1
|
Petipas RH, Antoch AA, Eaker AA, Kehlet-Delgado H, Friesen ML. Back to the future: Using herbarium specimens to isolate nodule-associated bacteria. Ecol Evol 2024; 14:e11719. [PMID: 39011130 PMCID: PMC11246978 DOI: 10.1002/ece3.11719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Herbarium specimens are increasingly being used as sources of information to understand the ecology and evolution of plants and their associated microbes. Most studies have used specimens as a source of genetic material using culture-independent approaches. We demonstrate that herbarium specimens can also be used to culture nodule-associated bacteria, opening the possibility of using specimens to understand plant-microbe interactions at new spatiotemporal scales. We used historic and contemporary nodules of a common legume, Medicago lupulina, to create a culture collection. We were able to recover historic bacteria in 15 genera from three specimens (collected in 1950, 2004, and 2015). This work is the first of its kind to isolate historic bacteria from herbarium specimens. Future work should include inoculating plants with historic strains to see if they produce nodules and if they affect plant phenotype and fitness. Although we were unable to recover any Ensifer, the main symbiont of Medicago lupulina, we recovered some other potential nodulating species, as well as many putative growth-promoting bacteria.
Collapse
Affiliation(s)
- Renee H Petipas
- Department of Plant Pathology Washington State University Pullman Washington USA
| | - Amanda A Antoch
- Department of Plant Pathology Washington State University Pullman Washington USA
- Department of Microbiology University of Washington Seattle Washington USA
| | - Ashton A Eaker
- Department of Plant Pathology Washington State University Pullman Washington USA
| | - Hanna Kehlet-Delgado
- Department of Plant Pathology Washington State University Pullman Washington USA
| | - Maren L Friesen
- Department of Plant Pathology Washington State University Pullman Washington USA
| |
Collapse
|
2
|
Roma-Marzio F, Maccioni S, Dolci D, Astuti G, Magrini N, Pierotti F, Vangelisti R, Amadei L, Peruzzi L. Digitization of the historical Herbarium of Michele Guadagno at Pisa (PI-GUAD). PHYTOKEYS 2023; 234:107-125. [PMID: 37868742 PMCID: PMC10587777 DOI: 10.3897/phytokeys.234.109464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023]
Abstract
The herbarium digitization process is an essential first step in transforming the vast amount of data associated with a physical specimen into flexible digital data formats. In this framework, the Herbarium of the University of Pisa (international code PI), at the end of 2018 started a process of digitization focusing on one of its most relevant collections: the Herbarium of Michele Guadagno (1878-1930). This scholar studied flora and vegetation of different areas of southern Italy, building a large herbarium including specimens collected by himself, plus many specimens obtained through exchanges with Italian and foreign botanists. The Herbarium is composed by 547 packages of vascular plants. Metadata were entered into the online database Virtual Herbaria JACQ and mirrored into a personalized virtual Herbarium of the Botanic Museum. After the completion of the digitization process, the number of sheets preserved in the Herbarium amounts to 44,345. Besides Guadagno, who collected 42% of his specimens, a further 1,102 collectors are represented. Most specimens were collected in Europe (91%), but all the continents are represented. As expected, Italy is the most represented country (59%), followed by France, Spain, Germany, and Greece. The specimens cover a time span of 99 years, from 1830 to 1929, whereas the specimens collected by Guadagno range between 1889 and 1928. Furthermore, we traced 134 herbarium sheets associated with documents, among which 75 drawings handmade by Guadagno, 34 letters from various corresponding authors, 16 copies of publications, and 14 copies of published iconographies.
Collapse
Affiliation(s)
- Francesco Roma-Marzio
- Orto e Museo Botanico, Sistema Museale d’Ateneo, Università di Pisa, via Ghini 13, 56126 Pisa, ItalyUniversità di PisaPisaItaly
| | - Simonetta Maccioni
- Orto e Museo Botanico, Sistema Museale d’Ateneo, Università di Pisa, via Ghini 13, 56126 Pisa, ItalyUniversità di PisaPisaItaly
| | - David Dolci
- Orto e Museo Botanico, Sistema Museale d’Ateneo, Università di Pisa, via Ghini 13, 56126 Pisa, ItalyUniversità di PisaPisaItaly
| | - Giovanni Astuti
- Orto e Museo Botanico, Sistema Museale d’Ateneo, Università di Pisa, via Ghini 13, 56126 Pisa, ItalyUniversità di PisaPisaItaly
| | - Nicoletta Magrini
- Orto e Museo Botanico, Sistema Museale d’Ateneo, Università di Pisa, via Ghini 13, 56126 Pisa, ItalyUniversità di PisaPisaItaly
| | - Federica Pierotti
- Orto e Museo Botanico, Sistema Museale d’Ateneo, Università di Pisa, via Ghini 13, 56126 Pisa, ItalyUniversità di PisaPisaItaly
| | - Roberta Vangelisti
- Orto e Museo Botanico, Sistema Museale d’Ateneo, Università di Pisa, via Ghini 13, 56126 Pisa, ItalyUniversità di PisaPisaItaly
| | - Lucia Amadei
- Orto e Museo Botanico, Sistema Museale d’Ateneo, Università di Pisa, via Ghini 13, 56126 Pisa, ItalyUniversità di PisaPisaItaly
| | - Lorenzo Peruzzi
- Orto e Museo Botanico, Sistema Museale d’Ateneo, Università di Pisa, via Ghini 13, 56126 Pisa, ItalyUniversità di PisaPisaItaly
| |
Collapse
|
3
|
Burbano HA, Gutaker RM. Ancient DNA genomics and the renaissance of herbaria. Science 2023; 382:59-63. [PMID: 37797028 DOI: 10.1126/science.adi1180] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/02/2023] [Indexed: 10/07/2023]
Abstract
Herbaria are undergoing a renaissance as valuable sources of genomic data for exploring plant evolution, ecology, and diversity. Ancient DNA retrieved from herbarium specimens can provide unprecedented glimpses into past plant communities, their interactions with biotic and abiotic factors, and the genetic changes that have occurred over time. Here, we highlight recent advances in the field of herbarium genomics and discuss the challenges and opportunities of combining data from modern and time-stamped historical specimens. We also describe how integrating herbarium genomics data with other data types can yield substantial insights into the evolutionary and ecological processes that shape plant communities. Herbarium genomic analysis is a tool for understanding plant life and informing conservation efforts in the face of dire environmental challenges.
