1
|
Wijesinghe GK, Nobbs AH, Bandara HMHN. The diffusible signaling factor family in microbial signaling: a current perspective. Crit Rev Microbiol 2025:1-16. [PMID: 39868787 DOI: 10.1080/1040841x.2025.2457670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025]
Abstract
This review discusses the chemical properties, synthesis and detection, and biological functions of a molecular group of cis-2-unsaturated fatty acids, containing fatty acid carbon chains of various lengths and cis double-bond configurations, known as the diffusible signaling factor family (DSFF). Early postulation of the conserved nature of the DSFF among Gram-negative bacteria have now been challenged by the latest evidences that unraveled their presence in a various other distinct microorganisms. Over the last decade, a significant depth and breadth of understanding has been made on the multifaceted functions of DSFFs among bacteria, and their interactions with evolutionarily divergent fungi, plants insects and small animals. While the knowledge of the chemical nature and functions of DSFF within microbial systems is still developing, DSFF molecules such as BDSF, DSF, and SDSF have been found to modulate microbial virulence, cell adhesion, biofilm formation and dispersion, cell motility, and antimicrobial tolerance. Given their capacity to influence microbial ecosystems and the rapid emergence of novel DSFF-like molecules, it is critical to identify the full spectrum of DSFF members and to better understand the functions of this complex messenger system as they offer significant potential to be exploited in the development of new therapeutic strategies to combat the rising global healthcare threat of antimicrobial resistance. This narrative review therefore provides a broad picture of the DSFF quorum sensing with a core foundation built from seminal literature while highlighting the latest developments in the field.
Collapse
Affiliation(s)
- G K Wijesinghe
- Oral Microbiology, Bristol Dental School, University of Bristol, United Kingdom
| | - A H Nobbs
- Oral Microbiology, Bristol Dental School, University of Bristol, United Kingdom
| | - H M H N Bandara
- Oral Microbiology, Bristol Dental School, University of Bristol, United Kingdom
| |
Collapse
|
2
|
Fauzia KA, Effendi WI, Alfaray RI, Malaty HM, Yamaoka Y, Mifthussurur M. Molecular Mechanisms of Biofilm Formation in Helicobacter pylori. Antibiotics (Basel) 2024; 13:976. [PMID: 39452242 PMCID: PMC11504965 DOI: 10.3390/antibiotics13100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Biofilm formation in Helicobacter pylori (H. pylori) helps bacteria survive antibiotic exposure and supports bacterial colonization and persistence in the stomach. Most of the published articles have focused on one aspect of the biofilm. Therefore, we conducted the current study to better understand the mechanism of biofilm formation, how the biofilm contributes to antibiotic resistance, and how the biofilm modifies the medication delivery mechanism. METHODS We conducted a literature review analysis of the published articles on the Helicobacter pylori biofilm between 1998 and 2024 from the PubMed database to retrieve eligible articles. After applying the inclusion and exclusion criteria, two hundred and seventy-three articles were eligible for our study. RESULTS The results showed that biofilm formation starts as adhesion and progresses through micro-colonies, maturation, and dispersion in a planktonic form. Moreover, specific genes modulate each phase of biofilm formation. Few studies have shown that mechanisms, such as quorum sensing and diffusible signal factors, enhance coordination among bacteria when switching from biofilm to planktonic states. Different protein expressions were also observed between planktonic and biofilm strains, and the biofilm architecture was supported by exopolysaccharides, extracellular DNA, and outer membrane vesicles. CONCLUSIONS This infrastructure is responsible for the increased survival of bacteria, especially in harsh environments or in the presence of antibiotics. Therefore, understanding the biofilm formation for H. pylori is crucial. This study illustrates biofilm formation in H. pylori to help improve the treatment of H. pylori infection.
Collapse
Grants
- XXXX Universitas Airlangga
- DK62813 NIH HHS
- 26640114, 221S0002, 16H06279, 15H02657 and 16H05191, 18KK0266, 19H03473, 21H00346, 22H02871, and 23K24133 Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan
- XXXXX Japan Society for the Promotion of Science Institutional Program for Young Researcher Overseas Visits and the Strategic Funds for the Promotion of Science and Technology Agency (JST)
- xxxx Japanese Government (MEXT) scholarship
- xxxx Japan Agency for Medical Research and Development (AMED) [e-ASIA JRP]
Collapse
Affiliation(s)
- Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency, Bogor 16915, Indonesia;
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60131, Indonesia
| | - Wiwin Is Effendi
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60131, Indonesia
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine—The Research Center for GLOBAL and LOCAL Infectious Disease (RCGLID), Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (R.I.A.); (Y.Y.)
| | - Hoda M. Malaty
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine—Dr. Soetomo Teaching Hospital, Univcersitas Airlangga, Surabaya 60286, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine—The Research Center for GLOBAL and LOCAL Infectious Disease (RCGLID), Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (R.I.A.); (Y.Y.)
