1
|
Phuong-Nguyen K, McGee SL, Aston-Mourney K, Mcneill BA, Mahmood MQ, Rivera LR. Yoyo Dieting, Post-Obesity Weight Loss, and Their Relationship with Gut Health. Nutrients 2024; 16:3170. [PMID: 39339770 PMCID: PMC11435324 DOI: 10.3390/nu16183170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Excessive body weight is associated with many chronic metabolic diseases and weight loss, so far, remains the gold standard treatment. However, despite tremendous efforts exploring optimal treatments for obesity, many individuals find losing weight and maintaining a healthy body weight difficult. Weight loss is often not sustainable resulting in weight regain and subsequent efforts to lose weight. This cyclic pattern of weight loss and regain is termed "yoyo dieting" and predisposes individuals to obesity and metabolic comorbidities. How yoyo dieting might worsen obesity complications during the weight recurrence phase remains unclear. In particular, there is limited data on the role of the gut microbiome in yoyo dieting. Gut health distress, especially gut inflammation and microbiome perturbation, is strongly associated with metabolic dysfunction and disturbance of energy homeostasis in obesity. In this review, we summarise current evidence of the crosstalk between the gastrointestinal system and energy balance, and the effects of yoyo dieting on gut inflammation and gut microbiota reshaping. Finally, we focus on the potential effects of post-dieting weight loss in improving gut health and identify current knowledge gaps within the field, including gut-derived peptide hormones and their potential suitability as targets to combat weight regain, and how yoyo dieting and associated changes in the microbiome affect the gut barrier and the enteric nervous system, which largely remain to be determined.
Collapse
Affiliation(s)
- Kate Phuong-Nguyen
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Sean L McGee
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Kathryn Aston-Mourney
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Bryony A Mcneill
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Malik Q Mahmood
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Leni R Rivera
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
2
|
Cruells A, Cabrera-Rubio R, Bustamante M, Pelegrí D, Cirach M, Jimenez-Arenas P, Samarra A, Martínez-Costa C, Collado MC, Gascon M. The influence of pre- and postnatal exposure to air pollution and green spaces on infant's gut microbiota: Results from the MAMI birth cohort study. ENVIRONMENTAL RESEARCH 2024; 257:119283. [PMID: 38830395 DOI: 10.1016/j.envres.2024.119283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Animal and human studies indicate that exposure to air pollution and natural environments might modulate the gut microbiota, but epidemiological evidence is very scarce. OBJECTIVES To assess the potential impact of pre- and postnatal exposure to air pollution and green spaces on infant gut microbiota assembly and trajectories during the first year of life. METHODS MAMI ("MAternal MIcrobes") birth cohort (Valencia, Spain, N = 162) was used to study the impact of environmental exposure (acute and chronic) on infant gut microbiota during the first year of life (amplicon-based 16S rRNA sequencing). At 7 days and at 1, 6 and 12 months, residential pre- and postnatal exposure to air pollutants (NO2, black carbon -BC-, PM2.5 and O3) and green spaces indicators (NDVI and area of green spaces at 300, 500 and 1000 m buffers) were obtained. For the association between exposures and alpha diversity indicators linear regression models (cross-sectional analyses) and mixed models, including individual as a random effect (longitudinal analyses), were applied. For the differential taxon analysis, the ANCOM-BC package with a log count transformation and multiple-testing corrections were used. RESULTS Acute exposure in the first week of life and chronic postnatal exposure to NO2 were associated with a reduction in microbial alpha diversity, while the effects of green space exposure were not evident. Acute and chronic (prenatal or postnatal) exposure to NO2 resulted in increased abundance of Haemophilus, Akkermansia, Alistipes, Eggerthella, and Tyzerella populations, while increasing green space exposure associated with increased Negativicoccus, Senegalimassilia and Anaerococcus and decreased Tyzzerella and Lachnoclostridium populations. DISCUSSION We observed a decrease in the diversity of the gut microbiota and signs of alteration in its composition among infants exposed to higher levels of NO2. Increasing green space exposure was also associated with changes in gut microbial composition. Further research is needed to confirm these findings.
Collapse
Affiliation(s)
- Adrià Cruells
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Raúl Cabrera-Rubio
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Dolors Pelegrí
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marta Cirach
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Pol Jimenez-Arenas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Anna Samarra
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Cecilia Martínez-Costa
- Department of Pediatrics, University of Valencia, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Mireia Gascon
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
3
|
Zhang M, Wang Y, Gan Y. The potential role of Akkermansia muciniphila in liver health. Future Microbiol 2024; 19:1081-1096. [PMID: 39109507 PMCID: PMC11323942 DOI: 10.2217/fmb-2023-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Akkermansia muciniphila (A. muciniphila) is a 'star strain' that has attracted much attention in recent years. A. muciniphila can effectively regulate host metabolism, significantly affect host immune function, and play an important role in balancing host health and disease. As one of the organs most closely related to the gut (the two can communicate through the hepatic portal vein and bile duct system), liver is widely affected by intestinal microorganisms. A growing body of evidence suggests that A. muciniphila may alleviate liver-related diseases by improving the intestinal barrier, energy metabolism and regulating inflammation through its protein components and metabolites. This paper systematically reviews the key roles of A. muciniphila and its derivatives in maintaining liver health and improving liver disease.
Collapse
Affiliation(s)
- Min Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501 Haike Road, Shanghai, 201203, China
| | - Yang Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501 Haike Road, Shanghai, 201203, China
| | - Yong Gan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501 Haike Road, Shanghai, 201203, China
| |
Collapse
|
4
|
Bao X, Ju T, Tollenaar S, Sergi C, Willing BP, Wu J. Ovomucin and its hydrolysates differentially influenced colitis severity in Citrobacter rodentium-infected mice. Food Funct 2024; 15:8496-8509. [PMID: 39056151 DOI: 10.1039/d4fo01813c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Egg white protein ovomucin and its hydrolysates were previously reported to exhibit anti-inflammatory and anti-adhesive activities. However, their potential to regulate pathogen colonization and disease severity has not been fully characterized. To investigate the effects of ovomucin (OVM) and its hydrolysates including ovomucin-Protex 26L (OP) and -pepsin/pancreatin (OPP) on host resistance to pathogen infection, a well-documented colitis model in mice for attaching and effacing E. coli pathogens, Citrobacter rodentium, was used in the current study. C57Bl/6J female mice were fed on a basal diet supplemented with OVM or its hydrolysates for 3 weeks prior to the C. rodentium challenge, with the dietary treatments continued for seven days. Body weight was not affected throughout the experimental period. OP supplementation resulted in lower (P < 0.05) pathogen loads at 7 dpi. Attenuated colitis severity was observed in mice that received OVM and OP, as indicated by reduced colonic pathological scores and pro-inflammatory responses compared with the infected control group. In contrast, OPP consumption resulted in enhanced C. rodentium colonization and disease severity. Notably, reduced microbial diversity indices of the gut microbiota were observed in the OPP-supplemented mice compared with the OVM- and OP-supplemented groups. This study showed the potential of OVM and OP to alleviate the severity of colitis induced by infection while also suggesting the opposite outcome of OPP in mitigating enteric infection.
