1
|
Zainali N, Alizadeh H, Delavault P. Gene silencing in broomrapes and other parasitic plants of the Orobanchaceae family: mechanisms, considerations, and future directions. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:243-261. [PMID: 39289888 DOI: 10.1093/jxb/erae388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
Holoparasites of the Orobanchaceae family are devastating pests causing severe damage to many crop species, and are nearly impossible to control with conventional methods. During the past few decades, RNAi has been seen as a promising approach to control various crop pests. The exchange of small RNAs (sRNAs) between crops and parasitic plants has been documented, indicating potential for the development of methods to protect them via the delivery of the sRNAs to parasites, a method called host-induced gene silencing (HIGS). Here we describe various approaches used for gene silencing in plants and suggest solutions to improve the long-distance movement of the silencing triggers to increase the efficiency of HIGS in parasitic plants. We also investigate the important biological processes during the life cycle of the parasites, with a focus on broomrape species, providing several appropriate target genes that can be used, in particular, in multiplex gene silencing experiments. We also touch on how the application of nanoparticles can improve the stability and delivery of the silencing triggers, highlighting its potential for control of parasitic plants. Finally, suggestions for further research and possible directions for RNAi in parasitic plants are provided.
Collapse
Affiliation(s)
- Nariman Zainali
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Unité en Sciences Biologiques et Biotechnologies, UMR 6286, Nantes Université, CNRS, F-44000 Nantes, France
| | - Houshang Alizadeh
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Philippe Delavault
- Unité en Sciences Biologiques et Biotechnologies, UMR 6286, Nantes Université, CNRS, F-44000 Nantes, France
| |
Collapse
|
2
|
Chen J, Whalley PA, Li Z, Zhang X, Hawkesford MJ, Whalley WR. A new conceptual model for seed germination and seedling tillering of winter wheat in the field. ROYAL SOCIETY OPEN SCIENCE 2025; 12:240723. [PMID: 39845714 PMCID: PMC11750395 DOI: 10.1098/rsos.240723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/04/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025]
Abstract
Seed germination is a crucial stage in plant development, intricately regulated by various environmental stimuli. Understanding these interactions is essential for optimizing planting and seedling management but remains challenging due to the trade-off effects of environmental factors on the germination process. We proposed a new conceptual model by viewing seed germination as a dynamic process in a physiological dimension, with the influence of environmental factors and seed heterogeneity characterized by a germination speed and a dispersion coefficient. To validate the model, we conducted field experiments by drilling wheat seeds at different dates to establish a temperature gradient and in different plots to create a soil water content gradient. Comparisons with our experimental data and literature results show the model accurately reproduces all germination patterns and the subsequent seedling tillering, with R 2 > 0.95. Our results reveal that within suboptimal temperature range, the seed germination increases asymptotically with temperature, and that as soil water content increases, the germination speed increases initially before decreasing, illustrating the trade-off effect of soil water on bioavailability of water and oxygen. Introducing a physiological dimension enables seed germination and the subsequent tillering process to be modelled as a continuous physiological process, providing deeper insight into plant growth dynamics.
Collapse
Affiliation(s)
- Jinping Chen
- Shangqiu Station of National Field Agroecosystem Experimental Network of China, Shangqiu, Henan Province476000, People’s Republic of China
| | - Peter A. Whalley
- Seminar for Statistics, Department of Mathematics, ETH Zurich, Zurich, Switzerland
| | - Zhongyang Li
- Shangqiu Station of National Field Agroecosystem Experimental Network of China, Shangqiu, Henan Province476000, People’s Republic of China
| | - Xiaoxian Zhang
- Sustainable Soils and Crops, Rothamsted Research, HarpendenAL5 2JQ, UK
| | | | | |
Collapse
|
3
|
Takei S, Otani M, Ishikawa T, Suzuki T, Okabe S, Nishiyama K, Kawakami N, Seto Y. Highly Sensitive Strigolactone Perception by a Divergent Clade KAI2 Receptor in a Facultative Root Parasitic Plant, Phtheirospermum japonicum. PLANT & CELL PHYSIOLOGY 2024; 65:1958-1968. [PMID: 39275797 DOI: 10.1093/pcp/pcae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
Phtheirospermum japonicum, a member of the Orobanchaceae family, is a facultative root parasitic plant that can survive without parasitizing the host. In contrast, obligate root parasitic plants, such as Striga and Orobanche, which are also members of the Orobanchaceae family, cannot survive in the absence of the host. The germination of obligate root parasitic plants is typically induced by host root-derived strigolactones (SLs) at very low concentrations. The KAI2/HTL family proteins have been found to be involved in the perception of karrikin (KAR), a smoke-derived germination inducer and unidentified endogenous ligand, in non-parasitic plants. Obligate root parasitic plants possess uniquely diverged KAI2 clade genes, which are collectively referred to as KAI2d. Many of those have been shown to function as SL receptors. Intriguingly, the KAI2d clade genes are also conserved in P. japonicum, even though this plant does not require SLs for germination. The biochemical and physiological functions of the KAI2d proteins in P. japonicum remain unclear. Here, we report that some of these proteins can function as SL receptors in P. japonicum. Moreover, we found that one of them, PjKAI2d4, is highly sensitive to SLs when expressed in Arabidopsis, and it is similar to the sensitive SL receptors found in Striga and Orobanche. These results suggest that the KAI2d clade SL receptors play a crucial role not only in obligate parasites but also in facultative parasitic plants.
Collapse
Affiliation(s)
- Saori Takei
- Laboratory of Plant Chemical Regulation, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Masahiko Otani
- Laboratory of Plant Chemical Regulation, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Tomoya Ishikawa
- Laboratory of Plant Chemical Regulation, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Taiki Suzuki
- Laboratory of Plant Chemical Regulation, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Shoma Okabe
- Laboratory of Plant Chemical Regulation, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Kotaro Nishiyama
- Laboratory of Plant Chemical Regulation, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Naoto Kawakami
- Laboratory of Plant Molecular Physiology, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Yoshiya Seto
- Laboratory of Plant Chemical Regulation, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| |
Collapse
|
4
|
An JP, Zhao L, Cao YP, Ai D, Li MY, You CX, Han Y. The SMXL8-AGL9 module mediates crosstalk between strigolactone and gibberellin to regulate strigolactone-induced anthocyanin biosynthesis in apple. THE PLANT CELL 2024; 36:4404-4425. [PMID: 38917246 PMCID: PMC11448916 DOI: 10.1093/plcell/koae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
Although the strigolactone (SL) signaling pathway and SL-mediated anthocyanin biosynthesis have been reported, the molecular association between SL signaling and anthocyanin biosynthesis remains unclear. In this study, we identified the SL signal transduction pathway associated with anthocyanin biosynthesis and the crosstalk between gibberellin (GA) and SL signaling in apple (Malus × domestica). ELONGATED HYPOCOTYL5 (HY5) acts as a key node integrating SL signaling and anthocyanin biosynthesis, and the SL-response factor AGAMOUS-LIKE MADS-BOX9 (AGL9) promotes anthocyanin biosynthesis by activating HY5 transcription. The SL signaling repressor SUPPRESSOR OF MAX2 1-LIKE8 (SMXL8) interacts with AGL9 to form a complex that inhibits anthocyanin biosynthesis by downregulating HY5 expression. Moreover, the E3 ubiquitin ligase PROTEOLYSIS1 (PRT1) mediates the ubiquitination-mediated degradation of SMXL8, which is a key part of the SL signal transduction pathway associated with anthocyanin biosynthesis. In addition, the GA signaling repressor REPRESSOR-of-ga1-3-LIKE2a (RGL2a) mediates the crosstalk between GA and SL by disrupting the SMXL8-AGL9 interaction that represses HY5 transcription. Taken together, our study reveals the regulatory mechanism of SL-mediated anthocyanin biosynthesis and uncovers the role of SL-GA crosstalk in regulating anthocyanin biosynthesis in apple.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018 Shandong, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Lei Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Yun-Peng Cao
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Di Ai
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Miao-Yi Li
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Chun-Xiang You
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018 Shandong, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| |
Collapse
|
5
|
Hountalas JE, Bunsick M, Xu Z, Taylor AA, Pescetto G, Ly G, Boyer FD, McErlean CSP, Lumba S. HTL/KAI2 signaling substitutes for light to control plant germination. PLoS Genet 2024; 20:e1011447. [PMID: 39432524 PMCID: PMC11527322 DOI: 10.1371/journal.pgen.1011447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/31/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
Plants monitor multiple environmental cues, such as light and temperature, to ensure they germinate at the right time and place. Some specialist plants, like ephemeral fire-following weeds and root parasitic plants, germinate primarily in response to small molecules found in specific environments. Although these species come from distinct clades, they use the same HYPOSENSITIVE TO LIGHT/KARRIKIN INSENSITIVE 2 (HTL/KAI2) signaling pathway, to perceive different small molecules suggesting convergent evolution on this pathway. Here, we show that HTL/KAI2 signaling in Arabidopsis thaliana bypasses the light requirement for germination. The HTL/KAI2 downstream component, SUPPRESSOR OF MAX2 1 (SMAX1) accumulates in the dark and is necessary for PHYTOCHROME INTERACTING FACTOR 1/PHYTOCHROME INTERACTING FACTOR 3-LIKE 5 (PIF1/PIL5) to regulate hormone response pathways conducive to germination. The interaction of HTL/KAI2 and light signaling may help to explain how specialist plants like ephemeral and parasitic weeds evolved their germination behaviour in response to specific environments.