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine—Dr. Soetomo Teaching Hospital, Univcersitas Airlangga, Surabaya 60286, Indonesia
| | - Muhammad Mifthussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60131, Indonesia
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
3
|
Krzyżek P, Migdał P, Tusiewicz K, Zawadzki M, Szpot P. Subinhibitory concentrations of antibiotics affect development and parameters of Helicobacter pylori biofilm. Front Pharmacol 2024; 15:1477317. [PMID: 39469629 PMCID: PMC11513322 DOI: 10.3389/fphar.2024.1477317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Helicobacter pylori causes chronic gastric diseases in nearly 50% of people around the world. It is suggested that biofilm formation has a pronounced effect on the dynamic resistance spread and recurrence of these infections. Methods To mimic the scenario of therapeutic ineffectiveness, we investigated the impact of sub-minimal inhibitory concentrations (sub-MICs) of antibiotics on the development and parameters of biofilms produced by clinical H. pylori strains. Results We observed that constant exposure of planktonic forms to metronidazole or levofloxacin stimulated the speed of autoaggregation and the amount of extracellular matrix, resulting in increased dimensions of the developed biofilms. Contrary to this, continuous exposure to clarithromycin negatively affected a number of biofilm-related reactions and led to the biofilm-weakening effect. Through assessing the membrane fatty acid profiles of antibiotic-exposed cells, we confirmed that metronidazole and levofloxacin induced a biofilm-like phenotype, while clarithromycin kept bacteria in a planktonic form. Discussion Our results suggest that sub-MICs of antibiotics affect the biochemical and biophysical properties of the developing biofilm of H. pylori strains and may impact the effectiveness of antibiotic treatment.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Paweł Migdał
- Department of Bees Breeding, Institute of Animal Husbandry, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Kaja Tusiewicz
- Department of Forensic Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Marcin Zawadzki
- Department of Social Sciences and Infectious Diseases, Faculty of Medicine, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Paweł Szpot
- Department of Forensic Medicine, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
4
|
Kazantseva EP, Frolov AM, Frolov MA, Novikova EA, Mugulov KS, Kozlova KS, Volchanskiy KI, Maximova SA, Pilipenko MO. The role of Helicobacter pylori in the development of inflammatory eyelid diseases. ACTA BIOMEDICA SCIENTIFICA 2024; 9:108-116. [DOI: 10.29413/abs.2024-9.4.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Background. Blepharitis is one of the most common eye diseases: it accounts for 23.3 % of the total number of patients with inflammatory eye diseases worldwide. 40.2 % of these patients seek outpatient care. The incidence of blepharitis is 1.5–2 times higher in women than in men. The leading factors in the development of blepharitis are both general (gastrointestinal tract diseases, diabetes mellitus, hypertension, systemic use of corticosteroids, etc.) and local (atopic and seborrheic dermatitis or rosacea). The main causative agents of this disease are Staphylococcus spp. (S. aureus, S. epidermidis). As a rule, the disease manifests itself in patients aged 30–50 years, while in women aged 40 to 45 years, 80 % of blepharitis are of staphylococcal origin. Currently, there are reports in the literature about apotential link between Helicobacter pylori infection and the development of chronic blepharitis, but the data are very contradictory.The aim of the study. To analyze the features of the relationship between Helicobacter pylori and inflammatory eyelid diseases.Materials and methods. We conducted a search and analysis of literary sources in the Web of Science, PubMed and Google Scholar databases, as well as in the Russian Science Citation Index database for the period from 2000 to 2022.Conclusion. The review analyzes and summarizes the pathogenic mechanisms of the relationship between chronic blepharitis and Helicobacter pylori. We carried out an analysis of numerous studies, which give grounds to assume a possible role of Helicobacter pylori infection in the development and course of inflammatory eyelid diseases (blepharitis). The main pathogenic aspects in these studies are: chronic inflammation of the eyelids and gastrointestinal tract (antigenic mimicry); excretion of toxic substances from the oral cavity (ammonia, hydrogen nitrite, hydrogen cyanide and other substances causing indirect inflammation of the conjunctiva and eyelid cartilage); the presence of Helicobacter pylori in tears.
Collapse
Affiliation(s)
- E. P. Kazantseva
- Peoples’ Friendship University of Russia named after Patrice Lumumba
| | - A. M. Frolov
- Peoples’ Friendship University of Russia named after Patrice Lumumba
| | - M. A. Frolov
- Peoples’ Friendship University of Russia named after Patrice Lumumba
| | - E. A. Novikova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - K. S. Mugulov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - K. S. Kozlova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - K. I. Volchanskiy
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - S. A. Maximova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - M. O. Pilipenko
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
5
|
Krzyżek P, Migdał P, Krzyżanowska B, Duda-Madej A. Optimization of Helicobacter pylori Biofilm Formation in In Vitro Conditions Mimicking Stomach. Int J Mol Sci 2024; 25:9839. [PMID: 39337326 PMCID: PMC11432336 DOI: 10.3390/ijms25189839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Helicobacter pylori is one of the most common bacterial pathogens worldwide and the main etiological agent of numerous gastric diseases. The frequency of multidrug resistance of H. pylori is growing and the leading factor related to this phenomenon is its ability to form biofilm. Therefore, the establishment of a proper model to study this structure is of critical need. In response to this, the aim of this original article is to validate conditions of the optimal biofilm development of H. pylori in monoculture and co-culture with a gastric cell line in media simulating human fluids. Using a set of culture-based and microscopic techniques, we proved that simulated transcellular fluid and simulated gastric fluid, when applied in appropriate concentrations, stimulate autoaggregation and biofilm formation of H. pylori. Additionally, using a co-culture system on semi-permeable membranes in media imitating the stomach environment, we were able to obtain a monolayer of a gastric cell line with H. pylori biofilm on its surface. We believe that the current model for H. pylori biofilm formation in monoculture and co-culture with gastric cells in media containing host-mimicking fluids will constitute a platform for the intensification of research on H. pylori biofilms in in vitro conditions that simulate the human body.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (B.K.); (A.D.-M.)
| | - Paweł Migdał
- Department of Bees Breeding, Institute of Animal Husbandry, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| | - Barbara Krzyżanowska
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (B.K.); (A.D.-M.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (B.K.); (A.D.-M.)
| |
Collapse
|
6
|
Xue J, Li S, Wang L, Zhao Y, Zhang L, Zheng Y, Zhang W, Chen Z, Jiang T, Sun Y. Enhanced fatty acid biosynthesis by Sigma28 in stringent responses contributes to multidrug resistance and biofilm formation in Helicobacter pylori. Antimicrob Agents Chemother 2024; 68:e0085024. [PMID: 39046242 PMCID: PMC11373199 DOI: 10.1128/aac.00850-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Abstract
The metabolic state of bacteria significantly contributes to their resistance to antibiotics; however, the specific metabolic mechanisms conferring antimicrobial resistance in Helicobacter pylori remain largely understudied. Employing transcriptomic and non-targeted metabolomics, we characterized the metabolic reprogramming of H. pylori when challenged with antibiotic agents. We observed a notable increase in both genetic and key proteomic components involved in fatty acid biosynthesis. Inhibition of this pathway significantly enhanced the antibiotic susceptibility of the sensitive and multidrug-resistant H. pylori strains while also disrupting their biofilm-forming capacities. Further analysis revealed that antibiotic treatment induced a stringent response, triggering the expression of the hp0560-hp0557 operon regulated by Sigma28 (σ28). This activation in turn stimulated the fatty acid biosynthetic pathway, thereby enhancing the antibiotic tolerance of H. pylori. Our findings reveal a novel adaptive strategy employed by H. pylori to withstand antibiotic stress.
