1
|
Asta L, Ricciardello A, Cucinotta F, Turriziani L, Boncoddo M, Bellomo F, Angelini J, Gnazzo M, Scandolo G, Pisanò G, Pelagatti F, Chehbani F, Camia M, Persico AM. Clinical, developmental and serotonemia phenotyping of a sample of 70 Italian patients with Phelan-McDermid Syndrome. J Neurodev Disord 2024; 16:57. [PMID: 39363263 PMCID: PMC11451156 DOI: 10.1186/s11689-024-09572-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS) is caused by monoallelic loss or inactivation at the SHANK3 gene, located in human chr 22q13.33, and is often associated with Autism Spectrum Disorder (ASD). OBJECTIVES To assess the clinical and developmental phenotype in a novel sample of PMS patients, including for the first time auxometric trajectories and serotonin blood levels. METHODS 70 Italian PMS patients were clinically characterized by parental report, direct medical observation, and a thorough medical and psychodiagnostic protocol. Serotonin levels were measured in platelet-rich plasma by HPLC. RESULTS Our sample includes 59 (84.3%) cases with chr. 22q13 terminal deletion, 5 (7.1%) disruptive SHANK3 mutations, and 6 (8.6%) ring chromosome 22. Intellectual disability was present in 69 (98.6%) cases, motor coordination disorder in 65 (92.9%), ASD in 20 (28.6%), and lifetime bipolar disorder in 12 (17.1%). Prenatal and postnatal complications were frequent (22.9%-48.6%). Expressive and receptive language were absent in 49 (70.0%) and 19 (27.1%) cases, respectively. Decreased pain sensitivity was reported in 56 (80.0%), hyperactivity in 49 (80.3%), abnormal sleep in 45 (64.3%), congenital dysmorphisms in 35 (58.3%), chronic stool abnormalities and especially constipation in 29 (41.4%). Parents reported noticing behavioral abnormalities during early childhood immediately after an infective episode in 34 (48.6%) patients. Brain MRI anomalies were observed in 53 (79.1%), EEG abnormalities in 16 (23.5%), kidney and upper urinary tract malformations in 18 (28.1%). Two novel phenotypes emerged: (a) a subgroup of 12/44 (27.3%) PMS patients displays smaller head size at enrollment (mean age 11.8 yrs) compared to their first year of neonatal life, documenting a deceleration of head growth (p < 0.001); (b) serotonin blood levels are significantly lower in 21 PMS patients compared to their 21 unaffected siblings (P < 0.05), and to 432 idiopathic ASD cases (p < 0.001). CONCLUSIONS We replicate and extend the description of many phenotypic characteristics present in PMS, and report two novel features: (1) growth trajectories are variable and head growth appears to slow down during childhood in some PMS patients; (2) serotonin blood levels are decreased in PMS, and not increased as frequently occurs in ASD. Further investigations of these novel features are under way.
Collapse
Affiliation(s)
- Lisa Asta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Arianna Ricciardello
- Cantonal Psychiatric Clinic, Cantonal Socio-Psychiatric Organization (O.S.C.), Repubblica e Cantone Ticino, Mendrisio, Switzerland
| | | | - Laura Turriziani
- Center for Autism "Dopo Di Noi", Barcellona Pozzo Di Gotto (Messina), Italy
| | - Maria Boncoddo
- Institute for Biomedical Research and Innovation (I.R.I.B.), National Research Council of Italy (C.N.R.), Messina, Italy
| | - Fabiana Bellomo
- Child Neuropsychiatry Unit, "G. Martino" University Hospital, Messina, Italy
| | - Jessica Angelini
- Residency Program in Child & Adolescent Neuropsychiatry, University of Modena and Reggio Emilia, Modena, Italy
| | - Martina Gnazzo
- Residency Program in Child & Adolescent Neuropsychiatry, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Scandolo
- Residency Program in Child & Adolescent Neuropsychiatry, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Pisanò
- Residency Program in Child & Adolescent Neuropsychiatry, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Pelagatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fethia Chehbani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michela Camia
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonio M Persico
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- Child & Adolescent Neuropsychiatry Program, Modena University Hospital, Modena, Italy.