Collapse
Affiliation(s)
- Hernán A Burbano
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Rafal M Gutaker
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey TW9 3AE, UK
| |
Collapse
|
5
|
Rehmani MS, Xian B, Wei S, He J, Feng Z, Huang H, Shu K. Seedling establishment: The neglected trait in the seed longevity field. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107765. [PMID: 37209453 DOI: 10.1016/j.plaphy.2023.107765] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Seed longevity is a central actor in plant germplasm resource conservation, species reproduction, geographical distribution, crop yield and quality and food processing and safety. Seed longevity and vigor decrease gradually during storage, which directly influences seed germination and post-germination seedling establishment. It is noted that seedling establishment is a key shift from heterotropism to autotropism and is fueled by the energy reserved in the seeds per se. Numerous studies have demonstrated that expedited catabolism of triacylglycerols, fatty acid and sugars during seed storage is closely related to seed longevity. Storage of farm-saved seeds of elite cultivars for use in subsequent years is a common practice and it is recognized that aged seed (especially those stored under less-than-ideal conditions) can lead to poor seed germination, but the significance of poor seedling establishment as a separate factor capable of influencing crop yield has been overlooked. This review article summarizes the relationship between seed germination and seedling establishment and the effect of different seed reserves on seed longevity. Based on this, we emphasize the importance of simultaneous scoring of seedling establishment and germination percentage from aged seeds and discuss the reasons.
Collapse
Affiliation(s)
- Muhammad Saad Rehmani
- School of Environment and Ecology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - BaoShan Xian
- School of Environment and Ecology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Shaowei Wei
- School of Environment and Ecology, Northwestern Polytechnical University, Xi'an, 710129, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
| | - Juan He
- School of Environment and Ecology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zhenxin Feng
- School of Astronautics, Northwestern Polytechnical University, Xi'an, 710129, China
| | - He Huang
- School of Astronautics, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Kai Shu
- School of Environment and Ecology, Northwestern Polytechnical University, Xi'an, 710129, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China.
| |
Collapse
|
6
|
No resurrection without preservation. NATURE PLANTS 2023; 9:193. [PMID: 36813916 DOI: 10.1038/s41477-023-01368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
7
|
Davis CC. The herbarium of the future. Trends Ecol Evol 2022; 38:412-423. [PMID: 36549958 DOI: 10.1016/j.tree.2022.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
The ~400 million specimens deposited across ~3000 herbaria are essential for: (i) understanding where plants have lived in the past, (ii) forecasting where they may live in the future, and (iii) delineating their conservation status. An open access 'global metaherbarium' is emerging as these specimens are digitized, mobilized, and interlinked online. This virtual biodiversity resource is attracting new users who are accelerating traditional applications of herbaria and generating basic and applied scientific innovations, including e-monographs and floras produced by diverse, interdisciplinary, and inclusive teams; robust machine-learning algorithms for species identification and phenotyping; collection and synthesis of ecological trait data at large spatiotemporal and phylogenetic scales; and exhibitions and installations that convey the beauty of plants and the value of herbaria in addressing broader societal issues.
Collapse
Affiliation(s)
- Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
8
|
Abeli T, Sharrock S, Albani Rocchetti G. Out-of-date datasets hamper conservation of species close to extinction. NATURE PLANTS 2022; 8:1370-1373. [PMID: 36536015 DOI: 10.1038/s41477-022-01293-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/27/2022] [Indexed: 05/12/2023]
Abstract
International databases and data aggregators on species conservation status are powerful tools supporting the efforts of conservation biologists and practitioners in reducing the loss of biodiversity. However, out-of-date information and poor interoperability of databases can hamper conservation of highly threatened species or in extreme cases can result in their removal from conservation frameworks. Lack of common standards for database updates, slow update timing and incongruencies among datasets in terms of taxonomy, threats, conservation status and holding prevent proper conservation prioritization and actions. A simple survey to solve incongruencies between the BGCI PlantSearch Database and the IUCN Red List resulted in a change of status of 16 plant species, including the 'rehabilitation' of 12 species thought to be extinct.
Collapse
Affiliation(s)
- Thomas Abeli
- Department of Science, Roma Tre University, Roma, Italy.
| | | | | |
Collapse
|