1
|
Hohl M, Banks EJ, Manley MP, Le TBK, Low HH. Bidirectional pilus processing in the Tad pilus system motor CpaF. Nat Commun 2024; 15:6635. [PMID: 39103374 PMCID: PMC11300603 DOI: 10.1038/s41467-024-50280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
The bacterial tight adherence pilus system (TadPS) assembles surface pili essential for adhesion and colonisation in many human pathogens. Pilus dynamics are powered by the ATPase CpaF (TadA), which drives extension and retraction cycles in Caulobacter crescentus through an unknown mechanism. Here we use cryogenic electron microscopy and cell-based light microscopy to characterise CpaF mechanism. We show that CpaF assembles into a hexamer with C2 symmetry in different nucleotide states. Nucleotide cycling occurs through an intra-subunit clamp-like mechanism that promotes sequential conformational changes between subunits. Moreover, a comparison of the active sites with different nucleotides bound suggests a mechanism for bidirectional motion. Conserved CpaF residues, predicted to interact with platform proteins CpaG (TadB) and CpaH (TadC), are mutated in vivo to establish their role in pilus processing. Our findings provide a model for how CpaF drives TadPS pilus dynamics and have broad implications for how other ancient type 4 filament family members power pilus assembly.
Collapse
Affiliation(s)
- Michael Hohl
- Department of Infectious Disease, Imperial College, London, UK
| | - Emma J Banks
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Max P Manley
- Department of Infectious Disease, Imperial College, London, UK
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Harry H Low
- Department of Infectious Disease, Imperial College, London, UK.
| |
Collapse
|
2
|
Zhang T, Ji S, Zhang M, Wu F, Li X, Luo X, Huang Q, Li M, Zhang Y, Lu R. Effect of capsular polysaccharide phase variation on biofilm formation, motility and gene expression in Vibrio vulnificus. Gut Pathog 2024; 16:40. [PMID: 39075606 PMCID: PMC11287873 DOI: 10.1186/s13099-024-00620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/25/2024] [Indexed: 07/31/2024] Open
Abstract
Vibrio vulnificus, a significant marine pathogen, undergoes opaque (Op)-translucent (Tr) colony switching based on whether capsular polysaccharide (CPS) is produced. CPS phase variation is sometime accompanied by genetic variation or down-regulation of particular genes, such as wzb. In addition, CPS prevents biofilm formation and is important to the virulence of V. vulnificus. However, the extent to which there is a difference in gene expression between Tr and Op colonies and the impact of CPS phase variation on other behaviors of V. vulnificus remain unknown. In this work, the data have shown that CPS phase variation of V. vulnificus is affected by incubation time. Tr and Op strains exhibited similar growth rates. However, Tr strains had enhanced biofilm formation capacities but reduced swimming motility compared to Op strains. The RNA-seq assay revealed 488 differentially expressed genes, with 214 downregulated and 274 upregulated genes, between Tr and Op colonies. Genes associated with Tad pili and CPS were downregulated, whereas those involved in flagellum were upregulated, in Tr colonies compared with Op colonies. In addition, 9 putative c-di-GMP metabolism-associated genes and 28 genes encoding putative regulators were significantly differentially expressed, suggesting that CPS phase variation is probably strictly regulated in V. vulnificus. Moreover, 8 genes encoding putative porins were also differentially expressed between the two phenotypic colonies, indicating that bacterial outer membrane was remodeled during CPS phase variation. In brief, this work highlighted the gene expression profiles associated with CPS phase variation, but more studies should be performed to disclose the intrinsic mechanisms in the future.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, 226006, China
- School of Medicine, Nantong University, Nantong, Jiangsu, 226019, China
| | - Shenjie Ji
- Department of Clinical Laboratory, Qidong People's Hospital, Qidong, Jiangsu, 226200, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, 226006, China
| | - Fei Wu
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, 226006, China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, 226006, China
| | - Xi Luo
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, 226006, China
| | - Qinglian Huang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, 226006, China
- School of Medicine, Nantong University, Nantong, Jiangsu, 226019, China
- Department of Clinical Laboratory, Qidong People's Hospital, Qidong, Jiangsu, 226200, China
| | - Min Li
- Department of Gastroenterology and Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, 226006, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, 226006, China.
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, 226006, China.
- School of Medicine, Nantong University, Nantong, Jiangsu, 226019, China.
| |
Collapse
|
3
|
Morot A, Delavat F, Bazire A, Paillard C, Dufour A, Rodrigues S. Genetic Insights into Biofilm Formation by a Pathogenic Strain of Vibrio harveyi. Microorganisms 2024; 12:186. [PMID: 38258011 PMCID: PMC10820411 DOI: 10.3390/microorganisms12010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The Vibrio genus includes bacteria widely distributed in aquatic habitats and the infections caused by these bacteria can affect a wide range of hosts. They are able to adhere to numerous surfaces, which can result in biofilm formation that helps maintain them in the environment. The involvement of the biofilm lifestyle in the virulence of Vibrio pathogens of aquatic organisms remains to be investigated. Vibrio harveyi ORM4 is a pathogen responsible for an outbreak in European abalone Haliotis tuberculata populations. In the present study, we used a dynamic biofilm culture technique coupled with laser scanning microscopy to characterize the biofilm formed by V. harveyi ORM4. We furthermore used RNA-seq analysis to examine the global changes in gene expression in biofilm cells compared to planktonic bacteria, and to identify biofilm- and virulence-related genes showing altered expression. A total of 1565 genes were differentially expressed, including genes associated with motility, polysaccharide synthesis, and quorum sensing. The up-regulation of 18 genes associated with the synthesis of the type III secretion system suggests that this virulence factor is induced in V. harveyi ORM4 biofilms, providing indirect evidence of a relationship between biofilm and virulence.
Collapse
Affiliation(s)
- Amandine Morot
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100 Lorient, France
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | | | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100 Lorient, France
| | | | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100 Lorient, France
| | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100 Lorient, France
| |
Collapse
|
4
|
Sonani RR, Sanchez JC, Baumgardt JK, Kundra S, Wright ER, Craig L, Egelman EH. Tad and toxin-coregulated pilus structures reveal unexpected diversity in bacterial type IV pili. Proc Natl Acad Sci U S A 2023; 120:e2316668120. [PMID: 38011558 PMCID: PMC10710030 DOI: 10.1073/pnas.2316668120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 11/29/2023] Open
Abstract
Type IV pili (T4P) are ubiquitous in both bacteria and archaea. They are polymers of the major pilin protein, which has an extended and protruding N-terminal helix, α1, and a globular C-terminal domain. Cryo-EM structures have revealed key differences between the bacterial and archaeal T4P in their C-terminal domain structure and in the packing and continuity of α1. This segment forms a continuous α-helix in archaeal T4P but is partially melted in all published bacterial T4P structures due to a conserved helix breaking proline at position 22. The tad (tight adhesion) T4P are found in both bacteria and archaea and are thought to have been acquired by bacteria through horizontal transfer from archaea. Tad pilins are unique among the T4 pilins, being only 40 to 60 residues in length and entirely lacking a C-terminal domain. They also lack the Pro22 found in all high-resolution bacterial T4P structures. We show using cryo-EM that the bacterial tad pilus from Caulobacter crescentus is composed of continuous helical subunits that, like the archaeal pilins, lack the melted portion seen in other bacterial T4P and share the packing arrangement of the archaeal T4P. We further show that a bacterial T4P, the Vibrio cholerae toxin coregulated pilus, which lacks Pro22 but is not in the tad family, has a continuous N-terminal α-helix, yet its α1 s are arranged similar to those in other bacterial T4P. Our results highlight the role of Pro22 in helix melting and support an evolutionary relationship between tad and archaeal T4P.