Collapse
Affiliation(s)
- Xiaoyu Bao
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Tingting Ju
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada.
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Stephanie Tollenaar
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Consolato Sergi
- Division of Anatomic Pathology, Children's Hospital of Eastern Ontario (CHEO), Ottawa, Ontario, Canada
| | - Benjamin P Willing
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Morikawa T, Paudel D, Uehara O, Ariwansa D, Kobayashi Y, Yang J, Yoshida K, Abiko Y. Effects of Laurus nobilis Leaf Extract (LAURESH ®) on Oral and Gut Microbiota Diversity in Mice. In Vivo 2024; 38:1758-1766. [PMID: 38936916 PMCID: PMC11215573 DOI: 10.21873/invivo.13626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND/AIM The leaves of Laurus nobilis have been used for culinary purposes for many years and have recently been shown to have beneficial effects on human health by altering microbiota composition. However, the effects of L. nobilis on the diversity of microbiomes in the oral cavity and gut remain unknown. Therefore, in this study, we examined the effects of an extract of L. nobilis on the diversity of microbiomes in the oral cavity and gut in mice. MATERIALS AND METHODS C57BL/6J mice were randomly divided into two groups and fed a standard diet (SD) and a standard diet containing 5% LAURESH®, a laurel extract (SDL). After 10 weeks, oral swabs and fecal samples were collected. The bacterial DNA extracted from the oral swabs and feces was used for microbiota analysis using 16S rRNA sequencing. The sequencing data were analyzed using the Quantitative Insights into Microbial Ecology 2 in the DADA2 pipeline and 16S rRNA database. RESULTS The α-diversity of the oral microbiome was significantly greater in the SDL group than in the SD group. The β-diversity of the oral microbiome was also significantly different between the groups. Moreover, the taxonomic abundance analysis showed that five bacteria in the gut were significantly different among the groups. Furthermore, the SDL diet increased the abundance of beneficial gut bacteria, such as Akkermansia sp. CONCLUSION Increased diversity of the oral microbiome and proportion of Akkermansia sp. in the gut microbiome induced by L. nobilis consumption may benefit oral and gut health.
Collapse
Affiliation(s)
- Tetsuro Morikawa
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Durga Paudel
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Osamu Uehara
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Dedy Ariwansa
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | | | - Jinwei Yang
- R&D Department, Tokiwa Phytochemical Co., Ltd., Chiba, Japan
| | - Koki Yoshida
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Yoshihiro Abiko
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan;
| |
Collapse
|
6
|
Tanca A, Palomba A, Fiorito G, Abbondio M, Pagnozzi D, Uzzau S. Metaproteomic portrait of the healthy human gut microbiota. NPJ Biofilms Microbiomes 2024; 10:54. [PMID: 38944645 PMCID: PMC11214629 DOI: 10.1038/s41522-024-00526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024] Open
Abstract
Gut metaproteomics can provide direct evidence of microbial functions actively expressed in the colonic environments, contributing to clarify the role of the gut microbiota in human physiology. In this study, we re-analyzed 10 fecal metaproteomics datasets of healthy individuals from different continents and countries, with the aim of identifying stable and variable gut microbial functions and defining the contribution of specific bacterial taxa to the main metabolic pathways. The "core" metaproteome included 182 microbial functions and 83 pathways that were identified in all individuals analyzed. Several enzymes involved in glucose and pyruvate metabolism, along with glutamate dehydrogenase, acetate kinase, elongation factors G and Tu and DnaK, were the proteins with the lowest abundance variability in the cohorts under study. On the contrary, proteins involved in chemotaxis, response to stress and cell adhesion were among the most variable functions. Random-effect meta-analysis of correlation trends between taxa, functions and pathways revealed key ecological and molecular associations within the gut microbiota. The contribution of specific bacterial taxa to the main biological processes was also investigated, finding that Faecalibacterium is the most stable genus and the top contributor to anti-inflammatory butyrate production in the healthy gut microbiota. Active production of other mucosal immunomodulators facilitating host tolerance was observed, including Roseburia flagellin and lipopolysaccharide biosynthetic enzymes expressed by members of Bacteroidota. Our study provides a detailed picture of the healthy human gut microbiota, contributing to unveil its functional mechanisms and its relationship with nutrition, immunity, and environmental stressors.
Collapse
Affiliation(s)
- Alessandro Tanca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Antonio Palomba
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Giovanni Fiorito
- Clinical Bioinformatic Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marcello Abbondio
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Unit of Microbiology and Virology, University Hospital of Sassari, Sassari, Italy
| | - Daniela Pagnozzi
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Sergio Uzzau
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
- Unit of Microbiology and Virology, University Hospital of Sassari, Sassari, Italy.
| |
Collapse
|
7
|
Zhang X, Jiang L, Xie C, Mo Y, Zhang Z, Xu S, Guo X, Xing K, Wang Y, Su Z. The Recombinant Lactobacillus Strains with the Surface-Displayed Expression of Amuc_1100 Ameliorate Obesity in High-Fat Diet-Fed Adult Mice. Bioengineering (Basel) 2024; 11:574. [PMID: 38927810 PMCID: PMC11200897 DOI: 10.3390/bioengineering11060574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Excessive dietary fat intake is closely associated with an increased risk of obesity, type 2 diabetes, cardiovascular disease, gastrointestinal diseases, and certain types of cancer. The administration of multi-strain probiotics has shown a significantly beneficial effect on the mitigation of obesity induced by high-fat diets (HFDs). In this study, Amuc_1100, an outer membrane protein of Akkermansia muciniphila, was fused with green fluorescent protein and LPXTG motif anchor protein and displayed on the surface of Lactobacillus rhamnosus (pLR-GAA) and Lactobacillus plantarum (pLP-GAA), respectively. The localization of the fusion protein on the bacterial cell surface was confirmed via fluorescence microscopy and Western blotting. Both recombinant strains demonstrated the capacity to ameliorate hyperglycemia and decrease body weight gain in a dose-dependent manner. Moreover, daily oral supplementation of pLR-GAA or pLP-GAA suppressed the HFD-induced intestinal permeability by regulating the mRNA expressions of tight junction proteins and inflammatory cytokines, thereby reducing gut microbiota-derived lipopolysaccharide concentration in serum and mitigating damage to the gut, liver, and adipose tissue. Compared with Lactobacillus rhamnosus treatment, high-dose pLR-GAA restored the expression level of anti-inflammatory factor interleukin-10 in the intestine. In conclusion, our approach enables the maintenance of intestinal health through the use of recombinant probiotics with surface-displayed functional protein, providing a potential therapeutic strategy for HFD-induced obesity and associated metabolic comorbidities.