Collapse
Affiliation(s)
- Jenna E. Hountalas
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Michael Bunsick
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Zhenhua Xu
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Andrea A. Taylor
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Gianni Pescetto
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - George Ly
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - François-Didier Boyer
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | | | - Shelley Lumba
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| |
Collapse
|
6
|
Han S, Wei Q, Liu J, Li L, Xu T, Cao L, Liu J, Liu X, Chen P, Liu H, Ma Y, Lei B, Lin Y. Naturally Occurring Dehydrocostus Lactone Covalently Binds to KARRIKIN INSENSITIVE 2 by Dual Serine Modifications in Orobanche cumana and Arabidopsis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19920-19930. [PMID: 39213540 DOI: 10.1021/acs.jafc.4c06359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Parasitic weeds, such as Orobanche and Striga, threaten crops globally. Contiguous efforts on the discovery and development of structurally novel seed germination stimulants targeting HYPOSENSITIVE TO LIGHT/KARRIKIN INSENSITIVE 2 (HTL/KAI2) have been made with the goal of weed control. Here, we demonstrate that a natural compound dehydrocostus lactone (DCL) exhibits effective "suicide germination" activity against Orobanche cumana and covalently binds to OcKAI2d2 on two catalytic serine sites with the second modification dependent on the first one. The same interactions and covalent modifications of DCL are also confirmed in AtKAI2. Further in-depth evolution analysis indicates that the proposed two catalytic sites are present throughout the streptophyte algae, hornworts, lycophytes, and seed plants. This discovery is particularly noteworthy as it signifies the first confirmation of a plant endogenous molecule directly binding to KAI2, which is valuable for unraveling the elusive identity of the KAI2 ligand and for targeting KAI2 paralogues for the development of novel germination stimulants.
Collapse
Affiliation(s)
- Siqi Han
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Qiannan Wei
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Jiaxi Liu
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Linrui Li
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Tengqi Xu
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Lin Cao
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Jiyuan Liu
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Xiayan Liu
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Peng Chen
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Huawei Liu
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Yongqing Ma
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Beilei Lei
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Center of Bioinformatics, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Yanbing Lin
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| |
Collapse
|
7
|
Zhang Y, Niu D, Yuan Y, Liu F, Wang Z, Gao L, Liu C, Zhou G, Gai S. PsSOC1 is involved in the gibberellin pathway to trigger cell proliferation and budburst during endodormancy release in tree peony. THE NEW PHYTOLOGIST 2024; 243:1017-1033. [PMID: 38877710 DOI: 10.1111/nph.19893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
Tree peony (Paeonia suffruticosa) undergoes bud endodormancy, and gibberellin (GA) pathway plays a crucial role in dormancy regulation. Recently, a key DELLA protein PsRGL1 has been identified as a negative regulator of bud dormancy release. However, the mechanism of GA signal to break bud dormancy remains unknown. In this study, yeast two-hybrid screened PsSOC1 interacting with PsRGL1 through its MADS domain, and interaction was identified using pull-down and luciferase complementation imaging assays Transformation in tree peony and hybrid poplar confirmed that PsSOC1 facilitated bud dormancy release. Transcriptome analysis of PsSOC1-overexpressed buds indicated PsCYCD3.3 and PsEBB3 were its potential downstream targets combining with promoter survey, and they also accelerated bud dormancy release verified by genetic analysis. Yeast one-hybrid, electrophoretic mobility shifts assays, chromatin immunoprecipitation quantitative PCR, and dual luciferase assays confirmed that PsSOC1 could directly bind to the CArG motif of PsCYCD3.3 and PsEBB3 promoters via its MADS domain. PsRGL1-PsSOC1 interaction inhibited the DNA-binding activity of PsSOC1. Additionally, PsCYCD3.3 promoted bud dormancy release by rebooting cell proliferation. These findings elucidated a novel GA pathway, GA-PsRGL1-PsSOC1-PsCYCDs, which expanded our understanding of the GA pathway in bud dormancy release.
Collapse
Affiliation(s)
- Yuxi Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Demei Niu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Yanchao Yuan
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Fang Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Zhiwei Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Linqiang Gao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Chunying Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Gongke Zhou
- College of Landscape and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shupeng Gai
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| |
Collapse
|
8
|
Zhang Y, Li J, Guo K, Wang T, Gao L, Sun Z, Ma C, Wang C, Tian Y, Zheng X. Strigolactones alleviate AlCl 3 stress by vacuolar compartmentalization and cell wall blocking in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:197-217. [PMID: 38565306 DOI: 10.1111/tpj.16753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Poor management and excess fertilization of apple (Malus domestica Borkh.) orchards are causing increasingly serious soil acidification, resulting in Al toxicity and direct poisoning of roots. Strigolactones (SLs) are reported to be involved in plant responses to abiotic stress, but their role and mechanism under AlCl3 stress remain unknown. Here, we found that applying 1 μm GR24 (an SL analoge) significantly alleviated AlCl3 stress of M26 apple rootstock, mainly by blocking the movement of Al through cell wall and by vacuolar compartmentalization of Al. RNA-seq analysis identified the core transcription factor gene MdWRKY53, and overexpressing MdWRKY53 enhanced AlCl3 tolerance in transgenic apple plants through the same mechanism as GR24. Subsequently, we identified MdPMEI45 (encoding pectin methylesterase inhibitor) and MdALS3 (encoding an Al transporter) as downstream target genes of MdWRKY53 using chromatin immunoprecipitation followed by sequencing (ChIP-seq). GR24 enhanced the interaction between MdWRKY53 and the transcription factor MdTCP15, further increasing the binding of MdWRKY53 to the MdPMEI45 promoter and inducing MdPMEI45 expression to prevent Al from crossing cell wall. MdWRKY53 also bound to the promoter of MdALS3 and enhanced its transcription to compartmentalize Al in vacuoles under AlCl3 stress. We therefore identified two modules involved in alleviating AlCl3 stress in woody plant apple: the SL-WRKY+TCP-PMEI module required for excluding external Al by blocking the entry of Al3+ into cells and the SL-WRKY-ALS module allowing internal detoxification of Al through vacuolar compartmentalization. These findings lay a foundation for the practical application of SLs in agriculture.
Collapse
Affiliation(s)
- Yong Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Jianyu Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Kexin Guo
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Tianchao Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Lijie Gao
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Zhijuan Sun
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| |
Collapse
|
9
|
Park YJ, Nam BE, Park CM. Environmentally adaptive reshaping of plant photomorphogenesis by karrikin and strigolactone signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:865-882. [PMID: 38116738 DOI: 10.1111/jipb.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Coordinated morphogenic adaptation of growing plants is critical for their survival and propagation under fluctuating environments. Plant morphogenic responses to light and warm temperatures, termed photomorphogenesis and thermomorphogenesis, respectively, have been extensively studied in recent decades. During photomorphogenesis, plants actively reshape their growth and developmental patterns to cope with changes in light regimes. Accordingly, photomorphogenesis is closely associated with diverse growth hormonal cues. Notably, accumulating evidence indicates that light-directed morphogenesis is profoundly affected by two recently identified phytochemicals, karrikins (KARs) and strigolactones (SLs). KARs and SLs are structurally related butenolides acting as signaling molecules during a variety of developmental steps, including seed germination. Their receptors and signaling mediators have been identified, and associated working mechanisms have been explored using gene-deficient mutants in various plant species. Of particular interest is that the KAR and SL signaling pathways play important roles in environmental responses, among which their linkages with photomorphogenesis are most comprehensively studied during seedling establishment. In this review, we focus on how the phytochemical and light signals converge on the optimization of morphogenic fitness. We also discuss molecular mechanisms underlying the signaling crosstalks with an aim of developing potential ways to improve crop productivity under climate changes.
Collapse
Affiliation(s)
- Young-Joon Park
- Department of Smart Farm Science, Kyung Hee University, Yongin, 17104, Korea
| | - Bo Eun Nam
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
10
|
Liu C, Jiang X, Liu S, Liu Y, Li H, Wang Z, Kan J, Yang Q, Li X. Comprehensive Evolutionary Analysis of the SMXL Gene Family in Rosaceae: Further Insights into Its Origin, Expansion, Diversification, and Role in Regulating Pear Branching. Int J Mol Sci 2024; 25:2971. [PMID: 38474218 DOI: 10.3390/ijms25052971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
SMXL genes constitute a conserved gene family that is ubiquitous in angiosperms and involved in regulating various plant processes, including branching, leaf elongation, and anthocyanin biosynthesis, but little is known about their molecular functions in pear branching. Here, we performed genome-wide identification and investigation of the SMXL genes in 16 angiosperms and analyzed their phylogenetics, structural features, conserved motifs, and expression patterns. In total, 121 SMXLs genes were identified and were classified into four groups. The number of non-redundant SMXL genes in each species varied from 3 (Amborella trichopoda Baill.) to 18 (Glycine max Merr.) and revealed clear gene expansion events over evolutionary history. All the SMXL genes showed conserved structures, containing no more than two introns. Three-dimensional protein structure prediction revealed distinct structures between but similar structures within groups. A quantitative real-time PCR analysis revealed different expressions of 10 SMXL genes from pear branching induced by fruit-thinning treatment. Overall, our study provides a comprehensive investigation of SMXL genes in the Rosaceae family, especially pear. The results offer a reference for understanding the evolutionary history of SMXL genes and provide excellent candidates for studying fruit tree branching regulation, and in facilitating pear pruning and planting strategies.