| |
Collapse
|
2
|
Yin R, Wack M, Hassen-Khodja C, McDuffie MT, Bliss G, Horn EJ, Kothari C, McLarney B, Davis R, Hanson K, O'Boyle M, Betancur C, Avillach P. Phenome-wide profiling identifies genotype-phenotype associations in Phelan-McDermid syndrome using family-sourced data from an international registry. Mol Autism 2024; 15:40. [PMID: 39350236 PMCID: PMC11443936 DOI: 10.1186/s13229-024-00619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS) is a rare neurodevelopmental disorder caused by 22q13 deletions that include the SHANK3 gene or pathogenic sequence variants in SHANK3. It is characterized by global developmental delay, intellectual disability, speech impairment, autism spectrum disorder, and hypotonia; other variable features include epilepsy, brain and renal malformations, and mild dysmorphic features. Here, we conducted genotype-phenotype correlation analyses using the PMS International Registry, a family-driven registry that compiles clinical data in the form of family-reported outcomes and family-sourced genetic test results. METHODS Data from the registry were harmonized and integrated into the i2b2/tranSMART clinical and genomics data warehouse. We gathered information from 401 individuals with 22q13 deletions including SHANK3 (n = 350, ranging in size from 10 kb to 9.1 Mb) or pathogenic or likely pathogenic SHANK3 sequence variants (n = 51), and used regression models with deletion size as a potential predictor of clinical outcomes for 328 phenotypes. RESULTS Our results showed that increased deletion size was significantly associated with delay in gross and fine motor acquisitions, a spectrum of conditions related to poor muscle tone, renal malformations, mild dysmorphic features (e.g., large fleshy hands, sacral dimple, dysplastic toenails, supernumerary teeth), lymphedema, congenital heart defects, and more frequent neuroimaging abnormalities and infections. These findings indicate that genes upstream of SHANK3 also contribute to some of the manifestations of PMS in individuals with larger deletions. We also showed that self-help skills, verbal ability and a range of psychiatric diagnoses (e.g., autism, ADHD, anxiety disorder) were more common among individuals with smaller deletions and SHANK3 variants. LIMITATIONS Some participants were tested with targeted 22q microarrays rather than genome-wide arrays, and karyotypes were unavailable in many cases, thus precluding the analysis of the effect of other copy number variants or chromosomal rearrangements on the phenotype. CONCLUSIONS This is the largest reported case series of individuals with PMS. Overall, we demonstrate the feasibility of using data from a family-sourced registry to conduct genotype-phenotype analyses in rare genetic disorders. We replicate and strengthen previous findings, and reveal novel associations between larger 22q13 deletions and congenital heart defects, neuroimaging abnormalities and recurrent infections.
Collapse
Affiliation(s)
- Rui Yin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Maxime Wack
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Claire Hassen-Khodja
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael T McDuffie
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | | | | | - Cartik Kothari
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Rebecca Davis
- Phelan-McDermid Syndrome Foundation, Osprey, FL, 34229, USA
| | - Kristen Hanson
- Phelan-McDermid Syndrome Foundation, Osprey, FL, 34229, USA
| | - Megan O'Boyle
- Phelan-McDermid Syndrome Foundation, Osprey, FL, 34229, USA
| | - Catalina Betancur
- INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Sorbonne Université, 75005, Paris, France.