Collapse
Affiliation(s)
- Junyuan Xue
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Shutong Li
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Liyuan Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Yican Zhao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Lu Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Yantong Zheng
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Wenxin Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Zhenghong Chen
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, China
| | - Ting Jiang
- Jiangsu Luye Diagnostic Technology, Wuxi, China
| | - Yundong Sun
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| |
Collapse
|
7
|
Liu X, Lertsethtakarn P, Mariscal VT, Yildiz F, Ottemann KM. Counterclockwise rotation of the flagellum promotes biofilm initiation in Helicobacter pylori. mBio 2024; 15:e0044024. [PMID: 38700325 PMCID: PMC11237671 DOI: 10.1128/mbio.00440-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Motility promotes biofilm initiation during the early steps of this process: microbial surface association and attachment. Motility is controlled in part by chemotaxis signaling, so it seems reasonable that chemotaxis may also affect biofilm formation. There is a gap, however, in our understanding of the interactions between chemotaxis and biofilm formation, partly because most studies analyzed the phenotype of only a single chemotaxis signaling mutant, e.g., cheA. Here, we addressed the role of chemotaxis in biofilm formation using a full set of chemotaxis signaling mutants in Helicobacter pylori, a class I carcinogen that infects more than half the world's population and forms biofilms. Using mutants that lack each chemotaxis signaling protein, we found that chemotaxis signaling affected the biofilm initiation stage, but not mature biofilm formation. Surprisingly, some chemotaxis mutants elevated biofilm initiation, while others inhibited it in a manner that was not tied to chemotaxis ability or ligand input. Instead, the biofilm phenotype correlated with flagellar rotational bias. Specifically, mutants with a counterclockwise bias promoted biofilm initiation, e.g., ∆cheA, ∆cheW, or ∆cheV1; in contrast, those with a clockwise bias inhibited it, e.g., ∆cheZ, ∆chePep, or ∆cheV3. We tested this correlation using a counterclockwise bias-locked flagellum, which induced biofilm formation independent of the chemotaxis system. These CCW flagella, however, were not sufficient to induce biofilm formation, suggesting there are downstream players. Overall, our work highlights the new finding that flagellar rotational direction promotes biofilm initiation, with the chemotaxis signaling system operating as one mechanism to control flagellar rotation. IMPORTANCE Chemotaxis signaling systems have been reported to contribute to biofilm formation in many bacteria; however, how they regulate biofilm formation remains largely unknown. Chemotaxis systems are composed of many distinct kinds of proteins, but most previous work analyzed the biofilm effect of loss of only a few. Here, we explored chemotaxis' role during biofilm formation in the human-associated pathogenic bacterium Helicobacter pylori. We found that chemotaxis proteins are involved in biofilm initiation in a manner that correlated with how they affected flagellar rotation. Biofilm initiation was high in mutants with counterclockwise (CCW) flagellar bias and low in those with clockwise bias. We supported the idea that a major driver of biofilm formation is flagellar rotational direction using a CCW-locked flagellar mutant, which stays CCW independent of chemotaxis input and showed elevated biofilm initiation. Our data suggest that CCW-rotating flagella, independent of chemotaxis inputs, are a biofilm-promoting signal.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Paphavee Lertsethtakarn
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Vanessa T. Mariscal
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Fitnat Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Karen M. Ottemann
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| |
Collapse
|
8
|
Huang TT, Cao YX, Cao L. Novel therapeutic regimens against Helicobacter pylori: an updated systematic review. Front Microbiol 2024; 15:1418129. [PMID: 38912349 PMCID: PMC11190606 DOI: 10.3389/fmicb.2024.1418129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a strict microaerophilic bacterial species that exists in the stomach, and H. pylori infection is one of the most common chronic bacterial infections affecting humans. Eradicating H. pylori is the preferred method for the long-term prevention of complications such as chronic gastritis, peptic ulcers, gastric mucosa-associated lymphoid tissue lymphoma, and gastric cancer. However, first-line treatment with triple therapy and quadruple therapy has been unable to cope with increasing antibacterial resistance. To provide an updated review of H. pylori infections and antibacterial resistance, as well as related treatment options, we searched PubMed for articles published until March 2024. The key search terms were "H. pylori", "H. pylori infection", "H. pylori diseases", "H. pylori eradication", and "H. pylori antibacterial resistance." Despite the use of antimicrobial agents, the annual decline in the eradication rate of H. pylori continues. Emerging eradication therapies, such as the development of the new strong acid blocker vonoprazan, probiotic adjuvant therapy, and H. pylori vaccine therapy, are exciting. However, the effectiveness of these treatments needs to be further evaluated. It is worth mentioning that the idea of altering the oxygen environment in gastric juice for H. pylori to not be able to survive is a hot topic that should be considered in new eradication plans. Various strategies for eradicating H. pylori, including antibacterials, vaccines, probiotics, and biomaterials, are continuously evolving. A novel approach involving the alteration of the oxygen concentration within the growth environment of H. pylori has emerged as a promising eradication strategy.
Collapse
Affiliation(s)
- Ting-Ting Huang
- Department of Pharmacology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yong-Xiao Cao
- Department of Pharmacology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Lei Cao
- Precision Medical Institute, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
9
|
Hu S, Giacopazzi S, Modlin R, Karplus K, Bernick DL, Ottemann KM. Altering under-represented DNA sequences elevates bacterial transformation efficiency. mBio 2023; 14:e0210523. [PMID: 37905805 PMCID: PMC10746208 DOI: 10.1128/mbio.02105-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Manipulating the genomes of bacteria is critical to many fields. Such manipulations are made by genetic engineering, which often requires new pieces of DNA to be added to the genome. Bacteria have robust systems for identifying and degrading new DNA, some of which rely on restriction enzymes. These enzymes cut DNA at specific sequences. We identified a set of DNA sequences that are missing normally from a bacterium's genome, more than would be expected by chance. Eliminating these sequences from a new piece of DNA allowed it to be incorporated into the bacterial genome at a higher frequency than new DNA containing the sequences. Removing such sequences appears to allow the new DNA to fly under the bacterial radar in "stealth" mode. This transformation improvement approach is straightforward to apply and likely broadly applicable.