Collapse
Affiliation(s)
- Ravi R. Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22903
| | - Juan Carlos Sanchez
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Joseph K. Baumgardt
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Shivani Kundra
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Elizabeth R. Wright
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Lisa Craig
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22903
| |
Collapse
|
5
|
Nuttall RA, Moisander PH. Vibrio cyclitrophicus population-specific biofilm formation and epibiotic growth on marine copepods. Environ Microbiol 2023; 25:2534-2548. [PMID: 37612139 DOI: 10.1111/1462-2920.16483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 07/31/2023] [Indexed: 08/25/2023]
Abstract
Vibrio spp. form a part of the microbiome of copepods-an abundant component of marine mesozooplankton. The biological mechanisms of the Vibrio-copepod association are largely unknown. In this study we compared biofilm formation of V. cyclitrophicus isolated from copepods (L-strains related to other particle-associated strains) and closely related strains originating from seawater (S-strains), and visualized and quantified their attachment and growth on copepods. The S- and L-strains formed similar biofilms in the presence of complete sea salts, suggesting previously unknown biofilm mechanisms in the S-strains. No biofilms formed if sodium chloride was present as the only salt but added calcium significantly enhanced biofilms in the L-strains. GFP-L-strain cells attached to live copepods at higher numbers than the S-strains, suggesting distinct mechanisms, potentially including calcium, support their colonization of copepods. The cells grew on live copepods after attachment, demonstrating that copepods sustain epibiotic V. cyclitrophicus growth in situ. The results demonstrate that in spite of their 99.1% average nucleotide identity, these V. cyclitrophicus strains have a differential capacity to colonize marine copepods. The introduced V. cyclitrophicus-A. tonsa model could be informative in future studies on Vibrio-copepod association.
Collapse
Affiliation(s)
- Ryan A Nuttall
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, USA
| | - Pia H Moisander
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, USA
| |
Collapse
|
6
|
Melaugh G, Martinez VA, Baker P, Hill PJ, Howell PL, Wozniak DJ, Allen RJ. Distinct types of multicellular aggregates in Pseudomonas aeruginosa liquid cultures. NPJ Biofilms Microbiomes 2023; 9:52. [PMID: 37507436 PMCID: PMC10382557 DOI: 10.1038/s41522-023-00412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Pseudomonas aeruginosa forms suspended multicellular aggregates when cultured in liquid media. These aggregates may be important in disease, and/or as a pathway to biofilm formation. The polysaccharide Psl and extracellular DNA (eDNA) have both been implicated in aggregation, but previous results depend strongly on the experimental conditions. Here we develop a quantitative microscopy-based method for assessing changes in the size distribution of suspended aggregates over time in growing cultures. For exponentially growing cultures of P. aeruginosa PAO1, we find that aggregation is mediated by cell-associated Psl, rather than by either eDNA or secreted Psl. These aggregates arise de novo within the culture via a growth process that involves both collisions and clonal growth, and Psl non-producing cells do not aggregate with producers. In contrast, we find that stationary phase (overnight) cultures contain a different type of multicellular aggregate, in which both eDNA and Psl mediate cohesion. Our findings suggest that the physical and biological properties of multicellular aggregates may be very different in early-stage vs late-stage bacterial cultures.
Collapse
Affiliation(s)
- Gavin Melaugh
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK.
- School of Engineering, University of Edinburgh, Edinburgh, EH9 3JL, UK.
| | - Vincent A Martinez
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Perrin Baker
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada
| | - Preston J Hill
- Departments of Microbial Infection and Immunity, Microbiology, Infectious Diseases Institute, Ohio State University, Columbus, OH, 43210, USA
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, ON, Canada
| | - Daniel J Wozniak
- Departments of Microbial Infection and Immunity, Microbiology, Infectious Diseases Institute, Ohio State University, Columbus, OH, 43210, USA
| | - Rosalind J Allen
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
- Theoretical Microbial Ecology, Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, 07745, Germany
| |
Collapse
|
7
|
Environmental Reservoirs of Pathogenic Vibrio spp. and Their Role in Disease: The List Keeps Expanding. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:99-126. [PMID: 36792873 DOI: 10.1007/978-3-031-22997-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio species are natural inhabitants of aquatic environments and have complex interactions with the environment that drive the evolution of traits contributing to their survival. These traits may also contribute to their ability to invade or colonize animal and human hosts. In this review, we attempt to summarize the relationships of Vibrio spp. with other organisms in the aquatic environment and discuss how these interactions could potentially impact colonization of animal and human hosts.
Collapse
|
8
|
Choi G, Choi SH. Complex regulatory networks of virulence factors in Vibrio vulnificus. Trends Microbiol 2022; 30:1205-1216. [PMID: 35753865 DOI: 10.1016/j.tim.2022.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 01/13/2023]
Abstract
The fulminating zoonotic pathogen Vibrio vulnificus is the causative agent of fatal septicemia in humans and fish, raising tremendous economic burdens in healthcare and the aquaculture industry. V. vulnificus exploits various virulence factors, including biofilm-related factors and exotoxins, for its persistence in nature and pathogenesis during infection. Substantial studies have found that the expression of virulence factors is coordinately regulated by numerous transcription factors that recognize the changing environments. Here, we summarize and discuss the recent discoveries of the physiological roles of virulence factors in V. vulnificus and their regulation by transcription factors in response to various environmental signals. This expanded understanding of molecular pathogenesis would provide novel clues to develop an effective antivirulence therapy against V. vulnificus infection.
Collapse
Affiliation(s)
- Garam Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
9
|
Islam MT, Liang K, Orata FD, Im MS, Alam M, Lee CC, Boucher YF. Vibrio tarriae sp. nov., a novel member of the Cholerae clade. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A number of bacteria with close resemblance to
Vibrio cholerae
have been isolated over the years by the Centres for Disease Control and Prevention (CDC), which could not be assigned a proper taxonomic designation on the basis of the results from preliminary identification methods. Nine such isolates have been found to share 16S rRNA gene identity exceeding 99 % with V. cholerae, yet DNA–DNA hybridization (60.4–62.1 %) and average nucleotide identity values (94.4–95.1 %) were below the species cut-off, indicating a potentially novel species. Phylogenetic analysis of core genomes places this group of isolates in a monophyletic clade, within the ‘Cholerae clade’, but distinct from any other species. Extensive phenotypic characterization reveals unique biochemical properties that distinguish this novel species from
V. cholerae
. Comparative genomic analysis reveals a unique set of siderophore genes, indicating that iron acquisition strategies could be vital for the divergence of the novel species from a common ancestor with
V. cholerae
. On the basis of the genetic, phylogenetic and phenotypic differences observed, we propose that these isolates represent a novel species of the genus
Vibrio
, for which the name Vibrio tarriae sp. nov. is proposed. Strain 2521-89 T (= DSM 112461=CCUG 75318), isolated from lake water, is the type strain.
Collapse
Affiliation(s)
- Mohammad Tarequl Islam
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh (ICDDR, B), Dhaka, Bangladesh
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Kevin Liang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Fabini D. Orata
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Monica S. Im
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Munirul Alam
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh (ICDDR, B), Dhaka, Bangladesh
| | - Christine C. Lee
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yann F. Boucher
- Saw Swee Hock School of Public Health and National University Hospital System, National University of Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore
| |
Collapse
|
10
|
Guo J, Deng X, Zhang Y, Song S, Zhao T, Zhu D, Cao S, Baryshnikov PI, Cao G, Blair HT, Chen C, Gu X, Liu L, Zhang H. The Flagellar Transcriptional Regulator FtcR Controls Brucella melitensis 16M Biofilm Formation via a betI-Mediated Pathway in Response to Hyperosmotic Stress. Int J Mol Sci 2022; 23:ijms23179905. [PMID: 36077302 PMCID: PMC9456535 DOI: 10.3390/ijms23179905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
The expression of flagellar proteins in Brucella species likely evolved through genetic transference from other microorganisms, and contributed to virulence, adaptability, and biofilm formation. Despite significant progress in defining the molecular mechanisms behind flagellar gene expression, the genetic program controlling biofilm formation remains unclear. The flagellar transcriptional factor (FtcR) is a master regulator of the flagellar system’s expression, and is critical for B. melitensis 16M’s flagellar biogenesis and virulence. Here, we demonstrate that FtcR mediates biofilm formation under hyperosmotic stress. Chromatin immunoprecipitation with next-generation sequencing for FtcR and RNA sequencing of ftcR-mutant and wild-type strains revealed a core set of FtcR target genes. We identified a novel FtcR-binding site in the promoter region of the osmotic-stress-response regulator gene betI, which is important for the survival of B. melitensis 16M under hyperosmotic stress. Strikingly, this site autoregulates its expression to benefit biofilm bacteria’s survival under hyperosmotic stress. Moreover, biofilm reduction in ftcR mutants is independent of the flagellar target gene fliF. Collectively, our study provides new insights into the extent and functionality of flagellar-related transcriptional networks in biofilm formation, and presents phenotypic and evolutionary adaptations that alter the regulation of B. melitensis 16M to confer increased tolerance to hyperosmotic stress.