Collapse
Affiliation(s)
- Chunxiao Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xianda Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Susha Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yilong Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Hui Li
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhonghua Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jialiang Kan
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qingsong Yang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaogang Li
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
11
|
Kamran M, Melville KT, Waters MT. Karrikin signalling: impacts on plant development and abiotic stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1174-1186. [PMID: 38001035 PMCID: PMC10860534 DOI: 10.1093/jxb/erad476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/23/2023] [Indexed: 11/26/2023]
Abstract
Plants rely upon a diverse range of metabolites to control growth and development, and to overcome stress that results from suboptimal conditions. Karrikins (KARs) are a class of butenolide compounds found in smoke that stimulate seed germination and regulate various developmental processes in plants. KARs are perceived via a plant α/β-hydrolase called KARRIKIN INSENSITIVE2 (KAI2), which also functions as a receptor for a postulated phytohormone, provisionally termed KAI2 ligand (KL). Considered natural analogues of KL, KARs have been extensively studied for their effects on plant growth and their crosstalk with plant hormones. The perception and response pathway for KAR-KL signalling is closely related to that of strigolactones, another class of butenolides with numerous functions in regulating plant growth. KAR-KL signalling influences seed germination, seedling photomorphogenesis, root system architecture, abiotic stress responses, and arbuscular mycorrhizal symbiosis. Here, we summarize current knowledge of KAR-KL signalling, focusing on its role in plant development, its effects on stress tolerance, and its interaction with other signalling mechanisms.
Collapse
Affiliation(s)
- Muhammad Kamran
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Kim T Melville
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Mark T Waters
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
12
|
Temmerman A, De Keyser A, Boyer FD, Struk S, Goormachtig S. Histone Deacetylases Regulate MORE AXILLARY BRANCHED 2-Dependent Germination of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2023; 64:1008-1020. [PMID: 37279553 DOI: 10.1093/pcp/pcad047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/21/2023] [Accepted: 05/29/2023] [Indexed: 06/08/2023]
Abstract
Under specific conditions, the germination of Arabidopsis thaliana is dependent on the activation of the KARRIKIN INSENSITIVE 2 (KAI2) signaling pathway by the KAI2-dependent perception of karrikin or the artificial strigolactone analogue, rac-GR24. To regulate the induction of germination, the KAI2 signaling pathway relies on MORE AXILLARY BRANCHED 2- (MAX2-)dependent ubiquitination and proteasomal degradation of the repressor protein SUPPRESSOR OF MAX2 1 (SMAX1). It is not yet known how the degradation of SMAX1 proteins eventually results in the regulation of seed germination, but it has been hypothesized that SMAX1-LIKE generally functions as transcriptional repressors through the recruitment of co-repressors TOPLESS (TPL) and TPL-related, which in turn interact with histone deacetylases. In this article, we show the involvement of histone deacetylases HDA6, HDA9, HDA19 and HDT1 in MAX2-dependent germination of Arabidopsis, and more specifically, that HDA6 is required for the induction of DWARF14-LIKE2 expression in response to rac-GR24 treatment.
Collapse
Affiliation(s)
- Arne Temmerman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Gent 9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Gent 9052, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Gent 9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Gent 9052, Belgium
| | - François-Didier Boyer
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, UPR2301, Université Paris-Sud, Université Paris-Saclay, Aveue de la Terrasse 1, Gif-sur-Yvette 91198, France
| | - Sylwia Struk
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Gent 9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Gent 9052, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Gent 9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Gent 9052, Belgium
| |
Collapse
|
13
|
Yap JX, Tsuchiya Y. Gibberellins Promote Seed Conditioning by Up-Regulating Strigolactone Receptors in the Parasitic Plant Striga hermonthica. PLANT & CELL PHYSIOLOGY 2023; 64:1021-1033. [PMID: 37300550 DOI: 10.1093/pcp/pcad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
Dormant seeds of the root parasitic plant Striga hermonthica sense strigolactones from host plants as environmental cues for germination. This process is mediated by a diversified member of the strigolactone receptors encoded by HYPOSENSITIVE TO LIGHT/KARRIKIN INSENSITIVE2 genes. It is known that warm and moist treatment during seed conditioning gradually makes dormant Striga seeds competent to respond to strigolactones, although the mechanism behind it is poorly understood. In this report, we show that plant hormone gibberellins increase strigolactone competence by up-regulating mRNA expression of the major strigolactone receptors during the conditioning period. This idea was supported by a poor germination phenotype in which gibberellin biosynthesis was depleted by paclobutrazol during conditioning. Moreover, live imaging with a fluorogenic strigolactone mimic, yoshimulactone green W, revealed that paclobutrazol treatment during conditioning caused aberrant dynamics of strigolactone perception after germination. These observations revealed an indirect role of gibberellins in seed germination in Striga, which contrasts with their roles as dominant germination-stimulating hormones in non-parasitic plants. We propose a model of how the role of gibberellins became indirect during the evolution of parasitism in plants. Our work also highlights the potential role for gibberellins in field applications, for instance, in elevating the sensitivity of seeds toward strigolactones in the current suicidal germination approach to alleviate the agricultural threats caused by this parasite in Africa.
Collapse
Affiliation(s)
- Jia Xin Yap
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Yuichiro Tsuchiya
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
14
|
Varshney K, Gutjahr C. KAI2 Can Do: Karrikin Receptor Function in Plant Development and Response to Abiotic and Biotic Factors. PLANT & CELL PHYSIOLOGY 2023; 64:984-995. [PMID: 37548562 PMCID: PMC10504578 DOI: 10.1093/pcp/pcad077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023]
Abstract
The α/β hydrolase KARRIKIN INSENSITIVE 2 (KAI2) functions as a receptor for a yet undiscovered phytohormone, provisionally termed KAI2 ligand (KL). In addition, it perceives karrikin, a butenolide compound found in the smoke of burnt plant material. KAI2-mediated signaling is involved in regulating seed germination and in shaping seedling and adult plant morphology, both above and below ground. It also governs responses to various abiotic stimuli and stresses and shapes biotic interactions. KAI2-mediated signaling is being linked to an elaborate cross-talk with other phytohormone pathways such as auxin, gibberellin, abscisic acid, ethylene and salicylic acid signaling, in addition to light and nutrient starvation signaling. Further connections will likely be revealed in the future. This article summarizes recent advances in unraveling the function of KAI2-mediated signaling and its interaction with other signaling pathways.
Collapse
Affiliation(s)
- Kartikye Varshney
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Caroline Gutjahr
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| |
Collapse
|
15
|
Huizinga S, Bouwmeester HJ. Role of Strigolactones in the Host Specificity of Broomrapes and Witchweeds. PLANT & CELL PHYSIOLOGY 2023; 64:936-954. [PMID: 37319019 PMCID: PMC10504575 DOI: 10.1093/pcp/pcad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023]
Abstract
Root parasitic plants of the Orobanchaceae, broomrapes and witchweeds, pose a severe problem to agriculture in Europe, Asia and especially Africa. These parasites are totally dependent on their host for survival, and therefore, their germination is tightly regulated by host presence. Indeed, their seeds remain dormant in the soil until a host root is detected through compounds called germination stimulants. Strigolactones (SLs) are the most important class of germination stimulants. They play an important role in planta as a phytohormone and, upon exudation from the root, function in the recruitment of symbiotic arbuscular mycorrhizal fungi. Plants exude mixtures of various different SLs, possibly to evade detection by these parasites and still recruit symbionts. Vice versa, parasitic plants must only respond to the SL composition that is exuded by their host, or else risk germination in the presence of non-hosts. Therefore, parasitic plants have evolved an entire clade of SL receptors, called HTL/KAI2s, to perceive the SL cues. It has been demonstrated that these receptors each have a distinct sensitivity and specificity to the different known SLs, which possibly allows them to recognize the SL-blend characteristic of their host. In this review, we will discuss the molecular basis of SL sensitivity and specificity in these parasitic plants through HTL/KAI2s and review the evidence that these receptors contribute to host specificity of parasitic plants.
Collapse
Affiliation(s)
- Sjors Huizinga
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Harro J Bouwmeester
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
16
|
Jhu MY, Kawa D, Brady SM. The genetic basis of plants' battle against witchweeds: linking immune responses to distinct resistance mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4903-4909. [PMID: 37702012 PMCID: PMC10498022 DOI: 10.1093/jxb/erad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
This article comments on:
Mutinda S, Mobegi FM, Hale B, Dayou O, Ateka E, Wijeratne A, Wicke S, Bellis ES, Runo S. 2023. Resolving intergenotypic Striga resistance in sorghum. Journal of Experimental Botany 74, 5294–5306.