Collapse
Affiliation(s)
- Shuai Hu
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Stefani Giacopazzi
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Ryan Modlin
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
| | - Kevin Karplus
- Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
| | - David L. Bernick
- Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
| | - Karen M. Ottemann
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| |
Collapse
|
10
|
Farrokhi Y, Neshati Z, Saniee P, Makhdoumi A. The potential of Bacillus and Enterococcus probiotic strains to combat helicobacter pylori attachment to the biotic and abiotic surfaces. Int Microbiol 2023; 26:907-915. [PMID: 36943595 DOI: 10.1007/s10123-023-00347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/04/2022] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
The prevention of biofilm formation plays a pivotal role in managing Helicobacter pylori inside the body and the environment. This study showed in vitro potentials of two recently isolated probiotic strains, Bacillus sp. 1630F and Enterococcus sp. 7C37, to form biofilm and combat H. pylori attachment to the abiotic and biotic surfaces. Lactobacillus casei and Bifidobacterium bifidum were used as the reference probiotics. The biofilm rates were the highest in the solid-liquid interface for Lactobacillus and Bifidobacterium and the air-liquid interface for Bacillus and Enterococcus. The highest tolerances to the environmental conditions were observed during the biofilm formations of Enterococcus and Bifidobacterium (pH), Enterococcus and Bacillus (bile), and Bifidobacterium and Lactobacillus (NaCl) on the polystyrene and glass substratum, respectively. Biofilms occurred more quickly by Bacillus and Enterococcus strains than reference strains on the polystyrene and glass substratum, respectively. Enterococcus (competition) and Bacillus (exclusion) achieved the most inhibition of H. pylori biofilm formations on the polystyrene and AGS cells, respectively. Expression of luxS was promoted by Bacillus (exclusion, 3.2 fold) and Enterococcus (competition, 2.0 fold). Expression of ropD was decreased when H. pylori biofilm was excluded by Bacillus (0.4 fold) and Enterococcus (0.2 fold) cells. This study demonstrated the ability of Bacillus and Enterococcus probiotic bacteria to form biofilm and combat H. pylori biofilm formation.
Collapse
Affiliation(s)
- Yeganeh Farrokhi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zeinab Neshati
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Parastoo Saniee
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University G. C, Tehran, Iran
| | - Ali Makhdoumi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
11
|
Rosli NA, Al-Maleki AR, Loke MF, Chua EG, Alhoot MA, Vadivelu J. Polymorphism of virulence genes and biofilm associated with in vitro induced resistance to clarithromycin in Helicobacter pylori. Gut Pathog 2023; 15:52. [PMID: 37898785 PMCID: PMC10613384 DOI: 10.1186/s13099-023-00579-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Clarithromycin-containing triple therapy is commonly used to treat Helicobacter pylori infections. Clarithromycin resistance is the leading cause of H. pylori treatment failure. Understanding the specific mutations that occur in H. pylori strains that have evolved antibiotic resistance can help create a more effective and individualised antibiotic treatment plan. However, little is understood about the genetic reprogramming linked to clarithromycin exposure and the emergence of antibiotic resistance in H. pylori. Therefore, this study aims to identify compensatory mutations and biofilm formation associated with the development of clarithromycin resistance in H. pylori. Clarithromycin-sensitive H. pylori clinical isolates were induced to develop clarithromycin resistance through in vitro exposure to incrementally increasing concentration of the antibiotic. The genomes of the origin sensitive isolates (S), isogenic breakpoint (B), and resistant isolates (R) were sequenced. Single nucleotide variations (SNVs), and insertions or deletions (InDels) associated with the development of clarithromycin resistance were identified. Growth and biofilm production were also assessed. RESULTS The S isolates with A2143G mutation in the 23S rRNA gene were successfully induced to be resistant. According to the data, antibiotic exposure may alter the expression of certain genes, including those that code for the Cag4/Cag protein, the vacuolating cytotoxin domain-containing protein, the sel1 repeat family protein, and the rsmh gene, which may increase the risk of developing and enhances virulence in H. pylori. Enhanced biofilm formation was detected among R isolates compared to B and S isolates. Furthermore, high polymorphism was also detected among the genes associated with biofilm production. CONCLUSIONS Therefore, this study suggests that H. pylori may acquire virulence factors while also developing antibiotic resistance due to clarithromycin exposure.
Collapse
Affiliation(s)
- Naim Asyraf Rosli
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Anis Rageh Al-Maleki
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen.
| | - Mun Fai Loke
- Camtech Biomedical Pte Ltd, Singapore, Singapore
| | - Eng Guan Chua
- School of Biomedical Sciences, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Perth, WA, Australia
| | - Mohammed Abdelfatah Alhoot
- Faculty of Pharmacy, Airlangga University, Surabaya, 60155, Indonesia
- School of Graduate Studies, Management & Science University, Shah Alam, Selangor, Malaysia
| | - Jamuna Vadivelu
- Medical Education Research and Development Unit, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Sun Q, Yuan C, Zhou S, Lu J, Zeng M, Cai X, Song H. Helicobacter pylori infection: a dynamic process from diagnosis to treatment. Front Cell Infect Microbiol 2023; 13:1257817. [PMID: 37928189 PMCID: PMC10621068 DOI: 10.3389/fcimb.2023.1257817] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Helicobacter pylori, a gram-negative microaerophilic pathogen, causes several upper gastrointestinal diseases, such as chronic gastritis, peptic ulcer disease, and gastric cancer. For the diseases listed above, H. pylori has different pathogenic mechanisms, including colonization and virulence factor expression. It is essential to make accurate diagnoses and provide patients with effective treatment to achieve positive clinical outcomes. Detection of H. pylori can be accomplished invasively and noninvasively, with both having advantages and limitations. To enhance therapeutic outcomes, novel therapeutic regimens, as well as adjunctive therapies with probiotics and traditional Chinese medicine, have been attempted along with traditional empiric treatments, such as triple and bismuth quadruple therapies. An H. pylori infection, however, is difficult to eradicate during treatment owing to bacterial resistance, and there is no commonly available preventive vaccine. The purpose of this review is to provide an overview of our understanding of H. pylori infections and to highlight current treatment and diagnostic options.
Collapse
Affiliation(s)
- Qifang Sun
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine (TCM) Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chengzhi Yuan
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine (TCM) Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Sainan Zhou
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Lu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Meiyan Zeng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiong Cai
- School of International Education, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Houpan Song
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine (TCM) Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
13
|
Al-Fakhrany OM, Elekhnawy E. Helicobacter pylori in the post-antibiotics era: from virulence factors to new drug targets and therapeutic agents. Arch Microbiol 2023; 205:301. [PMID: 37550555 PMCID: PMC10406680 DOI: 10.1007/s00203-023-03639-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023]
Abstract
Helicobacter pylori is considered one of the most prevalent human pathogenic microbes globally. It is the main cause of a number of gastrointestinal ailments, including peptic and duodenal ulcers, and gastric tumors with high mortality rates. Thus, eradication of H. pylori is necessary to prevent gastric cancer. Still, the rise in antibiotic resistance is the most important challenge for eradication strategies. Better consideration of H. pylori virulence factors, pathogenesis, and resistance is required for better eradication rates and, thus, prevention of gastrointestinal malignancy. This article is aimed to show the role of virulence factors of H. pylori. Some are involved in its survival in the harsh environment of the human gastric lumen, and others are related to pathogenesis and the infection process. Furthermore, this work has highlighted the recent advancement in H. pylori treatment, as well as antibiotic resistance as a main challenge in H. pylori eradication. Also, we tried to provide an updated summary of the evolving H. pylori control strategies and the potential alternative drugs to fight this lethal resistant pathogen. Recent studies have focused on evaluating the efficacy of alternative regimens (such as sequential, hybrid, concomitant treatment, vonoprazan (VPZ)-based triple therapy, high-dose PPI-amoxicillin dual therapy, probiotics augmented triple therapy, or in combination with BQT) in the effective eradication of H. pylori. Thus, innovating new anti-H. pylori drugs and establishing H. pylori databanks are upcoming necessities in the near future.