Collapse
Affiliation(s)
- Jia Guo
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xingmei Deng
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Yu Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Shengnan Song
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Tianyi Zhao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Dexin Zhu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Shuzhu Cao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Peter Ivanovic Baryshnikov
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- College of Veterinary, Altai State Agricultural University, 656000 Barnaul, Russia
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China
| | - Hugh T. Blair
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- International Sheep Research Center, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Chuangfu Chen
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xinli Gu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Liangbo Liu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- Correspondence: (L.L.); (H.Z.); Tel.: +86-0993-2057971 (L.L. & H.Z.)
| | - Hui Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- Correspondence: (L.L.); (H.Z.); Tel.: +86-0993-2057971 (L.L. & H.Z.)
| |
Collapse
|
11
|
Guo J, Zhu J, Zhao T, Sun Z, Song S, Zhang Y, Zhu D, Cao S, Deng X, Chai Y, Sun Y, Maratbek S, Chen C, Liu L, Zhang H. Survival characteristics and transcriptome profiling reveal the adaptive response of the Brucella melitensis 16M biofilm to osmotic stress. Front Microbiol 2022; 13:968592. [PMID: 36060772 PMCID: PMC9428795 DOI: 10.3389/fmicb.2022.968592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Brucella can inhabit hostile environments, including osmotic stress. How Brucella responds collectively to osmotic stress is largely unexplored, particularly in spatially structured communities such as a biofilm. To gain insight into this growth mode, we set out to characterize the Brucella melitensis 16M biofilm, describe its phenotype, and carry out a comparative transcriptomic analysis between biofilms under osmotic stress and control conditions. We determined that the bacteria challenged with 1.5 M NaCl had a reduced ability to aggregate and form clumps and develop a biofilm; however, the salt stress promoted the release of the outer membrane vesicles from the biofilm. Together with the genotypical response to osmotic stress, we identified 279 differentially expressed genes in B. melitensis 16M grown under osmotic conditions compared with control conditions; 69 genes were upregulated and 210 downregulated. Under osmotic stress, the main changed genes of biofilm were predicted to be involved in flagellar assembly, cell envelope, translation, small RNA regulation, transport and binding proteins, and energy metabolism. In addition, the ABC transporter was enriched in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. We highlight 12 essential ABC transporter genes associated with a bacterial response to osmotic stress at the biofilm stage, including one specific locus, BME_RS12880, mediating betaine accumulation in biofilms to eliminate osmotic stress. The current study results can help researchers gain insights into B. melitensis 16M biofilm adaptation to osmotic stress and provide information for developing intervention strategies to control Brucella.
Collapse
Affiliation(s)
- Jia Guo
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jiale Zhu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Tianyi Zhao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zhihua Sun
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Shengnan Song
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yu Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Dexin Zhu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Shuzhu Cao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xingmei Deng
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yingjin Chai
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yongxue Sun
- Collaborative Innovation Center for Sheep Healthy Farming and Zoonotic Disease Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Suleimenov Maratbek
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- College of Veterinary, National Agricultural University of Kazakhstan, Nur-Sultan, Kazakhstan
| | - Chuangfu Chen
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Liangbo Liu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- *Correspondence: Liangbo Liu,
| | - Hui Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Hui Zhang,
| |
Collapse
|
12
|
Hossain M, Ibne Momen AM, Rahman A, Biswas J, Yasmin M, Nessa J, Ahsan CR. Draft-genome analysis provides insights into the virulence properties and genome plasticity of Vibrio fluvialis organisms isolated from shrimp farms and Turag river in Bangladesh. Arch Microbiol 2022; 204:527. [PMID: 35895240 DOI: 10.1007/s00203-022-03128-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/19/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
Vibrio fluvialis is an opportunistic waterborne and seafood-borne enteric pathogen capable of causing severe diarrhea leading to death. This pathogen is endemic to Bangladesh, a country which is a major producer of cultured shrimp and wild-caught prawns. In this study, we carried out whole-genome sequencing of three V. fluvialis organisms isolated from shrimp farm and river sediment showing strong pathogenic characteristics in vivo and in vitro and compared their genomes against other V. fluvialis and related pathogenic species to glean insights into their potential as pathogens. Numerous virulence-associated genes including hemolysins, cytolysins, three separate Type IV pili, Types II and VI secretion systems, biofilm, and the V. cholerae pathogenesis regulating gene, toxR, were identified. Moreover, we found strain S-10 to have the propensity to acquire antibiotic resistance genes through horizontal gene transfer. These findings indicate that shrimp farms and rivers could be potential sources of V. fluvialis organisms which are an infection threat of public health concern.
Collapse
Affiliation(s)
- Maqsud Hossain
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Abdul Mueed Ibne Momen
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Aura Rahman
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Juthi Biswas
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Mahmuda Yasmin
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Jamalun Nessa
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
13
|
Schwartzman JA, Ebrahimi A, Chadwick G, Sato Y, Roller BRK, Orphan VJ, Cordero OX. Bacterial growth in multicellular aggregates leads to the emergence of complex life cycles. Curr Biol 2022; 32:3059-3069.e7. [PMID: 35777363 PMCID: PMC9496226 DOI: 10.1016/j.cub.2022.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/03/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023]
Abstract
Facultative multicellular behaviors expand the metabolic capacity and physiological resilience of bacteria. Despite their ubiquity in nature, we lack an understanding of how these behaviors emerge from cellular-scale phenomena. Here, we show how the coupling between growth and resource gradient formation leads to the emergence of multicellular lifecycles in a marine bacterium. Under otherwise carbon-limited growth conditions, Vibrio splendidus 12B01 forms clonal multicellular groups to collectively harvest carbon from soluble polymers of the brown-algal polysaccharide alginate. As they grow, groups phenotypically differentiate into two spatially distinct sub-populations: a static "shell" surrounding a motile, carbon-storing "core." Differentiation of these two sub-populations coincides with the formation of a gradient in nitrogen-source availability within clusters. Additionally, we find that populations of cells containing a high proportion of carbon-storing individuals propagate and form new clusters more readily on alginate than do populations with few carbon-storing cells. Together, these results suggest that local metabolic activity and differential partitioning of resources leads to the emergence of reproductive cycles in a facultatively multicellular bacterium.