Collapse
Affiliation(s)
- Min-Yao Jhu
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Dorota Kawa
- Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
- Plant Stress Resilience, Department of Biology, Utrecht University, The Netherlands
- Plant Environment Signaling, Department of Biology, Utrecht University, The Netherlands
| | - Siobhán M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
| |
Collapse
|
17
|
Chen L, Qin L, Zhang Y, Xu H, Bu Y, Wu R, Liu H, Hao Q, Hu H, Zhou Y, Feng J, Jing Y, Han J, Wang X. Insights from multi-omics integration into seed germination of Taxus chinensis var mairei. Commun Biol 2023; 6:931. [PMID: 37697020 PMCID: PMC10495361 DOI: 10.1038/s42003-023-05307-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
The transition from deep dormancy to seed germination is essential for the life cycle of plants, but how this process occurs in the gymnosperm Chinese yew (Taxus chinensis var mairei), the natural source of the anticancer drug paclitaxel, remains unclear. Herein, we analyse the transcriptome, proteome, spatial metabolome, and spatial lipidome of the Chinese yew and present the multi-omics profiles of dormant and germinating seeds. Our results show that abscisic acid and gibberellic acid 12 homoeostasis is closely associated with gene transcription and protein translation, and the balance between these phytohormones thereby determines if seeds remain dormant or germinate. We find that an energy supply of carbohydrates from glycolysis and the TCA cycle feed into the pentose phosphate pathway during seed germination, and energy supplied from lipids are mainly derived from the lipolysis of triacylglycerols. Using mass spectrometry imaging, we demonstrate that the spatial distribution of plant hormones and phospholipids has a remarkable influence on embryo development. We also provide an atlas of the spatial distribution of paclitaxel C in Chinese yew seeds for the first time. The data from this study enable exploration of the germination mechanism of Chinese yew seeds across several omics levels.
Collapse
Affiliation(s)
- Lulu Chen
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, 100081, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083, Beijing, China
| | - Liang Qin
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, 100081, Beijing, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, 100081, Beijing, China
| | - Yawen Zhang
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, 100081, Beijing, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, 100081, Beijing, China
| | - Hualei Xu
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, 100081, Beijing, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, 100081, Beijing, China
| | - Yufen Bu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083, Beijing, China
| | - Ran Wu
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, 100081, Beijing, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, 100081, Beijing, China
| | - Haiqiang Liu
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, 100081, Beijing, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, 100081, Beijing, China
| | - Qichen Hao
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, 100081, Beijing, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, 100081, Beijing, China
| | - Hao Hu
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, 100081, Beijing, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, 100081, Beijing, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, 100081, Beijing, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, 100081, Beijing, China
| | - Jinchao Feng
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, 100081, Beijing, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, 100081, Beijing, China
| | - Yanping Jing
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083, Beijing, China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083, Beijing, China.
| | - Jun Han
- Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC, V8Z 7X8, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8P 5C2, Canada.
| | - Xiaodong Wang
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, 100081, Beijing, China.
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, 100081, Beijing, China.
| |
Collapse
|
18
|
Xu P, Hu J, Chen H, Cai W. SMAX1 interacts with DELLA protein to inhibit seed germination under weak light conditions via gibberellin biosynthesis in Arabidopsis. Cell Rep 2023; 42:112740. [PMID: 37405917 DOI: 10.1016/j.celrep.2023.112740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/11/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Karrikins (KARs) were first identified as a class of small-molecule chemicals derived from smoke that promote seed germination. However, the implied mechanism is still not well understood. Here, we find that KAR signaling mutants have a lower germination percentage than that of wild type under weak light conditions, and KARs promote seed germination through transcriptional activation of gibberellin (GA) biosynthesis via SMAX1. SMAX1 interacts with the DELLA proteins REPRESSOR of ga1-3-LIKE 1 (RGL1) and RGL3. The interaction enhances the transcriptional activity of SMAX1 and inhibits GIBBERELLIN 3-oxidase 2 (GA3ox2) gene expression. The KAR signaling mutant seed germination defect under weak light is partially rescued by exogenous application of GA3 or by GA3ox2 overexpression, and the rgl1 rgl3 smax1 triple mutant exhibits higher germination rates under weak light than the smax1 mutant. Thus, we show a crosstalk between KAR and GA signaling pathways via a SMAX1-DELLA module in regulating seed germination in Arabidopsis.
Collapse
Affiliation(s)
- Peipei Xu
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Jinbo Hu
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Haiying Chen
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai 200032, China
| | - Weiming Cai
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
19
|
Arellano-Saab A, Skarina T, Xu Z, McErlean CSP, Savchenko A, Lumba S, Stogios PJ, McCourt P. Structural analysis of a hormone-bound Striga strigolactone receptor. NATURE PLANTS 2023; 9:883-888. [PMID: 37264151 DOI: 10.1038/s41477-023-01423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/25/2023] [Indexed: 06/03/2023]
Abstract
Strigolactones (SLs) regulate many aspects of plant development, but ambiguities remain about how this hormone is perceived because SL-complexed receptor structures do not exist. We find that when SL binds the Striga receptor, ShHTL5, a series of conformational changes relative to the unbound state occur, but these events are not sufficient for signalling. Ligand-complexed receptors, however, form internal tunnels that posit an explanation for how SL exits its receptor after hydrolysis.
Collapse
Affiliation(s)
- Amir Arellano-Saab
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Zhenhua Xu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | | | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Shelley Lumba
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.
| | - Peter McCourt
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
| |
Collapse
|
20
|
Okabe S, Kitaoka K, Suzuki T, Kuruma M, Hagihara S, Yamaguchi S, Fukui K, Seto Y. Desmethyl type germinone, a specific agonist for the HTL/KAI2 receptor, induces the Arabidopsis seed germination in a gibberellin-independent manner. Biochem Biophys Res Commun 2023; 649:110-117. [PMID: 36764113 DOI: 10.1016/j.bbrc.2023.01.086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
DWARF14 (D14) and HTL/KAI2 (KAI2) are paralogous receptors in the α/β-hydrolase superfamily. D14 is the receptor for a class of plant hormones, strigolactones (SLs), and KAI2 is the receptor for the smoke-derived seed germination inducer, Karrikin (KAR), in Arabidopsis. Germinone (Ger) was previously reported as a KAI2 agonist with germination-inducing activity for thermo-inhibited Arabidopsis seed. However, Ger was not specific to KAI2, and could also bind to D14. It was reported that SL analogs with a desmethyl-type D-ring structure are specifically recognized by KAI2. On the basis of this observation, we synthesized a desmethyl-type germinone (dMGer). We found that dMGer is highly specific to KAI2. Moreover, dMGer induced Arabidopsis seed germination more effectively than did Ger. In addition, dMGer induced the seed germination of Arabidopsis in a manner independently of GA, a well-known germination inducer in plants.
Collapse
Affiliation(s)
- Shoma Okabe
- Laboratory of Plant Chemical Regulation, School of Agriculture, Meiji University, 1-1-1, Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, Japan
| | - Kana Kitaoka
- Department of Biochemistry, Okayama University of Science, Okayama City, Okayama, 700-0005, Japan
| | - Taiki Suzuki
- Laboratory of Plant Chemical Regulation, School of Agriculture, Meiji University, 1-1-1, Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, Japan
| | - Michio Kuruma
- Laboratory of Plant Chemical Regulation, School of Agriculture, Meiji University, 1-1-1, Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, Japan; RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Shinya Hagihara
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Shinjiro Yamaguchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Kosuke Fukui
- Department of Biochemistry, Okayama University of Science, Okayama City, Okayama, 700-0005, Japan.
| | - Yoshiya Seto
- Laboratory of Plant Chemical Regulation, School of Agriculture, Meiji University, 1-1-1, Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, Japan.
| |
Collapse
|
21
|
Waters MT, Nelson DC. Karrikin perception and signalling. THE NEW PHYTOLOGIST 2023; 237:1525-1541. [PMID: 36333982 DOI: 10.1111/nph.18598] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Karrikins (KARs) are a class of butenolide compounds found in smoke that were first identified as seed germination stimulants for fire-following species. Early studies of KARs classified the germination and postgermination responses of many plant species and investigated crosstalk with plant hormones that regulate germination. The discovery that Arabidopsis thaliana responds to KARs laid the foundation for identifying mutants with altered KAR responses. Genetic analysis of KAR signalling revealed an unexpected link to strigolactones (SLs), a class of carotenoid-derived plant hormones. Substantial progress has since been made towards understanding how KARs are perceived and regulate plant growth, in no small part due to advances in understanding SL perception. KAR and SL signalling systems are evolutionarily related and retain a high degree of similarity. There is strong evidence that KARs are natural analogues of an endogenous signal(s), KAI2 ligand (KL), which remains unknown. KAR/KL signalling regulates many developmental processes in plants including germination, seedling photomorphogenesis, and root and root hair growth. KAR/KL signalling also affects abiotic stress responses and arbuscular mycorrhizal symbiosis. Here, we summarise the current knowledge of KAR/KL signalling and discuss current controversies and unanswered questions in this field.
Collapse
Affiliation(s)
- Mark T Waters
- School of Molecular Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
22
|
DELAY OF GERMINATION 1, the Master Regulator of Seed Dormancy, Integrates the Regulatory Network of Phytohormones at the Transcriptional Level to Control Seed Dormancy. Curr Issues Mol Biol 2022; 44:6205-6217. [PMID: 36547084 PMCID: PMC9777134 DOI: 10.3390/cimb44120423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Seed dormancy, an important adaptive trait that governs germination timing, is endogenously controlled by phytohormones and genetic factors. DELAY OF GERMINATION 1 (DOG1) is the vital genetic regulator of dormancy, significantly affecting the expression of numerous ABA and GA metabolic genes. However, whether DOG1 could influence the expression of other phytohormone-related genes is still unknown. Here, we comprehensively investigated all well-documented hormone-related genes which might be affected in dog1-2 dry or imbibed seeds by using whole-transcriptome sequencing (RNA-seq). We found that DOG1 could systematically control the expression of phytohormone-related genes. An evident decrease was observed in the endogenous signal intensity of abscisic acid (ABA) and indole-3-acetic acid (IAA), while a dramatic increase appeared in that of gibberellins (GA), brassinosteroids (BR), and cytokinin (CK) in the dog1-2 background, which may contribute considerably to its dormancy-deficient phenotype. Collectively, our data highlight the role of DOG1 in balancing the expression of phytohormone-related genes and provide inspirational evidence that DOG1 may integrate the phytohormones network to control seed dormancy.