Collapse
Affiliation(s)
- Omnia Momtaz Al-Fakhrany
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| |
Collapse
|
14
|
Elshenawi Y, Hu S, Hathroubi S. Biofilm of Helicobacter pylori: Life Cycle, Features, and Treatment Options. Antibiotics (Basel) 2023; 12:1260. [PMID: 37627679 PMCID: PMC10451559 DOI: 10.3390/antibiotics12081260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Helicobacter pylori is a gastric pathogen that infects nearly half of the global population and is recognized as a group 1 carcinogen by the Word Health Organization. The global rise in antibiotic resistance has increased clinical challenges in treating H. pylori infections. Biofilm growth has been proposed to contribute to H. pylori's chronic colonization of the host stomach, treatment failures, and the eventual development of gastric diseases. Several components of H. pylori have been identified to promote biofilm growth, and several of these may also facilitate antibiotic tolerance, including the extracellular matrix, outer membrane proteins, shifted morphology, modulated metabolism, efflux pumps, and virulence factors. Recent developments in therapeutic approaches targeting H. pylori biofilm have shown that synthetic compounds, such as small molecule drugs and plant-derived compounds, are effective at eradicating H. pylori biofilms. These combined topics highlight the necessity for biofilm-based research in H. pylori, to improve current H. pylori-targeted therapeutic approaches and alleviate relative public health burden. In this review we discuss recent discoveries that have decoded the life cycle of H. pylori biofilms and current biofilm-targeted treatment strategies.
Collapse
Affiliation(s)
- Yasmine Elshenawi
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA;
| | - Shuai Hu
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA;
| | - Skander Hathroubi
- Spartha Medical, CRBS 1 Rue Eugène Boeckel, 67000 Strasbourg, France
| |
Collapse
|
15
|
Miri AH, Kamankesh M, Rad-Malekshahi M, Yadegar A, Banar M, Hamblin MR, Haririan I, Aghdaei HA, Zali MR. Factors associated with treatment failure, and possible applications of probiotic bacteria in the arsenal against Helicobacter pylori. Expert Rev Anti Infect Ther 2023; 21:617-639. [PMID: 37171213 DOI: 10.1080/14787210.2023.2203382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Helicobacter pylori is a widespread helical Gram-negative bacterium, which causes a variety of stomach disorders, such as peptic ulcer, chronic atrophic gastritis, and gastric cancer. This microbe frequently colonizes the mucosal layer of the human stomach and survives in the inhospitable microenvironment, by adapting to this hostile milieu. AREAS COVERED In this extensive review, we describe conventional antibiotic treatment regimens used against H. pylori including, empirical, tailored, and salvage therapies. Then, we present state-of-the-art information about reasons for treatment failure against H. pylori. Afterward, the latest advances in the use of probiotic bacteria against H. pylori infection are discussed. Finally, we propose a polymeric bio-platform to provide efficient delivery of probiotics for H. pylori infection. EXPERT OPINION For effective probiotic delivery systems, it is necessary to avoid the early release of probiotics at the acidic stomach pH, to protect them against enzymes and antimicrobials, and precisely target H. pylori bacteria which have colonized the antrum area of the stomach (basic pH).
Collapse
Affiliation(s)
- Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Kamankesh
- Polymer Chemistry Department, School of Science, University of Tehran, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Banar
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg Doornfontein, Johannesburg, South Africa
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Wang Y, Xu S, He Q, Sun K, Wang X, Zhang X, Li Y, Zeng J. Crosstalk between microbial biofilms in the gastrointestinal tract and chronic mucosa diseases. Front Microbiol 2023; 14:1151552. [PMID: 37125198 PMCID: PMC10133492 DOI: 10.3389/fmicb.2023.1151552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/16/2023] [Indexed: 05/02/2023] Open
Abstract
The gastrointestinal (GI) tract is the largest reservoir of microbiota in the human body; however, it is still challenging to estimate the distribution and life patterns of microbes. Biofilm, as the predominant form in the microbial ecosystem, serves ideally to connect intestinal flora, molecules, and host mucosa cells. It gives bacteria the capacity to inhabit ecological niches, communicate with host cells, and withstand environmental stresses. This study intends to evaluate the connection between GI tract biofilms and chronic mucosa diseases such as chronic gastritis, inflammatory bowel disease, and colorectal cancer. In each disease, we summarize the representative biofilm makers including Helicobacter pylori, adherent-invasive Escherichia coli, Bacteroides fragilis, and Fusobacterium nucleatum. We address biofilm's role in causing inflammation and the pro-carcinogenic stage in addition to discussing the typical resistance, persistence, and recurrence mechanisms seen in vitro. Biofilms may serve as a new biomarker for endoscopic and pathologic detection of gastrointestinal disease and suppression, which may be a useful addition to the present therapy strategy.
Collapse
Affiliation(s)
- Yumeng Wang
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shixi Xu
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qiurong He
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Kun Sun
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xiaowan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaorui Zhang
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yuqing Li,
| | - Jumei Zeng
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Jumei Zeng,
| |
Collapse
|
17
|
Skin dysbiosis and Cutibacterium acnes biofilm in inflammatory acne lesions of adolescents. Sci Rep 2022; 12:21104. [PMID: 36473894 PMCID: PMC9727105 DOI: 10.1038/s41598-022-25436-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Acne vulgaris is a common inflammatory disorder affecting more than 80% of young adolescents. Cutibacterium acnes plays a role in the pathogenesis of acne lesions, although the mechanisms are poorly understood. The study aimed to explore the microbiome at different skin sites in adolescent acne and the role of biofilm production in promoting the growth and persistence of C. acnes isolates. Microbiota analysis showed a significantly lower alpha diversity in inflammatory lesions (LA) than in non-inflammatory (NI) lesions of acne patients and healthy subjects (HS). Differences at the species level were driven by the overabundance of C. acnes on LA than NI and HS. The phylotype IA1 was more represented in the skin of acne patients than in HS. Genes involved in lipids transport and metabolism, as well as potential virulence factors associated with host-tissue colonization, were detected in all IA1 strains independently from the site of isolation. Additionally, the IA1 isolates were more efficient in early adhesion and biomass production than other phylotypes showing a significant increase in antibiotic tolerance. Overall, our data indicate that the site-specific dysbiosis in LA and colonization by virulent and highly tolerant C. acnes phylotypes may contribute to acne development in a part of the population, despite the universal carriage of the microorganism. Moreover, new antimicrobial agents, specifically targeting biofilm-forming C. acnes, may represent potential treatments to modulate the skin microbiota in acne.