Collapse
Affiliation(s)
- Julia A Schwartzman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ali Ebrahimi
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grayson Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuya Sato
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Benjamin R K Roller
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Center for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, Vienna 1030, Austria; Department of Environmental Systems Sciences, ETH Zürich, Universitätsstrasse 16, Zürich 8092, Switzerland; Department of Environmental Microbiology, Eawag, Ueberlandstrasse 133, Dübendorf 8600, Switzerland
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Otto X Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
Pandey SS, Hendrich C, Andrade MO, Wang N. Candidatus Liberibacter: From Movement, Host Responses, to Symptom Development of Citrus Huanglongbing. PHYTOPATHOLOGY 2022; 112:55-68. [PMID: 34609203 DOI: 10.1094/phyto-08-21-0354-fi] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Candidatus Liberibacter spp. are fastidious α-proteobacteria that cause multiple diseases on plant hosts of economic importance, including the most devastating citrus disease: Huanglongbing (HLB). HLB was reported in Asia a century ago but has since spread worldwide. Understanding the pathogenesis of Candidatus Liberibacter spp. remains challenging as they are yet to be cultured in artificial media and infect the phloem, a sophisticated environment that is difficult to manipulate. Despite those challenges, tremendous progress has been made on Ca. Liberibacter pathosystems. Here, we first reviewed recent studies on genetic information of flagellar and type IV pili biosynthesis, their expression profiles, and movement of Ca. Liberibacter spp. inside the plant and insect hosts. Next, we reviewed the transcriptomic, proteomic, and metabolomic studies of susceptible and tolerant plant genotypes to Ca. Liberibacter spp. infection and how Ca. Liberibacter spp. adapt in plants. Analyses of the interactions between plants and Ca. Liberibacter spp. imply the involvement of immune response in the Ca. Liberibacter pathosystems. Lastly, we reviewed how Ca. Liberibacter spp. movement inside and interactions with plants lead to symptom development.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Connor Hendrich
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Maxuel O Andrade
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
15
|
Zhan L, Zhang J, Zhao B, Li X, Zhang X, Hu R, Elken EM, Kong L, Gao Y. Genomic and Transcriptomic Analysis of Bovine Pasteurella multocida Serogroup A Strain Reveals Insights Into Virulence Attenuation. Front Vet Sci 2021; 8:765495. [PMID: 34859092 PMCID: PMC8631534 DOI: 10.3389/fvets.2021.765495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Pasteurella multocida is one of the primary pathogens of bovine respiratory disease (BRD), and causes huge losses in the cattle industry. The Pm3 strain was a natural isolate, which is a strong form of pathogen and is sensitive to fluoroquinolones antibiotics. A high fluoroquinolone resistant strain, Pm64 (MIC = 64 μg/mL), was formed after continuous induction with subinhibitory concentration (1/2 MIC) of enrofloxacin, with the enhanced growth characteristics and large attenuation of pathogenicity in mice. This study reports the whole genome sequence and the transcription profile by RNA-Seq of strain Pm3/Pm64. The results showed an ineffective difference between the two strains at the genome level. However, 32 genes could be recognized in the gene islands (GIs) of Pm64, in which 24 genes were added and 8 genes were lost. Those genes are involved in DNA binding, trehalose metabolism, material transportation, capsule synthesis, prophage, amino acid metabolism, and other functions. In Pm3 strain, 558 up-regulated and 568 down-regulated genes were found compared to Pm64 strain, from which 20 virulence factor-related differentially expressed genes (DEGs) were screened. Mainly differentially transcribed genes were associated with capsular polysaccharide (CPS), lipopolysaccharide (LPS), lipooligosaccharide (LOS). Iron utilization, and biofilm composition. We speculated that the main mechanism of virulence attenuation after the formation of resistance of Pm64 comes from the change of the expression profile of these genes. This report elucidated the toxicity targets of P. multocida serogroup A which provide fundamental information toward the understanding of the pathogenic mechanism and to decreasing antimicrobial drugs resistance.
Collapse
Affiliation(s)
- Li Zhan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jiaqi Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Boyu Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xintian Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiqing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Renge Hu
- Marine College, Shandong University, Weihai, China
| | - Emad Mohammed Elken
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Lingcong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,The Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,The Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
16
|
Zhang J, Huang Y, Xu H, Ying S, Pan H, Yu W. Genomic and Phenotypic Characteristics for Vibrio vulnificus Infections. Infect Drug Resist 2021; 14:3721-3726. [PMID: 34548795 PMCID: PMC8449862 DOI: 10.2147/idr.s331468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022] Open
Abstract
Background Vibrio vulnificus (VV) is a causative agent of foodborne diseases with high mortality. The aim of this study was to investigate the genomic and phenotypic profiles of VV. Methods Six VV isolates were collected and conducted whole-genome sequencing. Biofilm formation and anti-complement killing test were performed to evaluate the pathogenicity. Subsequently, 157 publicly available genomes of VV isolates were selected to determine the evolutionary relationship. Results The resistant genes norM and tet34 were identified in six isolates. A total of 156 virulence genes were identified. However, there is no obvious difference between strains isolated from blood and puncture fluid. The tendency of growth for six isolates decreased with the lapse of time, while the biofilm formation increased. The genes tadC and flp related to Flp pili were found in isolate 25506 and 30896, resulting in more obvious biofilm formation. In addition, the survival rate of 19656 was less than 20% due to lack of one genomic island including virulence genes (impD-H, clpV-1) relevant to type VI secretion system (T6SS). Multi-locus sequence typing (MLST) revealed 95 different STs and 19 novel STs, indicating that the tendency of 163 isolates was sporadic. Further comparative genomics analysis clearly classified 163 isolates into three distinct evolutionary lineages. Conclusion VV infections were sporadic in humans and the environment. Virulence genes impD-H and clpV-1 related to T6SS were associated with pathogenicity phenotype of VV.
Collapse
Affiliation(s)
- Jiajie Zhang
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Yicheng Huang
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Shuaibing Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Hongying Pan
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
17
|
Nwoko ESQA, Okeke IN. Bacteria autoaggregation: how and why bacteria stick together. Biochem Soc Trans 2021; 49:1147-1157. [PMID: 34110370 PMCID: PMC8286834 DOI: 10.1042/bst20200718] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/02/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022]
Abstract
Autoaggregation, adherence between identical bacterial cells, is important for colonization, kin and kind recognition, and survival of bacteria. It is directly mediated by specific interactions between proteins or organelles on the surfaces of interacting cells or indirectly by the presence of secreted macromolecules such as eDNA and exopolysaccharides. Some autoaggregation effectors are self-associating and present interesting paradigms for protein interaction. Autoaggregation can be beneficial or deleterious at specific times and niches. It is, therefore, typically regulated through transcriptional or post-transcriptional mechanisms or epigenetically by phase variation. Autoaggregation can contribute to bacterial adherence, biofilm formation or other higher-level functions. However, autoaggregation is only required for these phenotypes in some bacteria. Thus, autoaggregation should be detected, studied and measured independently using both qualitative and quantitative in vitro and ex vivo methods. If better understood, autoaggregation holds the potential for the discovery of new therapeutic targets that could be cost-effectively exploited.
Collapse
Affiliation(s)
- El-shama Q. A. Nwoko
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Iruka N. Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
18
|
Hwang SH, Im H, Choi SH. A Master Regulator BrpR Coordinates the Expression of Multiple Loci for Robust Biofilm and Rugose Colony Development in Vibrio vulnificus. Front Microbiol 2021; 12:679854. [PMID: 34248894 PMCID: PMC8268162 DOI: 10.3389/fmicb.2021.679854] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/31/2021] [Indexed: 01/22/2023] Open
Abstract
Vibrio vulnificus, a fulminating human pathogen, forms biofilms to enhance its survival in nature and pathogenicity during host infection. BrpR is the transcriptional regulator governing robust biofilm and rugose colony formation in V. vulnificus, but little is known about both the direct regulon of BrpR and the role of BrpR in regulation of downstream genes. In this study, transcript analyses revealed that BrpR is highly expressed and thus strongly regulates the downstream gene in the stationary and elevated cyclic di-GMP conditions. Transcriptome analyses discovered the genes, whose expression is affected by BrpR but not by the downstream regulator BrpT. Two unnamed adjacent genes (VV2_1626-1627) were newly identified among the BrpR regulon and designated as brpL and brpG in this study. Genetic analyses showed that the deletion of brpL and brpG impairs the biofilm and rugose colony formation, indicating that brpLG plays a crucial role in the development of BrpR-regulated biofilm phenotypes. Comparison of the colony morphology and exopolysaccharide (EPS) production suggested that although the genetic location and regulation of brpLG are distinct from the brp locus, brpABCDFHIJK (VV2_1574-1582), brpLG is also responsible for the robust EPS production together with the brp locus genes. Electrophoretic mobility shift assays and DNase I protection assays demonstrated that BrpR regulates the expression of downstream genes in distinct loci by directly binding to their upstream regions, revealing a palindromic binding sequence. Altogether, this study suggests that BrpR is a master regulator coordinating the expression of multiple loci responsible for EPS production and thus, contributing to the robust biofilm and rugose colony formation of V. vulnificus.