Collapse
Affiliation(s)
- Xueni Zhang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Lei Jiang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Cankun Xie
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Yidi Mo
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Zihao Zhang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Shengxia Xu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Xiaoping Guo
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Ke Xing
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Yina Wang
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Zhijian Su
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
8
|
Lan C, Li H, Shen Y, Liu Y, Wu A, He J, Cai J, Tian G, Mao X, Huang Z, Yu B, Zheng P, Yu J, Luo J, Yan H, Luo Y. Next-generation probiotic candidates targeting intestinal health in weaned piglets: Both live and heat-killed Akkermansia muciniphila prevent pathological changes induced by enterotoxigenic Escherichia coli in the gut. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:110-122. [PMID: 38766519 PMCID: PMC11101935 DOI: 10.1016/j.aninu.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 05/22/2024]
Abstract
The use of next-generation probiotics (NGP) in pigs for combating diseases has been subject to limited research. Here we explored the potential of a well-known NGP candidate Akkermansia muciniphila targeting pig gut health. In the first screening experiment, we found that the abundance of A. muciniphila peaked at 14 d old but decreased at weaning (21 d old; P < 0.05), suggesting the weaning period may be an effective window for A. muciniphila intervention. Following that, 48 crossbred weaned pigs at 28 d old were randomly assigned to five groups: control (CON), high/low live A. muciniphila (HA/LA), and high/low heat-killed A. muciniphila (HIA/LIA). From 1 to 28 d old, the CON group received gastric infusion of anaerobic sterile saline every other day; the HA and LA groups were gavaged every other day with 1 × 1010 CFU/5 mL and 5 × 108 CFU/5 mL live A. muciniphila, respectively; and the HIA and LIA groups were gavaged every other day with 1 × 1010 CFU/5 mL and 5 × 108 CFU/5 mL heat-killed A. muciniphila, respectively. At d 29, pigs in the CON group were randomly and equally divided into two groups, one of which was named the enterotoxigenic Escherichia coli (ETEC) group, and all groups except CON received a 5-d ETEC challenge. The supplementation of A. muciniphila numerically reduced the diarrhea rate of weaned pigs compared to the pigs that only received the ETEC challenge (P = 0.57), but the LIA group had a higher diarrhea rate than the CON group (P < 0.05). Consistent with this, the supplementation of A. muciniphila improved the small intestinal morphology and structure, proportion of CD4+ T lymphocytes in the blood, as well as the expression of genes related to intestinal barrier and antioxidant indices of pigs with ETEC challenge, especially for the LA group (P < 0.05). Meanwhile, A. muciniphila supplementation reduced the expression of ETEC virulence factor genes in the ileum and colon of pigs challenged by ETEC (P < 0.05). Therefore, A. muciniphila may protect the intestinal health of weaned piglets from damage caused by ETEC infection, but the effect may vary depending on the concentration and activity of A. muciniphila.
Collapse
Affiliation(s)
| | | | - Yuqing Shen
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Aimin Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jingyi Cai
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiangbing Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Junqiu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Wolter M, Grant ET, Boudaud M, Pudlo NA, Pereira GV, Eaton KA, Martens EC, Desai MS. Diet-driven differential response of Akkermansia muciniphila modulates pathogen susceptibility. Mol Syst Biol 2024; 20:596-625. [PMID: 38745106 PMCID: PMC11148096 DOI: 10.1038/s44320-024-00036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
The erosion of the colonic mucus layer by a dietary fiber-deprived gut microbiota results in heightened susceptibility to an attaching and effacing pathogen, Citrobacter rodentium. Nevertheless, the questions of whether and how specific mucolytic bacteria aid in the increased pathogen susceptibility remain unexplored. Here, we leverage a functionally characterized, 14-member synthetic human microbiota in gnotobiotic mice to deduce which bacteria and functions are responsible for the pathogen susceptibility. Using strain dropouts of mucolytic bacteria from the community, we show that Akkermansia muciniphila renders the host more vulnerable to the mucosal pathogen during fiber deprivation. However, the presence of A. muciniphila reduces pathogen load on a fiber-sufficient diet, highlighting the context-dependent beneficial effects of this mucin specialist. The enhanced pathogen susceptibility is not owing to altered host immune or pathogen responses, but is driven by a combination of increased mucus penetrability and altered activities of A. muciniphila and other community members. Our study provides novel insights into the mechanisms of how discrete functional responses of the same mucolytic bacterium either resist or enhance enteric pathogen susceptibility.
Collapse
Affiliation(s)
- Mathis Wolter
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Erica T Grant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marie Boudaud
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Nicholas A Pudlo
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel V Pereira
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kathryn A Eaton
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
10
|
Ahrens AP, Hyötyläinen T, Petrone JR, Igelström K, George CD, Garrett TJ, Orešič M, Triplett EW, Ludvigsson J. Infant microbes and metabolites point to childhood neurodevelopmental disorders. Cell 2024; 187:1853-1873.e15. [PMID: 38574728 DOI: 10.1016/j.cell.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/22/2023] [Accepted: 02/28/2024] [Indexed: 04/06/2024]
Abstract
This study has followed a birth cohort for over 20 years to find factors associated with neurodevelopmental disorder (ND) diagnosis. Detailed, early-life longitudinal questionnaires captured infection and antibiotic events, stress, prenatal factors, family history, and more. Biomarkers including cord serum metabolome and lipidome, human leukocyte antigen (HLA) genotype, infant microbiota, and stool metabolome were assessed. Among the 16,440 Swedish children followed across time, 1,197 developed an ND. Significant associations emerged for future ND diagnosis in general and for specific ND subtypes, spanning intellectual disability, speech disorder, attention-deficit/hyperactivity disorder, and autism. This investigation revealed microbiome connections to future diagnosis as well as early emerging mood and gastrointestinal problems. The findings suggest links to immunodysregulation and metabolism, compounded by stress, early-life infection, and antibiotics. The convergence of infant biomarkers and risk factors in this prospective, longitudinal study on a large-scale population establishes a foundation for early-life prediction and intervention in neurodevelopment.