Collapse
|
23
|
Martinez SE, Conn CE, Guercio AM, Sepulveda C, Fiscus CJ, Koenig D, Shabek N, Nelson DC. A KARRIKIN INSENSITIVE2 paralog in lettuce mediates highly sensitive germination responses to karrikinolide. PLANT PHYSIOLOGY 2022; 190:1440-1456. [PMID: 35809069 PMCID: PMC9516758 DOI: 10.1093/plphys/kiac328] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Karrikins (KARs) are chemicals in smoke that can enhance germination of many plants. Lettuce (Lactuca sativa) cv. Grand Rapids germinates in response to nanomolar karrikinolide (KAR1). Lettuce is much less responsive to KAR2 or a mixture of synthetic strigolactone analogs, rac-GR24. We investigated the molecular basis of selective and sensitive KAR1 perception in lettuce. The lettuce genome contains two copies of KARRIKIN INSENSITIVE2 (KAI2), which in Arabidopsis (Arabidopsis thaliana) encodes a receptor that is required for KAR responses. LsKAI2b is more highly expressed than LsKAI2a in dry achenes and during early stages of imbibition. Through cross-species complementation assays in Arabidopsis, we found that an LsKAI2b transgene confers robust responses to KAR1, but LsKAI2a does not. Therefore, LsKAI2b likely mediates KAR1 responses in lettuce. We compared homology models of KAI2 proteins from lettuce and a fire-follower, whispering bells (Emmenanthe penduliflora). This identified pocket residues 96, 124, 139, and 161 as candidates that influence the ligand specificity of KAI2. Further support for the importance of these residues was found through a broader comparison of pocket residues among 281 KAI2 proteins from 184 asterid species. Almost all KAI2 proteins had either Tyr or Phe identity at position 124. Genes encoding Y124-type KAI2 are more broadly distributed in asterids than in F124-type KAI2. Substitutions at residues 96, 124, 139, and 161 in Arabidopsis KAI2 produced a broad array of responses to KAR1, KAR2, and rac-GR24. This suggests that the diverse ligand preferences observed among KAI2 proteins in plants could have evolved through relatively few mutations.
Collapse
Affiliation(s)
- Stephanie E Martinez
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - Caitlin E Conn
- Department of Biology, Berry College, Mount Berry, Georgia 30149, USA
| | - Angelica M Guercio
- Department of Plant Biology, University of California, Davis, California 95616, USA
| | - Claudia Sepulveda
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - Christopher J Fiscus
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - Daniel Koenig
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - Nitzan Shabek
- Department of Plant Biology, University of California, Davis, California 95616, USA
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| |
Collapse
|
24
|
Genome-Wide Identification of SMXL Gene Family in Soybean and Expression Analysis of GmSMXLs under Shade Stress. PLANTS 2022; 11:plants11182410. [PMID: 36145811 PMCID: PMC9500757 DOI: 10.3390/plants11182410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
SMXL6,7,8 are important target proteins in strigolactone (SL) signal pathway, which negatively regulate the reception and response of SL signal, and play an important role in regulating plant branching. However, there is a relative lack of research on soybean SMXL gene family. In this study, 31 soybean SMXL genes were identified by phylogenetic analysis and divided into three groups. Based on the analysis of GmSMXL gene’s structure and motif composition, it was found that the GmSMXL members in the same group were similar. The results of cis-element analysis showed that GmSMXL genes may regulate the growth and development of soybean by responding to hormones and environment. Based on the tissue specificity analysis and GR24 treatment, the results showed that four GmSMXLs in G1 group were predominantly expressed in stems, axillary buds and leaves and involved in SL signal pathway. Finally, under shading stress, the expression of four genes in G1 group was slightly different in different varieties, which may be the reason for the difference in branching ability of different varieties under shading stress. We have systematically studied the SMXL gene family in soybean, which may lay a foundation for the study of the function of GmSMXL gene in the future.
Collapse
|
25
|
Kim JY, Park YJ, Lee JH, Park CM. SMAX1 Integrates Karrikin and Light Signals into GA-Mediated Hypocotyl Growth during Seedling Establishment. PLANT & CELL PHYSIOLOGY 2022; 63:932-943. [PMID: 35477800 DOI: 10.1093/pcp/pcac055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/13/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Morphogenic adaptation of young seedlings to light environments is a critical developmental process that ensures plant survival and propagation, as they emerge from the soil. Photomorphogenic responses are facilitated by a network of light and growth hormonal signals, such as auxin and gibberellic acid (GA). Karrikins (KARs), a group of butenolide compounds produced from burning plant materials in wildfires, are known to stimulate seed germination in fire-prone plant species. Notably, recent studies support that they also regulate seedling growth, while underlying molecular mechanisms have been unexplored yet. Here, we demonstrate that SUPPRESSOR OF MAX2 1 (SMAX1), a negative regulator of KAR signaling, integrates light and KAR signals into GA-DELLA pathways that regulate hypocotyl growth during seedling establishment. We found that SMAX1 facilitates degradation of DELLA proteins in the hypocotyls. Interestingly, light induces the accumulation of SMAX1 proteins, and SMAX1-mediated degradation of DELLA is elevated in seedling establishment during the dark-to-light transition. Our observations indicate that SMAX1-mediated integration of light and KAR signals into GA pathways elaborately modulates seedling establishment.
Collapse
Affiliation(s)
- Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - June-Hee Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
26
|
Probing strigolactone perception mechanisms with rationally designed small-molecule agonists stimulating germination of root parasitic weeds. Nat Commun 2022; 13:3987. [PMID: 35810153 PMCID: PMC9271048 DOI: 10.1038/s41467-022-31710-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 06/29/2022] [Indexed: 01/11/2023] Open
Abstract
The development of potent strigolactone (SL) agonists as suicidal germination inducers could be a useful strategy for controlling root parasitic weeds, but uncertainty about the SL perception mechanism impedes real progress. Here we describe small-molecule agonists that efficiently stimulate Phelipanchce aegyptiaca, and Striga hermonthica, germination in concentrations as low as 10−8 to 10−17 M. We show that full efficiency of synthetic SL agonists in triggering signaling through the Striga SL receptor, ShHTL7, depends on the receptor-catalyzed hydrolytic reaction of the agonists. Additionally, we reveal that the stereochemistry of synthetic SL analogs affects the hydrolytic ability of ShHTL7 by influencing the probability of the privileged conformations of ShHTL7. Importantly, an alternative ShHTL7-mediated hydrolysis mechanism, proceeding via nucleophilic attack of the NE2 atom of H246 to the 2′C of the D-ring, is reported. Together, our findings provide insight into SL hydrolysis and structure-perception mechanisms, and potent suicide germination stimulants, which would contribute to the elimination of the noxious parasitic weeds. Strigolactone agonists could potentially help control noxious weeds by promoting suicidal germination. Here the authors describe a series of small molecule agonists that stimulate germination via the Striga ShHTL7 receptor and show that stereochemistry and hydrolysis-independent signalling mediate potency.
Collapse
|
27
|
Park YJ, Kim JY, Park CM. SMAX1 potentiates phytochrome B-mediated hypocotyl thermomorphogenesis. THE PLANT CELL 2022; 34:2671-2687. [PMID: 35478037 PMCID: PMC9252492 DOI: 10.1093/plcell/koac124] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/16/2022] [Indexed: 05/19/2023]
Abstract
Plant thermosensors help optimize plant development and architecture for ambient temperatures, and morphogenic adaptation to warm temperatures has been extensively studied in recent years. Phytochrome B (phyB)-mediated thermosensing and the gene regulatory networks governing thermomorphogenic responses are well understood at the molecular level. However, it is unknown how plants manage their responsiveness to fluctuating temperatures in inducing thermomorphogenic behaviors. Here, we demonstrate that SUPPRESSOR OF MAX2 1 (SMAX1), known as a karrikin signaling repressor, enhances the thermosensitivity of hypocotyl morphogenesis in Arabidopsis thaliana. Hypocotyl thermomorphogenesis was largely disrupted in SMAX1-deficient mutants. SMAX1 interacts with phyB to alleviate its suppressive effects on the transcription factor activity of PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), promoting hypocotyl thermomorphogenesis. Interestingly, the SMAX1 protein is slowly destabilized at warm temperatures, preventing hypocotyl overgrowth. Our findings indicate that the thermodynamic control of SMAX1 abundance serves as a molecular gatekeeper for phyB function in thermosensitizing PIF4-mediated hypocotyl morphogenesis.