Collapse
|
18
|
Jia J, Xue X, Guan Y, Fan X, Wang Z. Biofilm characteristics and transcriptomic profiling of Acinetobacter johnsonii defines signatures for planktonic and biofilm cells. ENVIRONMENTAL RESEARCH 2022; 213:113714. [PMID: 35718162 DOI: 10.1016/j.envres.2022.113714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Most bacteria in the natural environment have a biofilm mode of life, which is intrinsically tolerant to antibiotics. While until now, the knowledge of biofilm formation by Acinetobacter johnsonii is not well understood. In this study, the characteristics and the effect of a sub-inhibitory concentration of antibiotic on A. johnsonii biofilm and planktonic cells were determined. We discovered a positive relationship between biofilm formation and tetracycline resistance, and biofilms rapidly evolve resistance to tetracycline they are treated with. Persister cells commonly exist in both planktonic and biofilm cells, with a higher frequency in the latter. Further transcriptomic analysis speculates that the overexpression of multidrug resistance genes and stress genes were mainly answered to sub lethal concentration of tetracycline in planktonic cells, and the lower metabolic levels after biofilm formation result in high resistance level of biofilm cells to tetracycline. Altogether, these data suggest that A. johnsonii can adjust its phenotype when grown as biofilm and change its metabolism under antibiotic stress, and provide implications for subsequent biofilm control.
Collapse
Affiliation(s)
- Jia Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xue Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yongjing Guan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
19
|
Geng J, Wang Z, Wu Y, Yu L, Wang L, Dong Q, Liu C, Chi Z. Intrinsic specificity of plain ammonium citrate carbon dots for Helicobacter pylori: Interfacial mechanism, diagnostic translation and general revelation. Mater Today Bio 2022; 15:100282. [PMID: 35601896 PMCID: PMC9119834 DOI: 10.1016/j.mtbio.2022.100282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 01/12/2023] Open
Abstract
The exploitation of carbon dots (CDs) is now flourishing; however, more effort is needed to overcome their lack of intrinsic specificity. Herein, instead of synthesizing novel CDs, we reinvestigated three reported CDs and discovered that plain ammonium citrate CDs (AC-CDs) exhibited surprising specificity for Helicobacter pylori. Notably, we showed that the interfacial mechanism behind this specificity was due to the affinity between the high abundant urea/ammonium transporters on H. pylori outer membrane and the surface-coordinated ammonium ions on AC-CDs. Further, we justified that ammonium sulfate-citric acid CDs also possessed H. pylori-specificity owing to their NH4+ doping. Thereby, we suggested that the incorporation of a molecule that could be actively transported by abundant membrane receptors into the precursors of CDs might serve as a basis for developing a plain CD with intrinsic specificity for H. pylori. Moreover, AC-CDs exhibited specificity towards live, dead, and multidrug-resistant H. pylori strains. Based on the specificity, we developed a microfluidics-assisted in vitro sensing approach for H. pylori, achieving a simplified, rapid and ultrasensitive detection with two procedures, shortened time within 45.0 min and a low actual limit of detection of 10.0 CFU mL−1. This work sheds light on the design of more H. pylori-specific or even bacteria-specific CDs and their realistic translation into clinical practice. Plain ammonium citrate CDs have intrinsic specificity for Helicobacter pylori. Affinity of outer-membrane urea receptors to NH4+ on CDs decides the specificity. The specific CDs coupling microfluidics confers a simplified detection of H. pylori. The mechanism and translation inspire the engineering of bacteria-specific CDs.
Collapse
|
20
|
Li RJ, Qin C, Huang GR, Liao LJ, Mo XQ, Huang YQ. Phillygenin Inhibits Helicobacter pylori by Preventing Biofilm Formation and Inducing ATP Leakage. Front Microbiol 2022; 13:863624. [PMID: 35572695 PMCID: PMC9097866 DOI: 10.3389/fmicb.2022.863624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
With the widespread use and abuse of antibiotics, Helicobacter pylori (H. pylori) has become seriously drug resistant. The development of new antibiotics is an important way to solve H. pylori's drug resistance. Screening antibacterial ingredients from natural products is a convenient way to develop new antibiotics. Phillygenin, an effective antibacterial component, was selected from the natural product, forsythia, in this study. Its minimal inhibitory concentration (MIC) for 18 H. pylori strains was 16-32 μg/ml. The minimum bactericidal concentration (MBC) of H. pylori G27 was 128 μg/ml; the higher the drug concentration and the longer the time, the better the sterilization effect. It was non-toxic to gastric epithelial cell (GES)-1 and BGC823 cells at the concentration of 100 μg/ml. It presented a better antibacterial effect on H. pylori in an acidic environment, and after 24 days of induction on H. pylori with 1/4 MIC of phillygenin, no change was found in the MIC of H. pylori. In the mechanism of action, phillygenin could cause ATP leakage and inhibit the biofilm formation; the latter was associated with the regulation of spoT and Hp1174 genes. In addition, phillygenin could regulate the genes of Nhac, caggamma, MATE, MdoB, flagellinA, and lptB, leading to the weakening of H. pylori's acid resistance and virulence, the diminishing of H. pylori's capacity for drug efflux, H. pylori's DNA methylation, the initiation of human immune response, and the ATP leakage of H. pylori, thus accelerating the death of H. pylori. In conclusion, phillygenin was a main ingredient inhibiting H. pylori in Forsythia suspensa, with a good antibacterial activity, high safety, strong specificity, better antibacterial effect under acidic conditions, and low risk of resistance development by H. pylori. Its mechanism of action was mainly associated with inhibiting the biofilm formation and resulting in ATP leakage. In addition, phillygenin was shown to be able to reduce the acid resistance and virulence of H. pylori.