Collapse
Affiliation(s)
- Angelica P Ahrens
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, Örebro 702 81, Sweden
| | - Joseph R Petrone
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Kajsa Igelström
- Department of Biomedical and Clinical Sciences, Division of Neurobiology, Linköping University, Linköping 58185, Sweden
| | - Christian D George
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Matej Orešič
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro 702 81, Sweden; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; Department of Life Technologies, University of Turku, Turku 20014, Finland
| | - Eric W Triplett
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA.
| | - Johnny Ludvigsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
| |
Collapse
|
11
|
Faghfuri E, Gholizadeh P. The role of Akkermansia muciniphila in colorectal cancer: A double-edged sword of treatment or disease progression? Biomed Pharmacother 2024; 173:116416. [PMID: 38471272 DOI: 10.1016/j.biopha.2024.116416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
Colorectal cancer (CRC) is the second most cancer-related death worldwide. In recent years, probiotics have been used to reduce the potential risks of CRC and tumors with various mechanisms. Different bacteria have been suggested to play different roles in the progression, prevention, or treatment of CRC. Akkermansia muciniphila is considered a next-generation probiotic for preventing and treating some diseases. Therefore, in this review article, we aimed to describe and discuss different mechanisms of A. muciniphila as an intestinal microbiota or probiotic in CRC. Some studies suggested that the abundance of A. muciniphila was higher or increased in CRC patients compared to healthy individuals. However, the decreased abundance of A. muciniphila was associated with severe symptoms of CRC, indicating that A. muciniphila did not play a role in the development of CRC. In addition, A. muciniphila administration elevates gene expression of proliferation-associated molecules such as S100A9, Dbf4, and Snrpd1, or markers for cell proliferation. Some other studies suggested that inflammation and tumorigenesis in the intestine might promoted by A. muciniphila. Overall, the role of A. muciniphila in CRC development or inhibition is still unclear and controversial. Various methods of bacterial supplementation, such as viability, bacterial number, and abundance, could all influence the colonization effect of A. muciniphila administration and CRC progression. Overall, A. mucinipila has been revealed to modulate the therapeutic potential of immune checkpoint inhibitors. Preliminary human data propose that oral consumption of A. muciniphila is safe, but its efficacy needs to be confirmed in more human clinical studies.
Collapse
Affiliation(s)
- Elnaz Faghfuri
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Pourya Gholizadeh
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
12
|
Bai J, Eldridge R, Houser M, Martin M, Powell C, Sutton KS, Noh HI, Wu Y, Olson T, Konstantinidis KT, Bruner DW. Multi-omics analysis of the gut microbiome and metabolites associated with the psychoneurological symptom cluster in children with cancer receiving chemotherapy. J Transl Med 2024; 22:256. [PMID: 38461265 PMCID: PMC10924342 DOI: 10.1186/s12967-024-05066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/05/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Children with cancer receiving chemotherapy commonly report a cluster of psychoneurological symptoms (PNS), including pain, fatigue, anxiety, depression, and cognitive dysfunction. The role of the gut microbiome and its functional metabolites in PNS is rarely studied among children with cancer. This study investigated the associations between the gut microbiome-metabolome pathways and PNS in children with cancer across chemotherapy as compared to healthy children. METHODS A case-control study was conducted. Cancer cases were recruited from Children's Healthcare of Atlanta and healthy controls were recruited via flyers. Participants reported PNS using the Pediatric Patient-Reported Outcomes Measurement Information System. Data for cases were collected pre-cycle two chemotherapy (T0) and post-chemotherapy (T1), whereas data for healthy controls were collected once. Gut microbiome and its metabolites were measured using fecal specimens. Gut microbiome profiling was performed using 16S rRNA V4 sequencing, and metabolome was performed using an untargeted liquid chromatography-mass spectrometry approach. A multi-omics network integration program analyzed microbiome-metabolome pathways of PNS. RESULTS Cases (n = 21) and controls (n = 14) had mean ages of 13.2 and 13.1 years. For cases at T0, PNS were significantly associated with microbial genera (e.g., Ruminococcus, Megasphaera, and Prevotella), which were linked with carnitine shuttle (p = 0.0003), fatty acid metabolism (p = 0.001) and activation (p = 0.001), and tryptophan metabolism (p = 0.008). Megasphaera, clustered with aspartate and asparagine metabolism (p = 0.034), carnitine shuttle (p = 0.002), and tryptophan (p = 0.019), was associated with PNS for cases at T1. Gut bacteria with potential probiotic functions, along with fatty acid metabolism, tryptophan, and carnitine shuttle, were more clustered in cancer cases than the control network and this linkage with PNS needs further studies. CONCLUSIONS Using multi-omics approaches, this study indicated specific microbiome-metabolome pathways linked with PNS in children with cancer across chemotherapy. Due to limitations such as antibiotic use in cancer cases, these findings need to be further confirmed in a larger cohort.
Collapse
Affiliation(s)
- Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - Ronald Eldridge
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Madelyn Houser
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Melissa Martin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Christie Powell
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kathryn S Sutton
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- School of Medicine, Emory University, Atlanta, GA, USA
| | - Hye In Noh
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Yuhua Wu
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Thomas Olson
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- School of Medicine, Emory University, Atlanta, GA, USA
| | | | - Deborah W Bruner
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
13
|
Stiernborg M, Prast-Nielsen S, Melas PA, Skott M, Millischer V, Boulund F, Forsell Y, Lavebratt C. Differences in the gut microbiome of young adults with schizophrenia spectrum disorder: using machine learning to distinguish cases from controls. Brain Behav Immun 2024; 117:298-309. [PMID: 38280535 DOI: 10.1016/j.bbi.2024.01.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 01/29/2024] Open
Abstract
While an association between the gut microbiome and schizophrenia spectrum disorders (SSD) has been suggested, the existing evidence is still inconclusive. To this end, we analyzed bacteria and bacterial genes in feces from 52 young adult SSD patients and 52 controls using fecal shotgun metagenomic sequencing. Compared to controls, young SSD patients were found to have significantly lower α-diversity and different β-diversity both regarding bacterial species (i.e., taxonomic diversity) and bacterial genes (i.e., functional diversity). Furthermore, the α-diversity measures 'Pielou's evenness' and 'Shannon' were significantly higher for both bacterial species, bacterial genes encoding enzymes and gut brain modules in young SSD patients on antipsychotic treatment (young SSD not on antipsychotics=9 patients, young SSD on antipsychotics=43 patients). We also applied machine learning classifiers to distinguish between young SSD patients and healthy controls based on their gut microbiome. Results showed that taxonomic and functional data classified young SSD individuals with an accuracy of ≥ 70% and with an area under the receiver operating characteristic curve (AUROC) of ≥ 0.75. Differential abundance analysis on the most important features in the classifier models revealed that most of the species with higher abundance in young SSD patients had their natural habitat in the oral cavity. In addition, many of the modules with higher abundance in young SSD patients were amino acid biosynthesis modules. Moreover, the abundances of gut-brain modules of butyrate synthesis and acetate degradation were lower in the SSD patients compared to controls. Collectively, our findings continue to support the presence of gut microbiome alterations in SSD and provide support for the use of machine learning algorithms to distinguish patients from controls based on gut microbiome profiles.