Collapse
Affiliation(s)
- Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | | |
Collapse
|
28
|
Mallu TS, Irafasha G, Mutinda S, Owuor E, Githiri SM, Odeny DA, Runo S. Mechanisms of pre-attachment Striga resistance in sorghum through genome-wide association studies. Mol Genet Genomics 2022; 297:751-762. [PMID: 35305146 DOI: 10.1007/s00438-022-01882-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/26/2022] [Indexed: 11/30/2022]
Abstract
Witchweeds (Striga spp.) greatly limit production of Africa's most staple crops. These parasitic plants use strigolactones (SLs)-chemical germination stimulants, emitted from host's roots to germinate, and locate their hosts for invasion. This information exchange provides opportunities for controlling the parasite by either stimulating parasite seed germination without a host (suicidal germination) or by inhibiting parasite seed germination (pre-attachment resistance). We sought to determine genetic factors that underpin Striga pre-attachment resistance in sorghum using the genome wide association study (GWAS) approach. Results revealed that Striga germination was associated with genes encoding hormone signaling functions, e.g., the Novel interactor of jaz (NINJA) and, Abscisic acid-insensitive 5 (ABI5). This pointed toward abscisic acid (ABA) and gibberellic acid (GA) as probable determinants of Striga germination. To test this hypothesis, we conditioned Striga using: ABA, ABA + its inhibitor fluridone (FLU), GA or water. Unexpectedly, Striga conditioned with FLU germinated after 4 days without SL. Upon germination stimulation using sorghum root exudate or the synthetic SL GR24, we found that ABA conditioned seeds had above 20-fold reduction in germination. Conversely, FLU conditioned seeds recorded above 20-fold increase in germination. Conditioning with GA reduced Striga seed germination 1.5-fold only in the GR24 treatment. Germination assays using seeds of a related parasitic plant (Alectra vogelii) showed similar degrees of stimulation and reduction of germination by the hormones further affirming the hormonal crosstalk. Our findings have far-reaching implications in the control of some of the most noxious pathogens of crops in Africa.
Collapse
Affiliation(s)
- Tesfamichael S Mallu
- Pan African University Institute for Basic Sciences, Technology and Innovation, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200, Nairobi, Kenya.,Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P. O. Box 43844-00100, Nairobi, Kenya
| | - Gilles Irafasha
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P. O. Box 43844-00100, Nairobi, Kenya
| | - Sylvia Mutinda
- Pan African University Institute for Basic Sciences, Technology and Innovation, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200, Nairobi, Kenya.,Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P. O. Box 43844-00100, Nairobi, Kenya
| | - Erick Owuor
- International Crops Research Institute for the Semi-Arid Tropics, P. O. Box 39063-00623, Nairobi, Kenya
| | - Stephen M Githiri
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200, Nairobi, Kenya
| | - Damaris A Odeny
- International Crops Research Institute for the Semi-Arid Tropics, P. O. Box 39063-00623, Nairobi, Kenya.
| | - Steven Runo
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P. O. Box 43844-00100, Nairobi, Kenya.
| |
Collapse
|
29
|
White ARF, Mendez JA, Khosla A, Nelson DC. Rapid analysis of strigolactone receptor activity in a Nicotiana benthamiana dwarf14 mutant. PLANT DIRECT 2022; 6:e389. [PMID: 35355884 PMCID: PMC8948499 DOI: 10.1002/pld3.389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/03/2021] [Accepted: 02/17/2022] [Indexed: 05/29/2023]
Abstract
DWARF14 (D14) is an ɑ/β-hydrolase and receptor for the plant hormone strigolactone (SL) in angiosperms. Upon SL perception, D14 works with MORE AXILLARY GROWTH2 (MAX2) to trigger polyubiquitination and degradation of DWARF53(D53)-type proteins in the SUPPRESSOR OF MAX2 1-LIKE (SMXL) family. We used CRISPR-Cas9 to generate knockout alleles of the two homoeologous D14 genes in the Nicotiana benthamiana genome. The Nbd14a,b double mutant had several phenotypes that are consistent with the loss of SL perception in other plants, including increased axillary bud outgrowth, reduced height, shortened petioles, and smaller leaves. A ratiometric fluorescent reporter system was used to monitor degradation of SMXL7 from Arabidopsis thaliana (AtSMXL7) after transient expression in N. benthamiana and treatment with the strigolactone analog GR24. AtSMXL7 was degraded after treatment with GR245DS, which has the stereochemical configuration of natural SLs, as well as its enantiomer GR24 ent-5DS. In Nbd14a,b leaves, AtSMXL7 abundance was unaffected by rac-GR24 or either GR24 stereoisomer. Transient coexpression of AtD14 with the AtSMXL7 reporter in Nbd14a,b restored the degradation response to rac-GR24, but required an active catalytic triad. We used this platform to evaluate the ability of several AtD14 mutants that had not been characterized in plants to target AtSMXL7 for degradation.
Collapse
Affiliation(s)
- Alexandra R. F. White
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCaliforniaUSA
| | - Jose A. Mendez
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCaliforniaUSA
| | - Aashima Khosla
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCaliforniaUSA
| | - David C. Nelson
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
30
|
Arellano-Saab A, McErlean CSP, Lumba S, Savchenko A, Stogios PJ, McCourt P. A novel strigolactone receptor antagonist provides insights into the structural inhibition, conditioning, and germination of the crop parasite Striga. J Biol Chem 2022; 298:101734. [PMID: 35181340 PMCID: PMC9035408 DOI: 10.1016/j.jbc.2022.101734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/14/2023] Open
Abstract
Crop parasites of the Striga genera are a major biological deterrent to food security in Africa and are one of the largest obstacles to poverty alleviation on the continent. Striga seeds germinate by sensing small-molecule hormones, strigolactones (SLs), that emanate from host roots. Although SL receptors (Striga hermonthica HYPOSENSITIVE TO LIGHT [ShHTL]) have been identified, discerning their function has been difficult because these parasites cannot be easily grown under laboratory conditions. Moreover, many Striga species are obligate outcrossers that are not transformable, hence not amenable to genetic analysis. By combining phenotypic screening with ShHTL structural information and hybrid drug discovery methods, we discovered a potent SL perception inhibitor for Striga, dormirazine (DOZ). Structural analysis of this piperazine-based antagonist reveals a novel binding mechanism, distinct from that of known SLs, blocking access of the hormone to its receptor. Furthermore, DOZ reduces the flexibility of protein–protein interaction domains important for receptor signaling to downstream partners. In planta, we show, via temporal additions of DOZ, that SL receptors are required at a specific time during seed conditioning. This conditioning is essential to prime seed germination at the right time; thus, this SL-sensitive stage appears to be critical for adequate receptor signaling. Aside from uncovering a function for ShHTL during seed conditioning, these results suggest that future Ag-Biotech Solutions to Striga infestations will need to carefully time the application of antagonists to exploit receptor availability and outcompete natural SLs, critical elements for successful parasitic plant invasions.
Collapse
Affiliation(s)
- Amir Arellano-Saab
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto M5S 3B2, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto. Toronto, ON. M5S 3E5, Canada
| | | | - Shelley Lumba
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto M5S 3B2, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto. Toronto, ON. M5S 3E5, Canada; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto. Toronto, ON. M5S 3E5, Canada
| | - Peter McCourt
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto M5S 3B2, Canada
| |
Collapse
|
31
|
Arabidopsis LSH8 Positively Regulates ABA Signaling by Changing the Expression Pattern of ABA-Responsive Proteins. Int J Mol Sci 2021; 22:ijms221910314. [PMID: 34638657 PMCID: PMC8508927 DOI: 10.3390/ijms221910314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 01/17/2023] Open
Abstract
Phytohormone ABA regulates the expression of numerous genes to significantly affect seed dormancy, seed germination and early seedling responses to biotic and abiotic stresses. However, the function of many ABA-responsive genes remains largely unknown. In order to improve the ABA-related signaling network, we conducted a large-scale ABA phenotype screening. LSH, an important transcription factor family, extensively participates in seedling development and floral organogenesis in plants, but whether its family genes are involved in the ABA signaling pathway has not been reported. Here we describe a new function of the transcription factor LSH8 in an ABA signaling pathway. In this study, we found that LSH8 was localized in the nucleus, and the expression level of LSH8 was significantly induced by exogenous ABA at the transcription level and protein level. Meanwhile, seed germination and root length measurements revealed that lsh8 mutant lines were ABA insensitive, whereas LSH8 overexpression lines showed an ABA-hypersensitive phenotype. With further TMT labeling quantitative proteomic analysis, we found that under ABA treatment, ABA-responsive proteins (ARPs) in the lsh8 mutant presented different changing patterns with those in wild-type Col4. Additionally, the number of ARPs contained in the lsh8 mutant was 397, six times the number in wild-type Col4. In addition, qPCR analysis found that under ABA treatment, LSH8 positively mediated the expression of downstream ABA-related genes of ABI3, ABI5, RD29B and RAB18. These results indicate that in Arabidopsis, LSH8 is a novel ABA regulator that could specifically change the expression pattern of APRs to positively mediate ABA responses.