Collapse
Affiliation(s)
- Ru-Jia Li
- Research Center for the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China
| | - Chun Qin
- Research Center for the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China
| | - Gan-Rong Huang
- Research Center for the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China
| | - Li-Juan Liao
- Research Center for the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China
| | - Xiao-Qiang Mo
- Research Center for the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China
| | - Yan-Qiang Huang
- Research Center for the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
21
|
Krzyżek P, Migdał P, Grande R, Gościniak G. Biofilm Formation of Helicobacter pylori in Both Static and Microfluidic Conditions Is Associated With Resistance to Clarithromycin. Front Cell Infect Microbiol 2022; 12:868905. [PMID: 35402304 PMCID: PMC8990135 DOI: 10.3389/fcimb.2022.868905] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/07/2022] [Indexed: 12/18/2022] Open
Abstract
It is widely accepted that production of biofilm is a protective mechanism against various type of stressors, including exposure to antibiotics. However, the impact of this structure on the spread of antibiotic resistance in Helicobacter pylori is still poorly understood. Therefore, the aim of the current research was to determine the relationship between biofilm formation and antibiotic resistance of H. pylori. The study was carried out on 24 clinical strains with different resistance profiles (antibiotic-sensitive, mono-resistant, double-resistant and multidrug-resistant) against clarithromycin (CLR), metronidazole (MTZ) and levofloxacin (LEV). Using static conditions and a crystal violet staining method, a strong correlation was observed between biofilm formation and resistance to CLR but not MTZ or LEV. Based on the obtained results, three the strongest and three the weakest biofilm producers were selected and directed for a set of microfluidic experiments performed in the Bioflux system combined with fluorescence microscopy. Under continuous flow conditions, it was observed that strong biofilm producers formed twice as much of biofilm and created significantly more eDNA and in particular proteins within the biofilm matrix when compared to weak biofilm producers. Additionally, it was noticed that strong biofilm producers had higher tendency for autoaggregation and presented morphostructural differences (a greater cellular packing, shorter cells and a higher amount of both OMVs and flagella) in relation to weak biofilm counterparts. In conclusion, resistance to CLR in clinical H. pylori strains was associated with a broad array of phenotypical features translating to the ability of strong biofilm formation.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
- *Correspondence: Paweł Krzyżek,
| | - Paweł Migdał
- Department of Environment, Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Rossella Grande
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Grażyna Gościniak
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
22
|
Ru Z, Yu M, Zhu Y, Chen Z, Zhang F, Zhang Z, Ding J. Immmunoinformatics-based design of a multi-epitope vaccine with CTLA-4 extracellular domain to combat Helicobacter pylori. FASEB J 2022; 36:e22252. [PMID: 35294065 DOI: 10.1096/fj.202101538rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
In view of the high infection rate of Helicobacter pylori, a safe and effective vaccine is urgently needed. Recent trends in vaccine design have shifted toward safe and specific epitope-based vaccines. In this study, by using different immunoinformatics approaches, a total of eight linear B cell epitopes, four HTL and three CTL epitopes of FlaA and UreB proteins of H. pylori G27 strain were screened out, we also predicted the conformational epitopes of the two proteins. Then, the dominant epitopes were sequentially linked by appropriate linkers, and the cytotoxic T lymphocyte-associated antigen 4 extracellular domain was attached to the N-terminal of the epitope sequence. Meanwhile, molecular docking, molecular dynamics simulations and principal component analysis were performed to show that the multi-epitope vaccine structure had strong interactions with B7 (B7-1, B7-2) and Toll-like receptors (TLR-2, -4). Eventually, the effectiveness of the vaccine was validated using in silico cloning. These analyses suggested that the designed vaccine could target antigen-presenting cells and had high potency against H. pylori, which could provide a reference for the future development of efficient H. pylori vaccines.
Collapse
Affiliation(s)
- Zhenyu Ru
- Department of Gastroenterology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Mingkai Yu
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Yuejie Zhu
- Center of Reproductive Medicine, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhiqiang Chen
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Fengbo Zhang
- Department of Clinical Laboratory, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhiqiang Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jianbing Ding
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
23
|
Sharndama HC, Mba IE. Helicobacter pylori: an up-to-date overview on the virulence and pathogenesis mechanisms. Braz J Microbiol 2022; 53:33-50. [PMID: 34988937 PMCID: PMC8731681 DOI: 10.1007/s42770-021-00675-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is an organism associated with ulcer disease and gastric cancer. The latter is one of the most prevalent malignancies and currently the fourth major cause of cancer-related deaths globally. The pathogen infects about 50% of the world population, and currently, no treatment ensures its total elimination. There has been an increase in our understanding of the pathophysiology and pathogenesis mechanisms of H. pylori over the years. H. pylori can induce several genetic alterations, express numerous virulence factors, and trigger diverse adaptive mechanisms during its adherence and colonization. For successful colonization and infection establishment, several effector proteins/toxins are released by the organism. Evidence is also available reporting spiral to coccoid transition as a unique tactic H. pylori uses to survive in the host's gastrointestinal tract (GIT). Thus, the virulence and pathogenicity of H. pylori are under the control of complex interplay between the virulence factors, host, and environmental factors. Expounding the role of the various virulence factors in H. pylori pathogenesis and clinical outcomes is crucial for vaccine development and in providing and developing a more effective therapeutic intervention. Here we critically reflect on H. pylori infection and delineate what is currently known about the virulence and pathogenesis mechanisms of H. pylori.
Collapse
Affiliation(s)
| | - Ifeanyi Elibe Mba
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria.
| |
Collapse
|
24
|
Transcriptome Analysis of the Response of Mature Helicobacter pylori Biofilm to Different Doses of Lactobacillus salivarius LN12 with Amoxicillin and Clarithromycin. Antibiotics (Basel) 2022; 11:antibiotics11020262. [PMID: 35203863 PMCID: PMC8868532 DOI: 10.3390/antibiotics11020262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Helicobacter pylori is a gastrointestinal pathogen with a high infection rate. Probiotics are clinically used as an adjuvant to improve the cure rate and reduce the side effects of antibiotic treatment for H. pylori. This study is the first to explore the effects of a cell-free supernatant of high- or low-dose Lactobacillus salivarius LN12 combined with amoxicillin (AMX) and clarithromycin (CLR) on H. pylori 3192 biofilms in terms of the biofilm biomass, survival rates, biofilm structure, and transcriptome. The results showed that the combination of the CFS of high-dose LN12 with AMX and CLR had stronger effects on the biofilm biomass, survival rate, and structure of H. pylori 3192 biofilms. H. pylori 3192 biofilms may increase the expression of NADH-related genes and downregulate flagellar assembly and quorum sensing-related receptor genes to deal with the stronger stress effects of high-dose LN12 with AMX and CLR. In conclusion, the biofilm biomass, survival rate, structure, and transcriptome results showed that the combination of LN12 CFS with AMX and CLR had dose effects. We recommend that compared with low doses, high doses of L. salivarus LN12 combined with AMX and CLR may be more effective for H. pylori biofilm than low doses.