Collapse
Affiliation(s)
- Miranda Stiernborg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Stefanie Prast-Nielsen
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Philippe A Melas
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | - Maria Skott
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Fredrik Boulund
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yvonne Forsell
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden.
| |
Collapse
|
14
|
Doblado L, Díaz LE, Nova E, Marcos A, Monsalve M. Intestinal Effects of Filtered Alkalinized Water in Lean and Obese Zucker Rats. Microorganisms 2024; 12:316. [PMID: 38399722 PMCID: PMC10892922 DOI: 10.3390/microorganisms12020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/22/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
This study evaluated the intestinal effects of alkalinized filtered water in lean and obese adult Zucker rats. For 3 months, 12-week-old rats consumed either tap water or filtered alkalinized tap water from Madrid city. Weight gain was monitored, changes in metabolism were evaluated by indirect calorimetry, and total antioxidant capacity and levels of inflammatory mediators were measured in plasma. Feces were collected, their microbial composition was analyzed and histological analysis of the small and large intestine was performed, assessing the general state of the mucosa (MUC2), the inflammatory state (F4/80) and the presence of oxidative modifications in protein 4-Hydroxynonenal (4-HNE) by immunofluorescence (IF) and immunohistochemistry (IHC). The results obtained showed that the consumption of alkalinized filtered water improved the composition of the intestinal microbiome and the state of the intestinal mucosa, reducing both local and systemic inflammation and the level of oxidative stress. These changes were accompanied by a better maintenance of the oxidative status in rats. No differences were observed in antioxidant capacity nor in weight gain. The incorporation of probiotics in the diet had a significant impact on the microbiome. These effects were indicative of an improvement in general metabolic, oxidative and inflammatory status.
Collapse
Affiliation(s)
- Laura Doblado
- Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain;
| | - Ligia Esperanza Díaz
- Institute of Science, Food Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Nováis 6, 28040 Madrid, Spain; (L.E.D.); (E.N.); (A.M.)
| | - Esther Nova
- Institute of Science, Food Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Nováis 6, 28040 Madrid, Spain; (L.E.D.); (E.N.); (A.M.)
| | - Ascensión Marcos
- Institute of Science, Food Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Nováis 6, 28040 Madrid, Spain; (L.E.D.); (E.N.); (A.M.)
| | - María Monsalve
- Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain;
| |
Collapse
|
15
|
Wolter M, Grant ET, Boudaud M, Pudlo NA, Pereira GV, Eaton KA, Martens EC, Desai MS. Diet-driven differential response of Akkermansia muciniphila modulates pathogen susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571894. [PMID: 38168188 PMCID: PMC10760068 DOI: 10.1101/2023.12.15.571894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The erosion of the colonic mucus layer by a dietary fiber-deprived gut microbiota results in heightened susceptibility to an attaching and effacing pathogen, Citrobacter rodentium. Nevertheless, the questions of whether and how specific mucolytic bacteria aid in the increased pathogen susceptibility remain unexplored. Here, we leverage a functionally characterized, 14-member synthetic human microbiota in gnotobiotic mice to deduce which bacteria and functions are responsible for the pathogen susceptibility. Using strain dropouts of mucolytic bacteria from the community, we show that Akkermansia muciniphila renders the host more vulnerable to the mucosal pathogen during fiber deprivation. However, the presence of A. muciniphila reduces pathogen load on a fiber-sufficient diet, highlighting the context-dependent beneficial effects of this mucin specialist. The enhanced pathogen susceptibility is not owing to altered host immune or pathogen responses, but is driven by a combination of increased mucus penetrability and altered activities of A. muciniphila and other community members. Our study provides novel insights into the mechanisms of how discrete functional responses of the same mucolytic bacterium either resist or enhance enteric pathogen susceptibility.
Collapse
Affiliation(s)
- Mathis Wolter
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Erica T. Grant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marie Boudaud
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Nicholas A. Pudlo
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gabriel V. Pereira
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kathryn A. Eaton
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mahesh S. Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
16
|
Klinsawat W, Uthaipaisanwong P, Jenjaroenpun P, Sripiboon S, Wongsurawat T, Kusonmano K. Microbiome variations among age classes and diets of captive Asian elephants (Elephas maximus) in Thailand using full-length 16S rRNA nanopore sequencing. Sci Rep 2023; 13:17685. [PMID: 37848699 PMCID: PMC10582034 DOI: 10.1038/s41598-023-44981-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/14/2023] [Indexed: 10/19/2023] Open
Abstract
Asian elephant (Elephas maximus) is the national symbol of Thailand and linked to Thai history and culture for centuries. The elephant welfare improvement is one of the major components to achieve sustainable captive management. Microbiome inhabiting digestive tracts have been shown with symbiotic relations to host health. This work provided high-resolution microbiome profiles of 32 captive elephants at a species level by utilizing full-length 16S rRNA gene nanopore sequencing. Eleven common uncultured bacterial species were found across elephants fed with solid food including uncultured bacterium Rikenellaceae RC9 gut group, Kiritimatiellae WCHB1-41, Phascolarctobacterium, Oscillospiraceae NK4A214 group, Christensenellaceae R-7 group, Oribacterium, Oscillospirales UCG-010, Lachnospiraceae, Bacteroidales F082, uncultured rumen Rikenellaceae RC9 gut group, and Lachnospiraceae AC2044 group. We observed microbiome shifts along the age classes of baby (0-2 years), juvenile (2-10 years), and adult (> 10 years). Interestingly, we found distinct microbiome profiles among adult elephants fed with a local palm, Caryota urens, as a supplement. Potential beneficial microbes have been revealed according to the age classes and feed diets. The retrieved microbiome data could be provided as good baseline microbial profiles for monitoring elephant health, suggesting further studies towards dietary selection suitable for each age class and the use of local supplementary diets.
Collapse
Affiliation(s)
- Worata Klinsawat
- Conservation Ecology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Pichahpuk Uthaipaisanwong
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supaphen Sripiboon
- Department of Large Animal and Wildlife Clinical Science, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Kanthida Kusonmano
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
- Bioinformatics and Systems Biology Program, Schools of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
| |
Collapse
|
17
|
Chatterjee I, Getselter D, Ghanayem N, Harari R, Davis L, Bel S, Elliott E. CHD8 regulates gut epithelial cell function and affects autism-related behaviors through the gut-brain axis. Transl Psychiatry 2023; 13:305. [PMID: 37783686 PMCID: PMC10545671 DOI: 10.1038/s41398-023-02611-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023] Open
Abstract
Autism is a neurodevelopmental disorder characterized by early-onset social behavioral deficits and repetitive behaviors. Chromodomain helicase DNA-binding protein (CHD8) is among the genes most strongly associated with autism. In addition to the core behavioral symptoms of autism, affected individuals frequently present with gastrointestinal symptoms that are also common among individuals harboring mutations in the gene encoding CHD8. However, little is known regarding the mechanisms whereby CHD8 affects gut function. In addition, it remains unknown whether gastrointestinal manifestations contribute to the behavioral phenotypes of autism. The current study found that mice haploinsufficient for the large isoform of Chd8 (Chd8L) exhibited increased intestinal permeability, transcriptomic dysregulation in gut epithelial cells, reduced tuft cell and goblet cell counts in the gut, and an overall increase in microbial load. Gut epithelial cell-specific Chd8 haploinsufficiency was associated with increased anxiety-related behaviors together with a decrease in tuft cell numbers. Antibiotic treatment of Chd8L haploinsufficient mice attenuated social behavioral deficits. Together, these results suggest Chd8 as a key determinant of autism-related gastrointestinal deficits, while also laying the ground for future studies on the link between GI deficits and autism-related behaviors.
