, Hospital Clínic of Barcelona; University of Barcelona; ISGlobal, C. de Villarroel, 170, Barcelona 08007, Spain
- CIBER of Infectious Diseases (CIBERINFEC), Av. Monforte de Lemos, 3-5, Madrid 28029, Spain
| | - Pablo Cano-Jiménez
- Institute of Biomedicine of Valencia (IBV-CSIC), C/ Jaime Roig, 11, Valencia 46010, Spain
| | - Fernando González-Candelas
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia—CSIC), FISABIO Joint Research Unit ‘Infection and Public Health’, C/Agustín Escardino, 9, Paterna 46980, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5, Madrid 28029, Spain
| | - Iñaki Comas
- Institute of Biomedicine of Valencia (IBV-CSIC), C/ Jaime Roig, 11, Valencia 46010, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5, Madrid 28029, Spain
| | - Mireia Coscollá
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia—CSIC), FISABIO Joint Research Unit ‘Infection and Public Health’, C/Agustín Escardino, 9, Paterna 46980, Spain
| |
Collapse
|