| | - Paul Avillach
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Mitz AR, Boccuto L, Thurm A. Evidence for common mechanisms of pathology between SHANK3 and other genes of Phelan-McDermid syndrome. Clin Genet 2024; 105:459-469. [PMID: 38414139 PMCID: PMC11025605 DOI: 10.1111/cge.14503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/29/2024]
Abstract
Chromosome 22q13.3 deletion (Phelan-McDermid) syndrome (PMS, OMIM 606232) is a rare genetic condition that impacts neurodevelopment. PMS most commonly results from heterozygous contiguous gene deletions that include the SHANK3 gene or likely pathogenic variants of SHANK3 (PMS-SHANK3 related). Rarely, chromosomal rearrangements that spare SHANK3 share the same general phenotype (PMS-SHANK3 unrelated). Very recent human and model system studies of genes that likely contribute to the PMS phenotype point to overlap in gene functions associated with neurodevelopment, synaptic formation, stress/inflammation and regulation of gene expression. In this review of recent findings, we describe the functional overlaps between SHANK3 and six partner genes of 22q13.3 (PLXNB2, BRD1, CELSR1, PHF21B, SULT4A1, and TCF20), which suggest a model that explains the commonality between PMS-SHANK3 related and PMS-SHANK3 unrelated classes of PMS. These genes are likely not the only contributors to neurodevelopmental impairments in the region, but they are the best documented to date. The review provides evidence for the overlapping and likely synergistic contributions of these genes to the PMS phenotype.
Collapse
Affiliation(s)
- Andrew R. Mitz
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Luigi Boccuto
- Healthcare Genetics and Genomics Interdisciplinary Doctoral Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, USA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Shah S, Sarasua SM, Boccuto L, Dean BC, Wang L. Brain Gene Co-Expression Network Analysis Identifies 22q13 Region Genes Associated with Autism, Intellectual Disability, Seizures, Language Impairment, and Hypotonia. Genes (Basel) 2023; 14:1998. [PMID: 38002941 PMCID: PMC10671420 DOI: 10.3390/genes14111998] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Phelan-McDermid syndrome (PMS) is a rare genetic neurodevelopmental disorder caused by 22q13 region deletions or SHANK3 gene variants. Deletions vary in size and can affect other genes in addition to SHANK3. PMS is characterized by autism spectrum disorder (ASD), intellectual disability (ID), developmental delays, seizures, speech delay, hypotonia, and minor dysmorphic features. It is challenging to determine individual gene contributions due to variability in deletion sizes and clinical features. We implemented a genomic data mining approach for identifying and prioritizing the candidate genes in the 22q13 region for five phenotypes: ASD, ID, seizures, language impairment, and hypotonia. Weighted gene co-expression networks were constructed using the BrainSpan transcriptome dataset of a human brain. Bioinformatic analyses of the co-expression modules allowed us to select specific candidate genes, including EP300, TCF20, RBX1, XPNPEP3, PMM1, SCO2, BRD1, and SHANK3, for the common neurological phenotypes of PMS. The findings help understand the disease mechanisms and may provide novel therapeutic targets for the precise treatment of PMS.
Collapse
Affiliation(s)
- Snehal Shah
- Healthcare Genetics and Genomics, School of Nursing, Clemson University, Clemson, SC 29634, USA; (S.S.); (L.B.)
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Sara M. Sarasua
- Healthcare Genetics and Genomics, School of Nursing, Clemson University, Clemson, SC 29634, USA; (S.S.); (L.B.)
| | - Luigi Boccuto
- Healthcare Genetics and Genomics, School of Nursing, Clemson University, Clemson, SC 29634, USA; (S.S.); (L.B.)