Collapse
Affiliation(s)
- Ipsita Chatterjee
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, 13215, Israel
| | - Dmitriy Getselter
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, 13215, Israel
| | - Nasreen Ghanayem
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, 13215, Israel
| | - Ram Harari
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, 13215, Israel
| | - Liron Davis
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, 13215, Israel
| | - Shai Bel
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, 13215, Israel
| | - Evan Elliott
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, 13215, Israel.
| |
Collapse
|
18
|
Hintikka JE, Ahtiainen JP, Permi P, Jalkanen S, Lehtonen M, Pekkala S. Aerobic exercise training and gut microbiome-associated metabolic shifts in women with overweight: a multi-omic study. Sci Rep 2023; 13:11228. [PMID: 37433843 DOI: 10.1038/s41598-023-38357-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023] Open
Abstract
Physical activity is essential in weight management, improves overall health, and mitigates obesity-related risk markers. Besides inducing changes in systemic metabolism, habitual exercise may improve gut's microbial diversity and increase the abundance of beneficial taxa in a correlated fashion. Since there is a lack of integrative omics studies on exercise and overweight populations, we studied the metabolomes and gut microbiota associated with programmed exercise in obese individuals. We measured the serum and fecal metabolites of 17 adult women with overweight during a 6-week endurance exercise program. Further, we integrated the exercise-responsive metabolites with variations in the gut microbiome and cardiorespiratory parameters. We found clear correlation with several serum and fecal metabolites, and metabolic pathways, during the exercise period in comparison to the control period, indicating increased lipid oxidation and oxidative stress. Especially, exercise caused co-occurring increase in levels of serum lyso-phosphatidylcholine moieties and fecal glycerophosphocholine. This signature was associated with several microbial metagenome pathways and the abundance of Akkermansia. The study demonstrates that, in the absence of body composition changes, aerobic exercise can induce metabolic shifts that provide substrates for beneficial gut microbiota in overweight individuals.
Collapse
Affiliation(s)
- Jukka E Hintikka
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Juha P Ahtiainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Perttu Permi
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Sirpa Jalkanen
- MediCity and InFLAMES Flagship, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Marko Lehtonen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Satu Pekkala
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
19
|
Kadyan S, Park G, Wang B, Singh P, Arjmandi B, Nagpal R. Resistant starches from dietary pulses modulate the gut metabolome in association with microbiome in a humanized murine model of ageing. Sci Rep 2023; 13:10566. [PMID: 37386089 PMCID: PMC10310774 DOI: 10.1038/s41598-023-37036-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Emerging evidence suggests that plant-based fiber-rich diets improve ageing-associated health by fostering a healthier gut microbiome and microbial metabolites. However, such effects and mechanisms of resistant starches from dietary pulses remain underexplored. Herein, we examine the prebiotic effects of dietary pulses-derived resistant starch (RS) on gut metabolome in older (60-week old) mice carrying a human microbiome. Gut metabolome and its association with microbiome are examined after 20-weeks feeding of a western-style diet (control; CTL) fortified (5% w/w) with RS from pinto beans (PTB), black-eyed-peas (BEP), lentils (LEN), chickpeas (CKP), or inulin (INU; reference control). NMR spectroscopy-based untargeted metabolomic analysis yield differential abundance linking phenotypic differences in specific metabolites among different RS groups. LEN and CKP increase butyrate, while INU promotes propionate. Conversely, bile acids and cholesterol are reduced in prebiotic groups along with suppressed choline-to-trimethylamine conversion by LEN and CKP, whereas amino acid metabolism is positively altered. Multi-omics microbiome-metabolome interactions reveal an association of beneficial metabolites with the Lactobacilli group, Bacteroides, Dubosiella, Parasutterella, and Parabacteroides, while harmful metabolites correlate with Butyricimonas, Faecalibaculum, Colidextribacter, Enterococcus, Akkermansia, Odoribacter, and Bilophila. These findings demonstrate the functional effects of pulses-derived RS on gut microbial metabolism and their beneficial physiologic responses in an aged host.
Collapse
Affiliation(s)
- Saurabh Kadyan
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Gwoncheol Park
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Bo Wang
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Prashant Singh
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Bahram Arjmandi
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
20
|
Antoine C, Laforêt F, Goya-Jorge E, Gonza I, Lebrun S, Douny C, Duprez JN, Fall A, Taminiau B, Scippo ML, Daube G, Thiry D, Delcenserie V. Phage Targeting Neonatal Meningitis E. coli K1 In Vitro in the Intestinal Microbiota of Pregnant Donors and Impact on Bacterial Populations. Int J Mol Sci 2023; 24:10580. [PMID: 37445758 DOI: 10.3390/ijms241310580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Escherichia coli K1 is a leading cause of neonatal meningitis. The asymptomatic carriage of these strains in the maternal intestinal microbiota constitutes a risk of vertical transmission to the infant at birth. The aim of this work was to evaluate the efficacy of phage therapy against E. coli K1 in an intestinal environment and its impact on the intestinal microbiota. For this purpose, three independent experiments were conducted on the SHIME® system, the first one with only the phage vB_EcoP_K1_ULINTec4, the second experiment with only E. coli K1 and the last experiment with both E. coli K1 and the phage. Microbiota monitoring was performed using metagenetics, qPCR, SCFA analysis and the induction of AhR. The results showed that phage vB_EcoP_K1_ULINTec4, inoculated alone, was progressively cleared by the system and replicates in the presence of its host. E. coli K1 persisted in the microbiota but decreased in the presence of the phage. The impact on the microbiota was revealed to be donor dependent, and the bacterial populations were not dramatically affected by vB_K1_ULINTec4, either alone or with its host. In conclusion, these experiments showed that the phage was able to infect the E. coli K1 in the system but did not completely eliminate the bacterial load.