Collapse
|
25
|
The Effects of HP0044 and HP1275 Knockout Mutations on the Structure and Function of Lipopolysaccharide in Helicobacter pylori Strain 26695. Biomedicines 2022; 10:biomedicines10010145. [PMID: 35052824 PMCID: PMC8773439 DOI: 10.3390/biomedicines10010145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori infection is associated with several gastric diseases, including gastritis, peptic ulcer, gastric adenocarcinoma and mucosa-associated lymphatic tissue (MALT) lymphoma. Due to the prevalence and severeness of H. pylori infection, a thorough understanding of this pathogen is necessary. Lipopolysaccharide, one of the major virulence factors of H. pylori, can exert immunomodulating and immunostimulating functions on the host. In this study, the HP0044 and HP1275 genes were under investigation. These two genes potentially encode GDP-D-mannose dehydratase (GMD) and phosphomannomutase (PMM)/phosphoglucomutase (PGM), respectively, and are involved in the biosynthesis of fucose. HP0044 and HP1275 knockout mutants were generated; both mutants displayed a truncated LPS, suggesting that the encoded enzymes are not only involved in fucose production but are also important for LPS construction. In addition, these two gene knockout mutants exhibited retarded growth, increased surface hydrophobicity and autoaggregation as well as being more sensitive to the detergent SDS and the antibiotic novobiocin. Furthermore, the LPS-defective mutants also had significantly reduced bacterial infection, adhesion and internalization in the in vitro cell line model. Moreover, disruptions of the HP0044 and HP1275 genes in H. pylori altered protein sorting into outer membrane vesicles. The critical roles of HP0044 and HP1275 in LPS biosynthesis, bacterial fitness and pathogenesis make them attractive candidates for drug inventions against H. pylori infection.
Collapse
|
26
|
The effect of ArcA on the growth, motility, biofilm formation, and virulence of Plesiomonas shigelloides. BMC Microbiol 2021; 21:266. [PMID: 34607564 PMCID: PMC8489083 DOI: 10.1186/s12866-021-02322-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The anoxic redox control binary system plays an important role in the response to oxygen as a signal in the environment. In particular, phosphorylated ArcA, as a global transcription factor, binds to the promoter regions of its target genes to regulate the expression of aerobic and anaerobic metabolism genes. However, the function of ArcA in Plesiomonas shigelloides is unknown. RESULTS In the present study, P. shigelloides was used as the research object. The differences in growth, motility, biofilm formation, and virulence between the WT strain and the ΔarcA isogenic deletion mutant strain were compared. The data showed that the absence of arcA not only caused growth retardation of P. shigelloides in the log phase, but also greatly reduced the glucose utilization in M9 medium before the stationary phase. The motility of the ΔarcA mutant strain was either greatly reduced when grown in swim agar, or basically lost when grown in swarm agar. The electrophoretic mobility shift assay results showed that ArcA bound to the promoter regions of the flaK, rpoN, and cheV genes, indicating that ArcA directly regulates the expression of these three motility-related genes in P. shigelloides. Meanwhile, the ability of the ΔarcA strain to infect Caco-2 cells was reduced by 40%; on the contrary, its biofilm formation was enhanced. Furthermore, the complementation of the WT arcA gene from pBAD33-arcA+ was constructed and all of the above features of the pBAD33-arcA+ complemented strain were restored to the WT level. CONCLUSIONS We showed the effect of ArcA on the growth, motility, biofilm formation, and virulence of Plesiomonas shigelloides, and demonstrated that ArcA functions as a positive regulator controls the motility of P. shigelloides by directly regulating the expression of flaK, rpoN and cheV genes.
Collapse
|
27
|
Alexander SM, Retnakumar RJ, Chouhan D, Devi TNB, Dharmaseelan S, Devadas K, Thapa N, Tamang JP, Lamtha SC, Chattopadhyay S. Helicobacter pylori in Human Stomach: The Inconsistencies in Clinical Outcomes and the Probable Causes. Front Microbiol 2021; 12:713955. [PMID: 34484153 PMCID: PMC8416104 DOI: 10.3389/fmicb.2021.713955] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Pathogenic potentials of the gastric pathogen, Helicobacter pylori, have been proposed, evaluated, and confirmed by many laboratories for nearly 4 decades since its serendipitous discovery in 1983 by Barry James Marshall and John Robin Warren. Helicobacter pylori is the first bacterium to be categorized as a definite carcinogen by the International Agency for Research on Cancer (IARC) of the World Health Organization (WHO). Half of the world’s population carries H. pylori, which may be responsible for severe gastric diseases like peptic ulcer and gastric cancer. These two gastric diseases take more than a million lives every year. However, the role of H. pylori as sole pathogen in gastric diseases is heavily debated and remained controversial. It is still not convincingly understood, why most (80–90%) H. pylori infected individuals remain asymptomatic, while some (10–20%) develop such severe gastric diseases. Moreover, several reports indicated that colonization of H. pylori has positive and negative associations with several other gastrointestinal (GI) and non-GI diseases. In this review, we have discussed the state of the art knowledge on “H. pylori factors” and several “other factors,” which have been claimed to have links with severe gastric and duodenal diseases. We conclude that H. pylori infection alone does not satisfy the “necessary and sufficient” condition for developing aggressive clinical outcomes. Rather, the cumulative effect of a number of factors like the virulence proteins of H. pylori, local geography and climate, genetic background and immunity of the host, gastric and intestinal microbiota, and dietary habit and history of medicine usage together determine whether the H. pylori infected person will remain asymptomatic or will develop one of the severe gastric diseases.
Collapse
Affiliation(s)
| | | | - Deepak Chouhan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, India.,Centre for Doctoral Studies, Manipal Academy of Higher Education, Manipal, India
| | | | | | - Krishnadas Devadas
- Department of Gastroenterology, Government Medical College, Trivandrum, India
| | - Namrata Thapa
- Biotech Hub, Department of Zoology, Nar Bahadur Bhandari Degree College, Gangtok, India
| | | | | | | |
Collapse
|