Collapse
|
32
|
Hull R, Choi J, Paszkowski U. Conditioning plants for arbuscular mycorrhizal symbiosis through DWARF14-LIKE signalling. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102071. [PMID: 34186295 PMCID: PMC8425181 DOI: 10.1016/j.pbi.2021.102071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/11/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
The evolutionarily ancient α/β hydrolase DWARF14-LIKE (D14L) is indispensable for the perception of beneficial arbuscular mycorrhizal (AM) fungi in the rhizosphere, and for a range of developmental processes. Variants of D14L recognise natural strigolactones and the smoke constituent karrikin, both classified as butenolides, and additional unknown ligand(s), critical for symbiosis and development. Recent advances in the understanding of downstream effects of D14L signalling include biochemical evidence for the degradation of the repressor SMAX1. Indeed, genetic removal of rice SMAX1 leads to the de-repression of symbiosis programmes and to the simultaneous increase in strigolactone production. As strigolactones are key to attraction of the fungus in the rhizosphere, the D14L signalling pathway appears to coordinate fungal stimulation and root symbiotic competency. Here, we discuss the possible integrative roles of D14L signalling in conditioning plants for AM symbiosis.
Collapse
Affiliation(s)
- Raphaella Hull
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Jeongmin Choi
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Uta Paszkowski
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Lawrence Weaver Road, Cambridge CB3 0LE, UK.
| |
Collapse
|
33
|
Fishman MR, Shirasu K. How to resist parasitic plants: pre- and post-attachment strategies. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102004. [PMID: 33647828 DOI: 10.1016/j.pbi.2021.102004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
The lifecycle of parasitic plants can be divided into pre-attachment and post-attachment phases that equate to free living and parasitic stages. Similarly, plant resistance to parasitic plants can be defined as pre-attachment and post-attachment resistance. Parasitic plants rely on host cues for successful host invasion. During pre-attachment resistance, changes in the composition of host signals can disrupt parasitic plant development and ultimately host invasion. Recent studies have only now begun to elucidate the genetic elements in the host that promote pre-attachment resistance. In comparison, new research points to post-attachment resistance using the common molecular mechanisms utilized by the plant immune system during plant-pathogen interactions. In kind, parasitic plants secrete proteinaceous and RNA-based effectors post-attachment to subvert the host immune system.
Collapse
Affiliation(s)
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan; Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
34
|
Three mutations repurpose a plant karrikin receptor to a strigolactone receptor. Proc Natl Acad Sci U S A 2021; 118:2103175118. [PMID: 34301902 DOI: 10.1073/pnas.2103175118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Uncovering the basis of small-molecule hormone receptors' evolution is paramount to a complete understanding of how protein structure drives function. In plants, hormone receptors for strigolactones are well suited to evolutionary inquiries because closely related homologs have different ligand preferences. More importantly, because of facile plant transgenic systems, receptors can be swapped and quickly assessed functionally in vivo. Here, we show that only three mutations are required to turn the nonstrigolactone receptor, KAI2, into a receptor that recognizes the plant hormone strigolactone. This modified receptor still retains its native function to perceive KAI2 ligands. Our directed evolution studies indicate that only a few keystone mutations are required to increase receptor promiscuity of KAI2, which may have implications for strigolactone receptor evolution in parasitic plants.
Collapse
|
35
|
Yao J, Scaffidi A, Meng Y, Melville KT, Komatsu A, Khosla A, Nelson DC, Kyozuka J, Flematti GR, Waters MT. Desmethyl butenolides are optimal ligands for karrikin receptor proteins. THE NEW PHYTOLOGIST 2021; 230:1003-1016. [PMID: 33474738 DOI: 10.1111/nph.17224] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/16/2021] [Indexed: 05/25/2023]
Abstract
Strigolactones and karrikins are butenolide molecules that regulate plant growth. They are perceived by the α/β-hydrolase DWARF14 (D14) and its homologue KARRIKIN INSENSITIVE2 (KAI2), respectively. Plant-derived strigolactones have a butenolide ring with a methyl group that is essential for bioactivity. By contrast, karrikins are abiotic in origin, and the butenolide methyl group is nonessential. KAI2 is probably a receptor for an endogenous butenolide, but the identity of this compound remains unknown. Here we characterise the specificity of KAI2 towards differing butenolide ligands using genetic and biochemical approaches. We find that KAI2 proteins from multiple species are most sensitive to desmethyl butenolides that lack a methyl group. Desmethyl-GR24 and desmethyl-CN-debranone are active by KAI2 but not D14. They are more potent KAI2 agonists compared with their methyl-substituted reference compounds both in vitro and in plants. The preference of KAI2 for desmethyl butenolides is conserved in Selaginella moellendorffii and Marchantia polymorpha, suggesting that it is an ancient trait in land plant evolution. Our findings provide insight into the mechanistic basis for differential ligand perception by KAI2 and D14, and support the view that the endogenous substrates for KAI2 and D14 have distinct chemical structures and biosynthetic origins.
Collapse
Affiliation(s)
- Jiaren Yao
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, 6009, Australia
| | - Adrian Scaffidi
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Yongjie Meng
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, 6009, Australia
| | - Kim T Melville
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, 6009, Australia
| | - Aino Komatsu
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Aashima Khosla
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Gavin R Flematti
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Mark T Waters
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
36
|
Wang Y, Yao R, Du X, Guo L, Chen L, Xie D, Smith SM. Molecular basis for high ligand sensitivity and selectivity of strigolactone receptors in Striga. PLANT PHYSIOLOGY 2021; 185:1411-1428. [PMID: 33793945 PMCID: PMC8133601 DOI: 10.1093/plphys/kiaa048] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/11/2020] [Indexed: 05/30/2023]
Abstract
Seeds of the root parasitic plant Striga hermonthica can sense very low concentrations of strigolactones (SLs) exuded from host roots. The S. hermonthica hyposensitive to light (ShHTL) proteins are putative SL receptors, among which ShHTL7 reportedly confers sensitivity to picomolar levels of SL when expressed in Arabidopsis thaliana. However, the molecular mechanism underlying ShHTL7 sensitivity is unknown. Here we determined the ShHTL7 crystal structure and quantified its interactions with various SLs and key interacting proteins. We established that ShHTL7 has an active-site pocket with broad-spectrum response to different SLs and moderate affinity. However, in contrast to other ShHTLs, we observed particularly high affinity of ShHTL7 for F-box protein AtMAX2. Furthermore, ShHTL7 interacted with AtMAX2 and with transcriptional regulator AtSMAX1 in response to nanomolar SL concentration. ShHTL7 mutagenesis analyses identified surface residues that contribute to its high-affinity binding to AtMAX2 and residues in the ligand binding pocket that confer broad-spectrum response to SLs with various structures. Crucially, yeast-three hybrid experiments showed that AtMAX2 confers responsiveness of the ShHTL7-AtSMAX1 interaction to picomolar levels of SL in line with the previously reported physiological sensitivity. These findings highlight the key role of SL-induced MAX2-ShHTL7-SMAX1 complex formation in determining the sensitivity to SL. Moreover, these data suggest a strategy to screen for compounds that could promote suicidal seed germination at physiologically relevant levels.
Collapse
Affiliation(s)
- Yupei Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Xiaoxi Du
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lvjun Guo
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Daoxin Xie
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Steven M Smith
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
37
|
Nelson DC. The mechanism of host-induced germination in root parasitic plants. PLANT PHYSIOLOGY 2021; 185:1353-1373. [PMID: 33793958 PMCID: PMC8133615 DOI: 10.1093/plphys/kiab043] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/25/2021] [Indexed: 05/25/2023]
Abstract
Chemical signals known as strigolactones (SLs) were discovered more than 50 years ago as host-derived germination stimulants of parasitic plants in the Orobanchaceae. Strigolactone-responsive germination is an essential adaptation of obligate parasites in this family, which depend upon a host for survival. Several species of obligate parasites, including witchweeds (Striga, Alectra spp.) and broomrapes (Orobanche, Phelipanche spp.), are highly destructive agricultural weeds that pose a significant threat to global food security. Understanding how parasites sense SLs and other host-derived stimulants will catalyze the development of innovative chemical and biological control methods. This review synthesizes the recent discoveries of strigolactone receptors in parasitic Orobanchaceae, their signaling mechanism, and key steps in their evolution.
Collapse
Affiliation(s)
- David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521 USA
| |
Collapse
|
38
|
Brun G, Spallek T, Simier P, Delavault P. Molecular actors of seed germination and haustoriogenesis in parasitic weeds. PLANT PHYSIOLOGY 2021; 185:1270-1281. [PMID: 33793893 PMCID: PMC8133557 DOI: 10.1093/plphys/kiaa041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/02/2020] [Indexed: 05/06/2023]
Abstract
One-sentence summary Recent advances provide insight into the molecular mechanisms underlying host-dependent seed germination and haustorium formation in parasitic plants.