Collapse
Affiliation(s)
- Céline Antoine
- Laboratory of Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
- Laboratory of Food Quality Management, Food Science Department, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Fanny Laforêt
- Laboratory of Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
- Laboratory of Food Quality Management, Food Science Department, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Elizabeth Goya-Jorge
- Laboratory of Food Quality Management, Food Science Department, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Irma Gonza
- Laboratory of Food Quality Management, Food Science Department, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Sarah Lebrun
- Laboratory of Food Quality Management, Food Science Department, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Caroline Douny
- Laboratory of Food Analysis, Department of Food Sciences, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Jean-Noël Duprez
- Laboratory of Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Abdoulaye Fall
- FoodChain ID Genomics, En Hayeneux 62, 4040 Herstal, Belgium
| | - Bernard Taminiau
- Laboratory of Microbiology, Department of Food Sciences, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Department of Food Sciences, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Georges Daube
- Laboratory of Microbiology, Department of Food Sciences, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Damien Thiry
- Laboratory of Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Véronique Delcenserie
- Laboratory of Food Quality Management, Food Science Department, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
21
|
Wu H, Van Der Pol WJ, Dubois LG, Morrow CD, Tollefsbol TO. Dietary Supplementation of Inulin Contributes to the Prevention of Estrogen Receptor-Negative Mammary Cancer by Alteration of Gut Microbial Communities and Epigenetic Regulations. Int J Mol Sci 2023; 24:9015. [PMID: 37240357 PMCID: PMC10218871 DOI: 10.3390/ijms24109015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Breast cancer (BC) is among the most frequently diagnosed malignant cancers in women in the United States. Diet and nutrition supplementation are closely related to BC onset and progression, and inulin is commercially available as a health supplement to improve gut health. However, little is known with respect to inulin intake for BC prevention. We investigated the effect of an inulin-supplemented diet on the prevention of estrogen receptor-negative mammary carcinoma in a transgenic mouse model. Plasma short-chain fatty acids were measured, the gut microbial composition was analyzed, and the expression of proteins related to cell cycle and epigenetics-related genes was measured. Inulin supplementation greatly inhibited tumor growth and significantly delayed tumor latency. The mice that consumed inulin had a distinct microbiome and higher diversity of gut microbial composition compared to the control. The concentration of propionic acid in plasma was significantly higher in the inulin-supplemented group. The protein expression of epigenetic-modulating histone deacetylase 2 (Hdac2), Hdac8, and DNA methyltransferase 3b decreased. The protein expression of factors related to tumor cell proliferation and survival, such as Akt, phospho-PI3K, and NF-kB, also decreased with inulin administration. Furthermore, sodium propionate showed BC prevention effect in vivo through epigenetic regulations. These studies suggest that modulating microbial composition through inulin consumption may be a promising strategy for BC prevention.
Collapse
Affiliation(s)
- Huixin Wu
- Department of Biology, College of Arts and Science, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - William J. Van Der Pol
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Laura G. Dubois
- Proteomics and Metabolomics Core Facility, Duke University Medical Center, Durham, NC 27701, USA
| | - Casey D. Morrow
- Department of Cell, Departmental & Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Trygve O. Tollefsbol
- Department of Biology, College of Arts and Science, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Integrative Center of Aging Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- University Wide Microbiome Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
22
|
Sadler KE, Atkinson SN, Ehlers VL, Waltz TB, Hayward M, Rodríguez García DM, Salzman NH, Stucky CL, Brandow AM. Gut microbiota and metabolites drive chronic sickle cell disease pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538342. [PMID: 37163080 PMCID: PMC10168372 DOI: 10.1101/2023.04.25.538342] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Pain is a debilitating symptom and leading reason for hospitalization of individuals with sickle cell disease. Chronic sickle cell pain is poorly managed because the biological basis is not fully understood. Using transgenic sickle cell mice and fecal material transplant, we determined that the gut microbiome drives persistent sickle cell pain. In parallel patient and mouse analyses, we identified bilirubin as one metabolite that induces sickle cell pain by altering vagus nerve activity. Furthermore, we determined that decreased abundance of the gut bacteria Akkermansia mucinophila is a critical driver of chronic sickle cell pain. These experiments demonstrate that the sickle cell gut microbiome drives chronic widespread pain and identify bacterial species and metabolites that should be targeted for chronic sickle cell disease pain management.
Collapse
Affiliation(s)
- Katelyn E. Sadler
- Department of Neuroscience, The University of Texas at Dallas; Richardson, TX
- Center for Advanced Pain Studies, The University of Texas at Dallas; Richardson, TX
| | - Samantha N. Atkinson
- Center for Microbiome Research, Medical College of Wisconsin; Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin; Milwaukee, WI
| | - Vanessa L. Ehlers
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin; Milwaukee, WI
| | - Tyler B. Waltz
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin; Milwaukee, WI
| | - Michael Hayward
- Center for Microbiome Research, Medical College of Wisconsin; Milwaukee, WI
- Department of Pediatrics, Division of Gastroenterology, Medical College of Wisconsin; Milwaukee, WI
| | | | - Nita H. Salzman
- Center for Microbiome Research, Medical College of Wisconsin; Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin; Milwaukee, WI
- Department of Pediatrics, Division of Gastroenterology, Medical College of Wisconsin; Milwaukee, WI
| | - Cheryl L. Stucky
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin; Milwaukee, WI
| | - Amanda M. Brandow
- Department of Pediatrics, Section of Hematology/Oncology/Bone Marrow Transplantation, Medical College of Wisconsin; Milwaukee, WI
| |
Collapse
|
23
|
Deng L, Wojciech L, Png CW, Kioh YQD, Ng GC, Chan ECY, Zhang Y, Gascoigne NRJ, Tan KSW. Colonization with ubiquitous protist Blastocystis ST1 ameliorates DSS-induced colitis and promotes beneficial microbiota and immune outcomes. NPJ Biofilms Microbiomes 2023; 9:22. [PMID: 37185924 PMCID: PMC10130167 DOI: 10.1038/s41522-023-00389-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Blastocystis is a species complex that exhibits extensive genetic diversity, evidenced by its classification into several genetically distinct subtypes (ST). Although several studies have shown the relationships between a specific subtype and gut microbiota, there is no study to show the effect of the ubiquitous Blastocystis ST1 on the gut microbiota and host health. Here, we show that Blastocystis ST1 colonization increased the proportion of beneficial bacteria Alloprevotella and Akkermansia, and induced Th2 and Treg cell responses in normal healthy mice. ST1-colonized mice showed decreases in the severity of DSS-induced colitis when compared to non-colonized mice. Furthermore, mice transplanted with ST1-altered gut microbiota were refractory to dextran sulfate sodium (DSS)-induced colitis via induction of Treg cells and elevated short-chain fat acid (SCFA) production. Our results suggest that colonization with Blastocystis ST1, one of the most common subtypes in humans, exerts beneficial effects on host health through modulating the gut microbiota and adaptive immune responses.