Collapse
Affiliation(s)
- Seung-Ho Hwang
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Hanhyeok Im
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
19
|
Vibrio cholerae Type VI Activity Alters Motility Behavior in Mucin. J Bacteriol 2020; 202:JB.00261-20. [PMID: 32868403 DOI: 10.1128/jb.00261-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 01/16/2023] Open
Abstract
Motility is required for many bacterial pathogens to reach and colonize target sites. Vibrio cholerae traverses a thick mucus barrier coating the small intestine to reach the underlying epithelium. We screened a transposon library in motility medium containing mucin to identify factors that influence mucus transit. Lesions in structural genes of the type VI secretion system (T6SS) were among those recovered. Two-dimensional (2D) and 3D single-cell tracking was used to compare the motility behaviors of wild-type cells and a mutant that collectively lacked three essential T6SS structural genes (T6SS-). In the absence of mucin, wild-type and T6SS- cells exhibited similar speeds and run-reverse-flick (RRF) swimming patterns, in which forward-moving cells briefly backtrack before stochastically reorienting (flicking) in a new direction upon resuming forward movement. We show that mucin induced T6SS expression and activity in wild-type bacteria but significantly decreased their swimming speed and flicking, yielding curvilinear or near-surface circular traces for many cells. Conversely, mucin slowed T6SS- cells to a lesser extent, and many continued to flick and produce RRF-like traces. ΔcheY3 cells, which exclusively swim in the forward direction and thus cannot flick, also produced curvilinear traces with or without mucin present and, on occasion, near-surface circular traces in the presence of mucin. The dependence of flicking on swimming speed suggested that mucin-induced T6SS activity further decreased V. cholerae motility and thereby reduced flicking probability during reverse-to-forward transitions. We propose that this encourages cells to continue on their current trajectory rather than reorienting, which may benefit those tracking toward the epithelial surface.IMPORTANCE V. cholerae deploys an arsenal of virulence factors as it attempts to traverse a protective mucus layer and reach the epithelial surface of the distal small intestine. The T6SS used to cull bacterial competition during infection is induced by mucus. We show that this activity may serve an additional purpose by further decreasing motility in the presence of mucin, thereby reducing the probability of speed-dependent, near-perpendicular directional changes. We posit that this encourages cells to maintain course rather than change direction, which may aid those attempting to reach and colonize the epithelial surface.
Collapse
|
20
|
Blanco-Romero E, Garrido-Sanz D, Rivilla R, Redondo-Nieto M, Martín M. In Silico Characterization and Phylogenetic Distribution of Extracellular Matrix Components in the Model Rhizobacteria Pseudomonas fluorescens F113 and Other Pseudomonads. Microorganisms 2020; 8:E1740. [PMID: 33171989 PMCID: PMC7716237 DOI: 10.3390/microorganisms8111740] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/23/2022] Open
Abstract
Biofilms are complex structures that are crucial during host-bacteria interaction and colonization. Bacteria within biofilms are surrounded by an extracellular matrix (ECM) typically composed of proteins, polysaccharides, lipids, and DNA. Pseudomonads contain a variety of ECM components, some of which have been extensively characterized. However, neither the ECM composition of plant-associated pseudomonads nor their phylogenetic distribution within the genus has been so thoroughly studied. In this work, we use in silico methods to describe the ECM composition of Pseudomonas fluorescens F113, a plant growth-promoting rhizobacteria and model for rhizosphere colonization. These components include the polysaccharides alginate, poly-N-acetyl-glucosamine (PNAG) and levan; the adhesins LapA, MapA and PsmE; and the functional amyloids in Pseudomonas. Interestingly, we identified novel components: the Pseudomonas acidic polysaccharide (Pap), whose presence is limited within the genus; and a novel type of Flp/Tad pilus, partially different from the one described in P. aeruginosa. Furthermore, we explored the phylogenetic distribution of the most relevant ECM components in nearly 600 complete Pseudomonas genomes. Our analyses show that Pseudomonas populations contain a diverse set of gene/gene clusters potentially involved in the formation of their ECMs, showing certain commensal versus pathogen lifestyle specialization.
Collapse
Affiliation(s)
| | | | | | | | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain; (E.B.-R.); (D.G.-S.); (R.R.); (M.R.-N.)
| |
Collapse
|
21
|
Khan N, Martínez-Hidalgo P, Humm EA, Maymon M, Kaplan D, Hirsch AM. Inoculation With a Microbe Isolated From the Negev Desert Enhances Corn Growth. Front Microbiol 2020; 11:1149. [PMID: 32636811 PMCID: PMC7316896 DOI: 10.3389/fmicb.2020.01149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/06/2020] [Indexed: 11/13/2022] Open
Abstract
Corn (Zea mays L.) is not only an important food source, but also has numerous uses, including for biofuels, fillers for cosmetics, glues, and so on. The amount of corn grown in the U.S. has significantly increased since the 1960's and with it, the demand for synthetic fertilizers and pesticides/fungicides to enhance its production. However, the downside of the continuous use of these products, especially N and P fertilizers, has been an increase in N2O emissions and other greenhouse gases into the atmosphere as well as run-off into waterways that fuel pollution and algal blooms. These approaches to agriculture, especially if exacerbated by climate change, will result in decreased soil health as well as human health. We searched for microbes from arid, native environments that are not being used for agriculture because we reasoned that indigenous microbes from such soils could promote plant growth and help restore degraded soils. Employing cultivation-dependent methods to isolate bacteria from the Negev Desert in Israel, we tested the effects of several microbial isolates on corn in both greenhouse and small field studies. One strain, Dietzia cinnamea 55, originally identified as Planomicrobium chinense, significantly enhanced corn growth over the uninoculated control in both greenhouse and outside garden experiments. We sequenced and analyzed the genome of this bacterial species to elucidate some of the mechanisms whereby D. cinnamea 55 promoted plant growth. In addition, to ensure the biosafety of this previously unknown plant growth promoting bacterial (PGPB) strain as a potential bioinoculant, we tested the survival and growth of Caenorhabditis elegans and Galleria mellonella (two animal virulence tests) as well as plants in response to D. cinnamea 55 inoculation. We also looked for genes for potential virulence determinants as well as for growth promotion.
Collapse
Affiliation(s)
- Noor Khan
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Pilar Martínez-Hidalgo
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biology, Geology, Physics and Inorganic Chemistry, Universidad Rey Juan Carlos, Madrid, Spain
| | - Ethan A Humm
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Maskit Maymon
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Drora Kaplan
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Ann M Hirsch
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
22
|
Hernández-Cabanyero C, Sanjuán E, Fouz B, Pajuelo D, Vallejos-Vidal E, Reyes-López FE, Amaro C. The Effect of the Environmental Temperature on the Adaptation to Host in the Zoonotic Pathogen Vibrio vulnificus. Front Microbiol 2020; 11:489. [PMID: 32296402 PMCID: PMC7137831 DOI: 10.3389/fmicb.2020.00489] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
Vibrio vulnificus is a zoonotic pathogen that lives in temperate, tropical and subtropical aquatic ecosystems whose geographical distribution is expanding due to global warming. The species is genetically variable and only the strains that belong to the zoonotic clonal-complex can cause vibriosis in both humans and fish (being its main host the eel). Interestingly, the severity of the vibriosis in the eel and the human depends largely on the water temperature (highly virulent at 28°C, avirulent at 20°C or below) and on the iron content in the blood, respectively. The objective of this work was to unravel the role of temperature in the adaptation to the host through a transcriptomic and phenotypic approach. To this end, we obtained the transcriptome of a zoonotic strain grown in a minimum medium (CM9) at 20, 25, 28, and 37°C, and confirmed the transcriptomic results by RT-qPCR and phenotypic tests. In addition, we compared the temperature stimulon with those previously obtained for iron and serum (from eel and human, respectively). Our results suggest that warm temperatures activate adaptive traits that would prepare the bacteria for host colonization (metabolism, motility, chemotaxis, and the protease activity) and fish septicemia (iron-uptake from transferrin and production of O-antigen of high molecular weight) in a generalized manner, while environmental iron controls the expression of a host-adapted virulent phenotype (toxins and the production of a protective envelope). Finally, our results confirm that beyond the effect of temperature on the V. vulnificus distribution in the environment, it also has an effect on the infectious capability of this pathogen that must be taken into account to predict the real risk of V. vulnificus infection caused by global warming.