Collapse
Affiliation(s)
- Guillaume Brun
- Department for Systematic Botany and Biodiversity, Institute for Biology, Humboldt-Universität zu Berlin, Philippstr. 13, D-10115 Berlin, Germany
| | - Thomas Spallek
- Department of Plant Physiology and Biochemistry, University of Hohenheim, D-70599 Stuttgart, Germany
| | - Philippe Simier
- Laboratory of Plant Biology and Pathology, University of Nantes, F-44322 Nantes Cedex 3, France
| | - Philippe Delavault
- Laboratory of Plant Biology and Pathology, University of Nantes, F-44322 Nantes Cedex 3, France
- Author for communication:
| |
Collapse
|
39
|
Bouwmeester H, Li C, Thiombiano B, Rahimi M, Dong L. Adaptation of the parasitic plant lifecycle: germination is controlled by essential host signaling molecules. PLANT PHYSIOLOGY 2021; 185:1292-1308. [PMID: 33793901 PMCID: PMC8133609 DOI: 10.1093/plphys/kiaa066] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/12/2020] [Indexed: 05/25/2023]
Abstract
Parasitic plants are plants that connect with a haustorium to the vasculature of another, host, plant from which they absorb water, assimilates, and nutrients. Because of this parasitic lifestyle, parasitic plants need to coordinate their lifecycle with that of their host. Parasitic plants have evolved a number of host detection/host response mechanisms of which the germination in response to chemical host signals in one of the major families of parasitic plants, the Orobanchaceae, is a striking example. In this update review, we discuss these germination stimulants. We review the different compound classes that function as germination stimulants, how they are produced, and in which host plants. We discuss why they are reliable signals, how parasitic plants have evolved mechanisms that detect and respond to them, and whether they play a role in host specificity. The advances in the knowledge underlying this signaling relationship between host and parasitic plant have greatly improved our understanding of the evolution of plant parasitism and are facilitating the development of more effective control measures in cases where these parasitic plants have developed into weeds.
Collapse
Affiliation(s)
- Harro Bouwmeester
- Plant Hormone Biology group, Green Life Sciences cluster, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Changsheng Li
- Plant Hormone Biology group, Green Life Sciences cluster, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Benjamin Thiombiano
- Plant Hormone Biology group, Green Life Sciences cluster, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Mehran Rahimi
- Plant Hormone Biology group, Green Life Sciences cluster, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Lemeng Dong
- Plant Hormone Biology group, Green Life Sciences cluster, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
40
|
Jurado-Flores A, Romero LC, Gotor C. Label-Free Quantitative Proteomic Analysis of Nitrogen Starvation in Arabidopsis Root Reveals New Aspects of H 2S Signaling by Protein Persulfidation. Antioxidants (Basel) 2021; 10:508. [PMID: 33805243 PMCID: PMC8064375 DOI: 10.3390/antiox10040508] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 01/18/2023] Open
Abstract
Hydrogen sulfide (H2S)-mediated signaling pathways regulate many physiological and pathophysiological processes in mammalian and plant systems. The molecular mechanism by which hydrogen sulfide exerts its action involves the posttranslational modification of cysteine residues to form a persulfidated thiol motif. We developed a comparative and label-free quantitative proteomic analysis approach for the detection of endogenous persulfidated proteins in N-starved Arabidopsis thaliana roots by using the tag-switch method. In this work, we identified 5214 unique proteins from root tissue that were persulfidated, 1674 of which were quantitatively analyzed and found to show altered persulfidation levels in vivo under N deprivation. These proteins represented almost 13% of the entire annotated proteome in Arabidopsis. Bioinformatic analysis revealed that persulfidated proteins were involved in a wide range of biological functions, regulating important processes such as primary metabolism, plant responses to stresses, growth and development, RNA translation and protein degradation. Quantitative mass spectrometry analysis allowed us to obtain a comprehensive view of hydrogen sulfide signaling via changes in the persulfidation levels of key protein targets involved in ubiquitin-dependent protein degradation and autophagy, among others.
Collapse
Affiliation(s)
| | - Luis C. Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain;
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain;
| |
Collapse
|
41
|
Bunsick M, Lumba S. ShHTL7 requires functional brassinosteroid signaling to initiate GA-independent germination. PLANT SIGNALING & BEHAVIOR 2021; 16:1855845. [PMID: 33300428 PMCID: PMC7889230 DOI: 10.1080/15592324.2020.1855845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
In the model plant Arabidopsis thaliana, two mutually antagonistic hormones regulate germination: abscisic acid (ABA) which promotes dormancy and gibberellins (GA) which breaks dormancy. Mutants auxotrophic for or insensitive to GA do not germinate. However, changes in the signaling flux through other hormone pathways will permit GA-independent germination. These changes include increased brassinosteroid (BR) signaling and decreased ABA signaling. Recently, strigolactone (SL) was also shown to enable GA-independent germination, provided the seeds express the SL receptor ShHTL7 from the parasitic plant Striga hermonthica. Here we show that a mutation which reduces sensitivity to BR (bri1-6) prevents ShHTL7 from promoting GA-independent germination. Further, we show that neither ShHTL7 nor the constitutive karrikin signaling mutant smax1-2 confer insensitivity to ABA. These results suggest ShHTL7 requires functional BR perception to bypass the GA requirement for germination.
Collapse
Affiliation(s)
- Michael Bunsick
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Shelley Lumba
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
42
|
Aquino B, Bradley JM, Lumba S. On the outside looking in: roles of endogenous and exogenous strigolactones. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:322-334. [PMID: 33215770 DOI: 10.1111/tpj.15087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/27/2020] [Accepted: 10/21/2020] [Indexed: 05/15/2023]
Abstract
A collection of small molecules called strigolactones (SLs) act as both endogenous hormones to control plant development and as ecological communication cues between organisms. SL signalling overlaps with that of a class of smoke-derived compounds, karrikins (KARs), which have distinct yet overlapping developmental effects on plants. Although the roles of SLs in shoot and root development, in the promotion of arbuscular mycorrhizal (AM) fungal branching and in parasitic plant germination have been well characterized, recent data have illustrated broader roles for these compounds in the rhizosphere. Here, we review the known roles of SLs in development, growth of AM fungi and germination of parasitic plants to develop a framework for understanding the use of SLs as molecules of communication in the rhizosphere. It appears, for example, that there are many connections between SLs and phosphate utilization. Low phosphate levels regulate SL metabolism and, in turn, SLs sculpt root and shoot architecture to coordinate growth and optimize phosphate uptake from the environment. Plant-exuded SLs attract fungal symbionts to deliver inorganic phosphate (Pi) to the host. These and other examples suggest the boundary between exogenous and endogenous SL functions can be easily blurred and a more holistic view of these small molecules is likely to be required to fully understand SL biology. Related to this, we summarize and discuss evidence for a primitive role of SLs in moss as a quorum sensing-like molecule, providing a unifying concept of SLs as endogenous and exogenous signalling molecules.
Collapse
Affiliation(s)
- Bruno Aquino
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada
| | - James M Bradley
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada
| | - Shelley Lumba
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
43
|
Affiliation(s)
- Darren C Machin
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
44
|
Prerostova S, Černý M, Dobrev PI, Motyka V, Hluskova L, Zupkova B, Gaudinova A, Knirsch V, Janda T, Brzobohatý B, Vankova R. Light Regulates the Cytokinin-Dependent Cold Stress Responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:608711. [PMID: 33613584 PMCID: PMC7889523 DOI: 10.3389/fpls.2020.608711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/24/2020] [Indexed: 05/10/2023]
Abstract
To elucidate the effect of light intensity on the cold response (5°C; 7 days) in Arabidopsis thaliana, we compared the following parameters under standard light (150 μmol m-2 s-1), low light (20 μmol m-2 s-1), and dark conditions: membrane damage, photosynthetic parameters, cytokinin oxidase/dehydrogenase (CKX) activity, phytohormone levels, and transcription of selected stress- and hormone-related genes and proteome. The impact of cytokinins (CKs), hormones directly interacting with the light signaling pathway, on cold responses was evaluated using transformants overexpressing CK biosynthetic gene isopentenyl transferase (DEX:IPT) or CK degradation gene HvCKX2 (DEX:CKX) under a dexamethasone-inducible promoter. In wild-type plants, cold treatment under light conditions caused down-regulation of CKs (in shoots) and auxin, while abscisic acid (ABA), jasmonates, and salicylic acid (SA) were up-regulated, especially under low light. Cold treatment in the dark strongly suppressed all phytohormones, except ABA. DEX:IPT plants showed enhanced stress tolerance associated with elevated CK and SA levels in shoots and auxin in apices. Contrarily, DEX:CKX plants had weaker stress tolerance accompanied by lowered levels of CKs and auxins. Nevertheless, cold substantially diminished the impact from the inserted genes. Cold stress in dark minimized differences among the genotypes. Cold treatments in light strongly up-regulated stress marker genes RD29A, especially in roots, and CBF1-3 in shoots. Under control conditions, their levels were higher in DEX:CKX plants, but after 7-day stress, DEX:IPT plants exhibited the highest transcription. Transcription of genes related to CK metabolism and signaling showed a tendency to re-establish, at least partially, CK homeostasis in both transformants. Up-regulation of strigolactone-related genes in apices and leaves indicated their role in suppressing shoot growth. The analysis of leaf proteome revealed over 20,000 peptides, representing 3,800 proteins and 2,212 protein families (data available via ProteomeXchange, identifier PXD020480). Cold stress induced proteins involved in ABA and jasmonate metabolism, antioxidant enzymes, and enzymes of flavonoid and glucosinolate biosynthesis. DEX:IPT plants up-regulated phospholipase D and MAP-kinase 4. Cold stress response at the proteome level was similar in all genotypes under optimal light intensity, differing significantly under low light. The data characterized the decisive effect of light-CK cross-talk in the regulation of cold stress responses.
Collapse
Affiliation(s)
- Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Petre I. Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Vaclav Motyka
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Lucia Hluskova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Barbara Zupkova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Alena Gaudinova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Vojtech Knirsch
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Tibor Janda
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Martonvasar, Hungary
| | - Bretislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- CEITEC MENDELU: Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Radomira Vankova,
| |
Collapse
|