| | - Brian C. Dean
- School of Computing, Clemson University, Clemson, SC 29634, USA
| | - Liangjiang Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
- Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA
| |
Collapse
|
5
|
Forrest MP, Penzes P. Mechanisms of copy number variants in neuropsychiatric disorders: From genes to therapeutics. Curr Opin Neurobiol 2023; 82:102750. [PMID: 37515924 PMCID: PMC10529795 DOI: 10.1016/j.conb.2023.102750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 07/31/2023]
Abstract
Copy number variants (CNVs) are genomic imbalances strongly linked to the aetiology of neuropsychiatric disorders such as schizophrenia and autism. By virtue of their large size, CNVs often contain many genes, providing a multi-genic view of disease processes that can be dissected in model systems. Thus, CNV research provides an important stepping stone towards understanding polygenic disease mechanisms, positioned between monogenic and polygenic risk models. In this review, we will outline hypothetical models for gene interactions occurring within CNVs and discuss different approaches used to study rodent and stem cell disease models. We highlight recent work showing that genetic and pharmacological strategies can be used to rescue important aspects of CNV-mediated pathophysiology, which often converges onto synaptic pathways. We propose that using a rescue approach in complete CNV models provides a new path forward for precise mechanistic understanding of complex disorders and a tangible route towards therapeutic development.
Collapse
Affiliation(s)
- Marc P Forrest
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
6
|
Chatrousse L, Poullion T, El-Kassar L, Giraud-Triboult K, Boissart C, Sanatine P, Sommer P, Benchoua A. Establishment of heterozygous and homozygous SHANK3 knockout clonal pluripotent stem cells from the parental hESC line SA001 using CRISPR/Cas9. Stem Cell Res 2023; 72:103209. [PMID: 37769384 DOI: 10.1016/j.scr.2023.103209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
Phelan-McDermid syndrome (PMS) is a rare genetic disease characterized by a global developmental delay with autism spectrum disorder. PMS is caused by loss of function mutations in the SHANK3 gene leading to SHANK3 protein haploinsufficiency. This study describes the generation of isogenic clones produced from one male human embryonic stem cell line with deletions in SHANK3, in a heterozygous or homozygous manner, using CRISPR/Cas9 indel methodology. Differentiation of these clones into different neuronal lineages will help understanding PMS etiology and find treatments for PMD patients. (85/100 words).
Collapse
Affiliation(s)
- Laure Chatrousse
- CECS, I-STEM, AFM, Neuroplasticity and Therapeutics, 91100 Corbeil-Essonnes, France
| | - Thifaine Poullion
- CECS, I-STEM, AFM, Neuroplasticity and Therapeutics, 91100 Corbeil-Essonnes, France
| | - Lina El-Kassar
- CECS, I-STEM, AFM, Research and Technological Innovation, 91100 Corbeil-Essonnes, France
| | - Karine Giraud-Triboult
- CECS, I-STEM, AFM, Research and Technological Innovation, 91100 Corbeil-Essonnes, France
| | - Claire Boissart
- CECS, I-STEM, AFM, Neuroplasticity and Therapeutics, 91100 Corbeil-Essonnes, France
| | - Peggy Sanatine
- GENETHON, Imaging and cytometry platform, 1bis rue de l'Internationale, 91002 Evry-Cedex, France
| | | | - Alexandra Benchoua
- CECS, I-STEM, AFM, Neuroplasticity and Therapeutics, 91100 Corbeil-Essonnes, France; CECS, I-STEM, AFM, Research and Technological Innovation, 91100 Corbeil-Essonnes, France.