Collapse
Affiliation(s)
- Carla Hernández-Cabanyero
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Eva Sanjuán
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Belén Fouz
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - David Pajuelo
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Eva Vallejos-Vidal
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe E. Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Amaro
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| |
Collapse
|
23
|
Hwang SH, Park JH, Lee B, Choi SH. A Regulatory Network Controls cabABC Expression Leading to Biofilm and Rugose Colony Development in Vibrio vulnificus. Front Microbiol 2020; 10:3063. [PMID: 32010109 PMCID: PMC6978666 DOI: 10.3389/fmicb.2019.03063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022] Open
Abstract
Biofilms provide bacteria with protection from environmental stresses and host immune defenses. The pathogenic marine bacterium Vibrio vulnificus forms biofilms and colonizes environmental niches such as oysters. The cabABC operon encodes an extracellular matrix protein CabA and the corresponding type I secretion system, which are essential for biofilm and rugose colony development of V. vulnificus. In this study, molecular biological analyses revealed the roles of three transcriptional regulators BrpR, BrpT, and BrpS in the regulatory pathway for the cabABC operon. BrpR induces brpT and BrpT in turn activates the cabABC operon in a sequential cascade, contributing to development of robust biofilm structures. BrpT also activates brpS, but BrpS represses brpT, constituting a negative feedback loop that stabilizes brpT expression. BrpT and BrpS directly bind to specific sequences upstream of cabA, and they constitute a feedforward loop in which BrpT induces brpS and together with BrpS activates cabABC, leading to precise regulation of cabABC expression. Accordingly, BrpS as well as BrpT plays a crucial role in complete development of rugose colonies. This elaborate network of three transcriptional regulators BrpR, BrpT, and BrpS thus tightly controls cabABC regulation, and contributes to successful development of robust biofilms and rugose colonies in V. vulnificus.
Collapse
Affiliation(s)
- Seung-Ho Hwang
- National Research Laboratory of Molecular Microbiology and Toxicology, Center for Food Safety and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jin Hwan Park
- National Research Laboratory of Molecular Microbiology and Toxicology, Center for Food Safety and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Byungho Lee
- National Research Laboratory of Molecular Microbiology and Toxicology, Center for Food Safety and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Center for Food Safety and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| |
Collapse
|
24
|
Pu M, Storms E, Chodur DM, Rowe-Magnus DA. Calcium-dependent site-switching regulates expression of the atypical iam pilus locus in Vibrio vulnificus. Environ Microbiol 2019; 22:4167-4182. [PMID: 31355512 DOI: 10.1111/1462-2920.14763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/25/2019] [Indexed: 12/21/2022]
Abstract
The opportunistic human pathogen Vibrio vulnificus inhabits warm coastal waters and asymptomatically colonizes seafood, most commonly oysters. We previously characterized an isolate that exhibited greater biofilm formation, aggregation and oyster colonization than its parent. This was due, in part, to the production of a Type IV Tad pilus (Iam). However, the locus lacked key processing and regulatory genes required for pilus production. Here, we identify a pilin peptidase iamP, and LysR-type regulator (LRTR) iamR, that fulfil these roles and show that environmental calcium, which oysters enrich for shell repair and growth, regulates iam expression. The architecture of the iam locus differs from the classical LRTR paradigm and requires an additional promoter to be integrated into the regulatory network. IamR specifically recognized the iamR promoter (PiamR ) and the intergenic iamP-iamA region (PiamP-A ). PiamR exhibited classical negative auto-regulation but, strikingly, IamR inversely regulated the divergent iamP and iamA promoters in a calcium-dependent manner. Moreover, expression of the c-di-GMP and calcium-regulated, biofilm-promoting brp exopolysaccharide was IamA-dependent. These results support a scenario in which the calcium-enriched oyster environment triggers IamP-mediated processing of prepilin amassed in the periplasm for rapid pilin elaboration and subsequent BRP production to promote colonization.
Collapse
Affiliation(s)
- Meng Pu
- Department of Biology, Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Emily Storms
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Dan M Chodur
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Dean A Rowe-Magnus
- Department of Biology, Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA.,Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| |
Collapse
|
25
|
Duong-Nu TM, Jeong K, Hong SH, Puth S, Kim SY, Tan W, Lee KH, Lee SE, Rhee JH. A stealth adhesion factor contributes to Vibrio vulnificus pathogenicity: Flp pili play roles in host invasion, survival in the blood stream and resistance to complement activation. PLoS Pathog 2019; 15:e1007767. [PMID: 31437245 PMCID: PMC6748444 DOI: 10.1371/journal.ppat.1007767] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/17/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
The tad operons encode the machinery required for adhesive Flp (fimbrial low-molecular-weight protein) pili biogenesis. Vibrio vulnificus, an opportunistic pathogen, harbors three distinct tad loci. Among them, only tad1 locus was highly upregulated in in vivo growing bacteria compared to in vitro culture condition. To understand the pathogenic roles of the three tad loci during infection, we constructed single, double and triple tad loci deletion mutants. Interestingly, only the Δtad123 triple mutant cells exhibited significantly decreased lethality in mice. Ultrastructural observations revealed short, thin filamentous projections disappeared on the Δtad123 mutant cells. Since the pilin was paradoxically non-immunogenic, a V5 tag was fused to Flp to visualize the pilin protein by using immunogold EM and immunofluorescence microscopy. The Δtad123 mutant cells showed attenuated host cell adhesion, decreased biofilm formation, delayed RtxA1 exotoxin secretion and subsequently impaired translocation across the intestinal epithelium compared to wild type, which could be partially complemented with each wild type operon. The Δtad123 mutant was susceptible to complement-mediated bacteriolysis, predominantly via the alternative pathway, suggesting stealth hiding role of the Tad pili. Complement depletion by treating with anti-C5 antibody rescued the viable count of Δtad123 in infected mouse bloodstream to the level comparable to wild type strain. Taken together, all three tad loci cooperate to confer successful invasion of V. vulnificus into deeper tissue and evasion from host defense mechanisms, ultimately resulting in septicemia.
Collapse
Affiliation(s)
- Tra-My Duong-Nu
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
| | - Kwangjoon Jeong
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
| | - Seol Hee Hong
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Sao Puth
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Soo Young Kim
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
| | - Wenzhi Tan
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
| | - Kwang Ho Lee
- Center for Research Facilities, Chonnam National University, Gwangju, Republic of Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Joon Haeng Rhee
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
26
|
Dias GM, de Sousa Pires A, Grilo VS, Castro MR, de Figueiredo Vilela L, Neves BC. Comparative genomics of Paraburkholderia kururiensis and its potential in bioremediation, biofertilization, and biocontrol of plant pathogens. Microbiologyopen 2019; 8:e00801. [PMID: 30811107 PMCID: PMC6692535 DOI: 10.1002/mbo3.801] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/19/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Burkholderia harbors versatile Gram-negative species and is β-Proteobacteria. Recently, it was proposed to split the genus in two main branches: one of animal and plant pathogens and another, Paraburkholderia, harboring environmental and plant-beneficial species. Currently, Paraburkholderia comprises more than 70 species with ability to occupy very diverse environmental niches. Herein, we sequenced and analyzed the genome of Paraburkholderia kururiensis type strain KP23T , and compared to P. kururiensis M130, isolated in Brazil, and P. kururiensis susbp. thiooxydans, from Korea. This study focused on the gene content of the three genomes with special emphasis on their potential of plant-association, biocontrol, and bioremediation. The comparative analyses revealed several genes related to plant benefits, including biosynthesis of IAA, ACC deaminase, multiple efflux pumps, dioxygenases, and degradation of aromatic compounds. Importantly, a range of genes for protein secretion systems (type III, IV, V, and VI) were characterized, potentially involved in P. kururiensis well documented ability to establish endophytic association with plants. These findings shed light onto bacteria-plant interaction mechanisms at molecular level, adding novel information that supports their potential application in bioremediation, biofertilization, and biocontrol of plant pathogens. P. kururiensis emerges as a promising model to investigate adaptation mechanisms in different ecological niches.