Collapse
Affiliation(s)
- Lei Deng
- Laboratory of Molecular and Cellular Parasitology, Healthy Longevity Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Lukasz Wojciech
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Chin Wen Png
- Laboratory of Molecular and Cellular Parasitology, Healthy Longevity Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Yan Qin Dorinda Kioh
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Geok Choo Ng
- Laboratory of Molecular and Cellular Parasitology, Healthy Longevity Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Yongliang Zhang
- Laboratory of Molecular and Cellular Parasitology, Healthy Longevity Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Nicholas R J Gascoigne
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Kevin Shyong Wei Tan
- Laboratory of Molecular and Cellular Parasitology, Healthy Longevity Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore.
| |
Collapse
|
24
|
da Silva JL, Barbosa LV, Pinzan CF, Nardini V, Brigo IS, Sebastião CA, Elias-Oliveira J, Brazão V, Júnior JCDP, Carlos D, Cardoso CRDB. The Microbiota-Dependent Worsening Effects of Melatonin on Gut Inflammation. Microorganisms 2023; 11:microorganisms11020460. [PMID: 36838425 PMCID: PMC9962441 DOI: 10.3390/microorganisms11020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Dysbiosis and disturbances in gut homeostasis may result in dysregulated responses, which are common in inflammatory bowel diseases (IBD). These conditions may be refractory to the usual treatments and novel therapies are still necessary to reach a more successful regulation of intestinal immunity. The hormone melatonin (MLT) has been raised as a therapeutic alternative because of its known interactions with immune responses and gut microbiota. Hence, we evaluated the effects of MLT in experimental colitis that evolves with intestinal dysbiosis, inflammation and bacterial translocation. C57BL/6 mice were exposed to dextran sulfate sodium and treated with MLT. In acute colitis, the hormone led to increased clinical, systemic and intestinal inflammatory parameters. During remission, continued MLT administration delayed recovery, increased TNF, memory effector lymphocytes and diminished spleen regulatory cells. MLT treatment reduced Bacteroidetes and augmented Actinobacteria and Verrucomicrobia phyla in mice feces. Microbiota depletion resulted in a remarkable reversion of the colitis phenotype after MLT administration, including a counter-regulatory immune response, reduction in TNF and colon macrophages. There was a decrease in Actinobacteria, Firmicutes and, most strikingly, Verrucomicrobia phylum in recovering mice. Finally, these results pointed to a gut-microbiota-dependent effect of MLT in the potentiation of intestinal inflammation.
Collapse
Affiliation(s)
- Jefferson Luiz da Silva
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Lia Vezenfard Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Camila Figueiredo Pinzan
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Viviani Nardini
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Irislene Simões Brigo
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Cássia Aparecida Sebastião
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Jefferson Elias-Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Vânia Brazão
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - José Clóvis do Prado Júnior
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Cristina Ribeiro de Barros Cardoso
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
- Correspondence: ; Tel.:+55-(16)-3315-0257; Fax: +55-(16)-3315-4725
| |
Collapse
|
25
|
Oral Prevalence of Akkermansia muciniphila Differs among Pediatric and Adult Orthodontic and Non-Orthodontic Patients. Microorganisms 2023; 11:microorganisms11010112. [PMID: 36677404 PMCID: PMC9861072 DOI: 10.3390/microorganisms11010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Akkermansia muciniphila (AM) is one of many highly abundant intestinal microbes that influences homeostasis and metabolic disorders and may also play a role in oral disorders. However, there is little evidence regarding the oral prevalence of this organism. Based upon this lack of evidence, the primary goal of this project is to survey an existing saliva repository to determine the overall prevalence of this organism and any associations with demographic or patient characteristics (age, sex, body mass index, race/ethnicity, orthodontic therapy). Using an approved protocol,, a total n = 141 pediatric samples from an existing saliva repository were screened using qPCR revealing 29.8% harbored AM with nearly equal distribution among males and females, p = 0.8347. Significantly higher percentages of pediatric, non-orthodontic patients were positive for AM (42.3%) compared with age-matched orthodontic patients (14.3%)-which were equally distributed among non-orthodontic males (42.1%) and non-orthodontic females (42.5%). In addition, analysis of the adult samples revealed that nearly equal percentages of males (18.2%) and females (16.7%) harbored detectable levels of salivary AM, p = 0.2035. However, a higher proportion of non-orthodontic adult samples harbored AM (21.3%) compared to orthodontic samples (12.8%, p = 0.0001), which was equally distributed among males and females. These results suggest that both age and the presence of orthodontic brackets may influence microbial composition and, more specifically, are associated with reduction in AM among both pediatric and adult populations from their baseline levels.
Collapse
|
26
|
Xie R, Zhang H, Zhang H, Li C, Cui D, Li S, Li Z, Liu H, Huang J. Hemagglutinin expressed by yeast reshapes immune microenvironment and gut microbiota to trigger diverse anti-infection response in infected birds. Front Immunol 2023; 14:1125190. [PMID: 37143654 PMCID: PMC10151582 DOI: 10.3389/fimmu.2023.1125190] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/22/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction The H5N8 influenza virus is a highly pathogenic pathogen for poultry and human. Vaccination is the most effective method to control the spread of the virus right now. The traditional inactivated vaccine, though well developed and used widely, is laborious during application and more interests are stimulated in developing alternative approaches. Methods In this study, we developed three hemagglutinin (HA) gene-based yeast vaccine. In order to explore the protective efficacy of the vaccines, the gene expression level in the bursa of Fabricius and the structure of intestinal microflora in immunized animals were analyzed by RNA seq and 16SrRNA sequencing, and the regulatory mechanism of yeast vaccine was evaluated. Results All of these vaccines elicited the humoral immunity, inhibited viral load in the chicken tissues, and provided partial protective efficacy due to the high dose of the H5N8 virus. Molecular mechanism studies suggested that, compared to the traditional inactivated vaccine, our engineered yeast vaccine reshaped the immune cell microenvironment in bursa of Fabricius to promote the defense and immune responses. Analysis of gut microbiota further suggested that oral administration of engineered ST1814G/H5HA yeast vaccine increased the diversity of gut microbiota and the increasement of Reuteri and Muciniphila might benefit the recovery from influenza virus infection. These results provide strong evidence for further clinical use of these engineered yeast vaccine in poultry.
Collapse
Affiliation(s)
- Ruyu Xie
- School of Life Science, Tianjin University, Tianjin, China
| | - Huixia Zhang
- School of Life Science, Tianjin University, Tianjin, China
| | - Han Zhang
- School of Life Science, Tianjin University, Tianjin, China
| | - Changyan Li
- School of Life Science, Tianjin University, Tianjin, China
| | - Daqing Cui
- School of Life Science, Tianjin University, Tianjin, China
| | - Shujun Li
- School of Life Science, Tianjin University, Tianjin, China
| | - Zexing Li
- School of Life Science, Tianjin University, Tianjin, China
| | - Hualei Liu
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
- *Correspondence: Hualei Liu, ; Jinhai Huang,
| | - Jinhai Huang
- School of Life Science, Tianjin University, Tianjin, China
- *Correspondence: Hualei Liu, ; Jinhai Huang,
| |
Collapse
|