Collapse
Affiliation(s)
- Graciela M. Dias
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Araceli de Sousa Pires
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Vinicius S. Grilo
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Michele R. Castro
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
- Department of BiologyFederal Institute of Rio de JaneiroRio de JaneiroBrazil
| | | | - Bianca C. Neves
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| |
Collapse
|
27
|
Khider M, Hansen H, Hjerde E, Johansen JA, Willassen NP. Exploring the transcriptome of luxI- and ΔainS mutants and the impact of N-3-oxo-hexanoyl-L- and N-3-hydroxy-decanoyl-L-homoserine lactones on biofilm formation in Aliivibrio salmonicida. PeerJ 2019; 7:e6845. [PMID: 31106062 PMCID: PMC6499059 DOI: 10.7717/peerj.6845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/18/2019] [Indexed: 01/12/2023] Open
Abstract
Background Bacterial communication through quorum sensing (QS) systems has been reported to be important in coordinating several traits such as biofilm formation. In Aliivibrio salmonicida two QS systems the LuxI/R and AinS/R, have been shown to be responsible for the production of eight acyl-homoserine lactones (AHLs) in a cell density dependent manner. We have previously demonstrated that inactivation of LitR, the master regulator of the QS system resulted in biofilm formation, similar to the biofilm formed by the AHL deficient mutant ΔainSluxI−. In this study, we aimed to investigate the global gene expression patterns of luxI and ainS autoinducer synthases mutants using transcriptomic profiling. In addition, we examined the influence of the different AHLs on biofilm formation. Results The transcriptome profiling of ΔainS and luxI− mutants allowed us to identify genes and gene clusters regulated by QS in A. salmonicida. Relative to the wild type, the ΔainS and luxI− mutants revealed 29 and 500 differentially expressed genes (DEGs), respectively. The functional analysis demonstrated that the most pronounced DEGs were involved in bacterial motility and chemotaxis, exopolysaccharide production, and surface structures related to adhesion. Inactivation of luxI, but not ainS genes resulted in wrinkled colony morphology. While inactivation of both genes (ΔainSluxI−) resulted in strains able to form wrinkled colonies and mushroom structured biofilm. Moreover, when the ΔainSluxI− mutant was supplemented with N-3-oxo-hexanoyl-L-homoserine lactone (3OC6-HSL) or N-3-hydroxy-decanoyl-L-homoserine lactone (3OHC10-HSL), the biofilm did not develop. We also show that LuxI is needed for motility and for repression of EPS production, where repression of EPS is likely operated through the RpoQ-sigma factor. Conclusion These findings imply that the LuxI and AinS autoinducer synthases play a critical role in the regulation of biofilm formation, EPS production, and motility.
Collapse
Affiliation(s)
- Miriam Khider
- Norwegian Structural Biology Centre, Department of Chemistry, Faculty of Science and Technology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Hilde Hansen
- Norwegian Structural Biology Centre, Department of Chemistry, Faculty of Science and Technology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Erik Hjerde
- Norwegian Structural Biology Centre, Department of Chemistry, Faculty of Science and Technology, UiT-The Arctic University of Norway, Tromsø, Norway.,Centre for Bioinformatics, Department of Chemistry, Faculty of Science and Technology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Jostein A Johansen
- Norwegian Structural Biology Centre, Department of Chemistry, Faculty of Science and Technology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Nils Peder Willassen
- Norwegian Structural Biology Centre, Department of Chemistry, Faculty of Science and Technology, UiT-The Arctic University of Norway, Tromsø, Norway.,Centre for Bioinformatics, Department of Chemistry, Faculty of Science and Technology, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
28
|
Khider M, Hjerde E, Hansen H, Willassen NP. Differential expression profiling of ΔlitR and ΔrpoQ mutants reveals insight into QS regulation of motility, adhesion and biofilm formation in Aliivibrio salmonicida. BMC Genomics 2019; 20:220. [PMID: 30876404 PMCID: PMC6420764 DOI: 10.1186/s12864-019-5594-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The coordination of group behaviors in bacteria is achieved by a cell-cell signaling process called quorum sensing (QS). QS is an intercellular communication system, which synchronously controls expression of a vast range of genes in response to changes in cell density and is mediated by autoinducers that act as extracellular signals. Aliivibrio salmonicida, the causative agent of cold-water vibrosis in marine aquacultures, uses QS to regulate several activities such as motility, biofilm formation, adhesion and rugose colony morphology. However, little is known about either genes or detailed mechanisms involved in the regulation of these phenotypes. RESULTS Differential expression profiling allowed us to define the genes involved in controlling phenotypes related to QS in A. salmonicida LFI1238. RNA sequencing data revealed that the number of expressed genes in A. salmonicida, ΔlitR and ΔrpoQ mutants were significantly altered due to changes in cell density. These included genes that were distributed among the 21 functional groups, mainly presented in cell envelope, cell processes, extrachromosomal/foreign DNA and transport-binding proteins functional groups. The comparative transcriptome of A. salmonicida wild-type at high cell density relative to low cell density revealed 1013 genes to be either up- or downregulated. Thirty-six downregulated genes were gene clusters encoding biosynthesis of the flagellar and chemotaxis genes. Additionally we identified significant expression for genes involved in acyl homoserine lactone (AHL) synthesis, adhesion and early colonization. The transcriptome profile of ΔrpoQ compared to the wild-type revealed 384 differensially expressed genes (DEGs) that allowed us to assign genes involved in regulating motility, adhesion and colony rugosity. Indicating the importance of RpoQ in controlling several QS related activities. Furthermore, the comparison of the transcriptome profiles of ΔlitR and ΔrpoQ mutants, exposed numerous overlapping DEGs that were essential for motility, exopolysaccharide production via syp operon and genes associated with tad operon. CONCLUSION Our findings indicate previously unexplained functional roles for LitR and RpoQ in regulation of different phenotypes related to QS. Our transcriptome data provide a better understanding of the regulation cascade of motility, wrinkling colony morphology and biofilm formation and will offer a major source for further research and analysis on this important field.
Collapse
Affiliation(s)
- Miriam Khider
- Norwegian Structural Biology Centre, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway.
| | - Erik Hjerde
- Norwegian Structural Biology Centre, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway.,Centre for Bioinformatics, Department of Chemistry, Faculty of Science and Technology, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Hilde Hansen
- Norwegian Structural Biology Centre, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Nils Peder Willassen
- Norwegian Structural Biology Centre, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway. .,Centre for Bioinformatics, Department of Chemistry, Faculty of Science and Technology, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway.
| |
Collapse
|
29
|
Genomic blueprints of sponge-prokaryote symbiosis are shared by low abundant and cultivatable Alphaproteobacteria. Sci Rep 2019; 9:1999. [PMID: 30760820 PMCID: PMC6374434 DOI: 10.1038/s41598-019-38737-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/09/2019] [Indexed: 02/07/2023] Open
Abstract
Marine sponges are early-branching, filter-feeding metazoans that usually host complex microbiomes comprised of several, currently uncultivatable symbiotic lineages. Here, we use a low-carbon based strategy to cultivate low-abundance bacteria from Spongia officinalis. This approach favoured the growth of Alphaproteobacteria strains in the genera Anderseniella, Erythrobacter, Labrenzia, Loktanella, Ruegeria, Sphingorhabdus, Tateyamaria and Pseudovibrio, besides two likely new genera in the Rhodobacteraceae family. Mapping of complete genomes against the metagenomes of S. officinalis, seawater, and sediments confirmed the rare status of all the above-mentioned lineages in the marine realm. Remarkably, this community of low-abundance Alphaproteobacteria possesses several genomic attributes common to dominant, presently uncultivatable sponge symbionts, potentially contributing to host fitness through detoxification mechanisms (e.g. heavy metal and metabolic waste removal, degradation of aromatic compounds), provision of essential vitamins (e.g. B6 and B12 biosynthesis), nutritional exchange (especially regarding the processing of organic sulphur and nitrogen) and chemical defence (e.g. polyketide and terpenoid biosynthesis). None of the studied taxa displayed signs of genome reduction, indicative of obligate mutualism. Instead, versatile nutrient metabolisms along with motility, chemotaxis, and tight-adherence capacities - also known to confer environmental hardiness – were inferred, underlying dual host-associated and free-living life strategies adopted by these diverse sponge-associated Alphaproteobacteria.
Collapse
|
30
|
Kado T, Kashimoto T, Yamazaki K, Matsuda K, Ueno S. Accurate prediction of anti-phagocytic activity of Vibrio vulnificus by measurement of bacterial adherence to hydrocarbonsPrediction of Anti-Phagocytic Activity. APMIS 2018; 127:80-86. [PMID: 30575139 DOI: 10.1111/apm.12910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022]
Abstract
Vibrio vulnificus can cause necrotizing soft tissue infection via exposure through an open wound, and the incubation period in cases of wound infection is only about 16 h. These facts strongly suggest that mechanisms to evade innate immune cell phagocytosis are essential for its pathogenicity. Hydrophobic interaction is one of the binding mechanisms between bacteria and phagocytes. Several factors that maintain cell surface hydrophobicity (CSH) can contribute to anti-phagocytic activity. In this study, we tried to identify V. vulnificus genes involved in maintaining the CSH, in order to elucidate mechanisms of anti-phagocytic activity. We obtained 143 mutants that had lost their ability to proliferate in the host, using signature-tagged transposon basis mutagenesis (STM). The CSH of these mutants was measured by the bacterial adherence to hydrocarbons (BATH) assay. The CSH of only four mutants differed significantly from that of wild type (WT). Of these four mutants, degS mutant (degS::Tn) showed lesser anti-phagocytic activity than WT in the opsonophagocytosis assay, even though degS::Tn showed opaque-type colonies. Furthermore, survival times of mice subcutaneously inoculated with degS::Tn were prolonged. These facts indicated that the BATH assay is a more suitable method of analyzing the anti-phagocytic activity of V. vulnificus than the comparison of colony morphology.
Collapse
Affiliation(s)
- Takehiro Kado
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Takashige Kashimoto
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Kohei Yamazaki
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Kaho Matsuda
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Shunji Ueno
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| |
Collapse
|
31
|
Environmental Calcium Initiates a Feed-Forward Signaling Circuit That Regulates Biofilm Formation and Rugosity in Vibrio vulnificus. mBio 2018; 9:mBio.01377-18. [PMID: 30154262 PMCID: PMC6113621 DOI: 10.1128/mbio.01377-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The second messenger c-di-GMP is a key regulator of bacterial physiology. The V. vulnificus genome encodes nearly 100 proteins predicted to make, break, and bind c-di-GMP. However, relatively little is known regarding the environmental signals that regulate c-di-GMP levels and biofilm formation in V. vulnificus. Here, we identify calcium as a primary environmental signal that specifically increases intracellular c-di-GMP concentrations, which in turn triggers brp-mediated biofilm formation. We show that PAPS, a metabolic intermediate of the sulfate assimilation pathway, acts as a second messenger linking environmental calcium and sulfur source availability to the production of another intracellular second messenger (c-di-GMP) to regulate biofilm and rugose colony formation, developmental pathways that are associated with environmental persistence and efficient bivalve colonization by this potent human pathogen. Poor clinical outcomes (disfigurement, amputation, and death) and significant economic losses in the aquaculture industry can be attributed to the potent opportunistic human pathogen Vibrio vulnificus. V. vulnificus, as well as the bivalves (oysters) it naturally colonizes, is indigenous to estuaries and human-inhabited coastal regions and must endure constantly changing environmental conditions as freshwater and seawater enter, mix, and exit the water column. Elevated cellular c-di-GMP levels trigger biofilm formation, but relatively little is known regarding the environmental signals that initiate this response. Here, we show that calcium is a primary environmental signal that specifically increases intracellular c-di-GMP concentrations, which in turn triggers expression of the brp extracellular polysaccharide that enhances biofilm formation. A transposon screen for the loss of calcium-induced PbrpA expression revealed CysD, an enzyme in the sulfate assimilation pathway. Targeted disruption of the pathway indicated that the production of a specific metabolic intermediate, 3′-phosphoadenosine 5′-phosphosulfate (PAPS), was required for calcium-induced PbrpA expression and that PAPS was separately required for development of the physiologically distinct rugose phenotype. Thus, PAPS behaves as a second messenger in V. vulnificus. Moreover, c-di-GMP and BrpT (the activator of brp expression) acted in concert to bias expression of the sulfate assimilation pathway toward PAPS and c-di-GMP accumulation, establishing a feed-forward regulatory loop to boost brp expression. Thus, this signaling network links extracellular calcium and sulfur availability to the intracellular second messengers PAPS and c-di-GMP in the regulation of V. vulnificus biofilm formation and rugosity, survival phenotypes underpinning its evolution as a resilient environmental organism.
Collapse
|
32
|
Complex Control of a Genomic Island Governing Biofilm and Rugose Colony Development in Vibrio vulnificus. J Bacteriol 2018; 200:JB.00190-18. [PMID: 29760209 DOI: 10.1128/jb.00190-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/08/2018] [Indexed: 01/08/2023] Open
Abstract
Vibrio vulnificus is a potent opportunistic human pathogen that contaminates the human food chain by asymptomatically colonizing seafood. The expression of the 9-gene brp exopolysaccharide locus mediates surface adherence and is controlled by the secondary signaling molecule c-di-GMP and the regulator BrpT. Here, we show that c-di-GMP and BrpT also regulate the expression of an adjacent 5-gene cluster that includes the cabABC operon, brpT, and another VpsT-like transcriptional regulator gene, brpS The expression of the 14 genes spanning the region increased with elevated intracellular c-di-GMP levels in a BrpT-dependent manner, save for brpS, which was positively regulated by c-di-GMP and repressed by BrpT. BrpS repressed brpA expression and was required for rugose colony development. The mutation of its consensus WFSA c-di-GMP binding motif blocked these activities, suggesting that BrpS function is dependent on binding c-di-GMP. BrpT specifically bound the cabA, brpT, and brpS promoters, and binding sites homologous to the Vibrio cholerae VpsT binding site were identified upstream of brpA and brpT Transcription was initiated distal to brpA, and a conserved RfaH-recruiting ops element and a potential Rho utilization (rut) terminator site were identified within the 100-bp leader region, suggesting the integration of early termination and operon polarity suppression into the regulation of brp transcription. The GC content and codon usage of the 16-kb brp region was 5.5% lower relative to that of the flanking DNA, suggesting its recent assimilation via horizontal transfer. Thus, architecturally, the brp region can be considered an acquired biofilm and rugosity island that is subject to complex regulation.IMPORTANCE Biofilm and rugose colony formation are developmental programs that underpin the evolution of Vibrio vulnificus as a potent opportunistic human pathogen and successful environmental organism. A better understanding of the regulatory pathways governing theses phenotypes promotes the development and implementation of strategies to mitigate food chain contamination by this pathogen. c-di-GMP signaling is central to both pathways. We show that the molecule orchestrates the expression of 14 genes clustered in a 16-kb segment of the genome that governs biofilm and rugose colony development. This region exhibits the hallmarks of horizontal transfer, suggesting complex regulatory control of a recently assimilated genetic island governing the colonization response of V. vulnificus.
Collapse
|