| |
Collapse
|
7
|
Dhossche D, de Billy C, Laurent-Levinson C, Le Normand MT, Recasens C, Robel L, Philippe A. Early-onset catatonia associated with SHANK3 mutations: looking at the autism spectrum through the prism of psychomotor phenomena. Front Psychiatry 2023; 14:1186555. [PMID: 37810596 PMCID: PMC10557257 DOI: 10.3389/fpsyt.2023.1186555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/04/2023] [Indexed: 10/10/2023] Open
Abstract
Background Individuals with Phelan-McDermid syndrome (PMS) present with a wide range of diagnoses: autism spectrum disorder, intellectual disability, or schizophrenia. Differences in the genetic background could explain these different neurodevelopmental trajectories. However, a more parsimonious hypothesis is to consider that they may be the same phenotypic entity. Catatonic disturbances occasionally reported from adolescence onwards in PMS prompts exploration of the hypothesis that this clinical entity may be an early-onset form of catatonia. The largest cohort of children with childhood catatonia was studied by the Wernicke-Kleist-Leonhard school (WKL school), which regards catatonia as a collection of qualitative abnormalities of psychomotricity that predominantly affecting involuntary motricity (reactive and expressive). The aim of this study was to investigate the presence of psychomotor signs in three young adults carrying a mutation or intragenic deletion of the SHANK3 gene through the prism of the WKL school conception of catatonia. Methods This study was designed as an exploratory case study. Current and childhood psychomotor phenomena were investigated through semi-structured interviews with the parents, direct interaction with the participants, and the study of documents reporting observations of the participants at school or by other healthcare professionals. Results The findings show catatonic manifestations from childhood that evolved into a chronic form, with possible phases of sub-acute exacerbations starting from adolescence. Conclusion The presence of catatonic symptoms from childhood associated with autistic traits leads us to consider that this singular entity fundamentally related to SHANK3 mutations could be a form of early-onset catatonia. Further case studies are needed to confirm our observations.
Collapse
Affiliation(s)
- Dirk Dhossche
- Department of Adolescent Psychiatry, Inland Northwest Behavioral Health, Spokane, WA, United States
| | - Clément de Billy
- CEMNIS – Noninvasive Neuromodulation Center, University Hospital Strasbourg, Strasbourg, France
| | - Claudine Laurent-Levinson
- Faculté de Médecine Sorbonne Université, Groupe de Recherche Clinique no. 15 – Troubles Psychiatriques et Développement (PSYDEV), Paris, France
- Centre de Référence des Maladies Rares à Expression Psychiatrique, Département de Psychiatrie de l’enfant et l’adolescent, Hôpital Pitié-Salpétrière, Paris, France
| | - Marie T. Le Normand
- Institut de l’Audition, Institut Pasteur, Paris, France
- Laboratoire de Psychopathologie et Processus de Santé, Université de Paris Cité, Paris, France
| | - Christophe Recasens
- Service universitaire de Psychiatrie de l’Enfant et de l’Adolescent, Centre hospitalier Intercommunal de Créteil, Créteil, France
| | - Laurence Robel
- Unité de Psychopathologie de l’Enfant et de l’Adolescent, GHU Paris, Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Anne Philippe
- Université Paris Cité, Paris, France
- INSERM U1163 Institut Imagine, Paris, France
| |
Collapse
|
8
|
Jesse S, Müller HP, Huppertz HJ, Andres S, Ludolph AC, Schön M, Boeckers TM, Kassubek J. Neurodegeneration or dysfunction in Phelan-McDermid syndrome? A multimodal approach with CSF and computational MRI. Orphanet J Rare Dis 2023; 18:274. [PMID: 37670319 PMCID: PMC10481508 DOI: 10.1186/s13023-023-02863-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/20/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS) is a rare multisystem disease with global developmental delay and autistic features. Genetically, the disease is based on a heterozygous deletion of chromosome 22q13.3 with involvement of at least part of the SHANK3 gene or heterozygous pathogenic variants in SHANK3. Pathophysiologically, this syndrome has been regarded as a synaptopathy, but current data suggest an additional concept, since axonal functions of neurons are also impaired, thus, the specific pathophysiological processes in this disease are not yet fully understood. Since symptoms of the autism spectrum, regression, and stagnation in development occur, we investigated whether neuroinflammatory and neurodegenerative processes may also play a role. To this end, we analysed biomarkers in cerebrospinal fluid (CSF) and parameters from magnetic resonance imaging with high-resolution structural T1w volumetry and diffusion tensor imaging analysis in 19 Phelan-McDermid syndrome patients. RESULTS CSF showed no inflammation but abnormalities in tau protein and amyloid-ß concentrations, however, with no typical biomarker pattern as in Alzheimer's disease. It could be demonstrated that these CSF changes were correlated with integrity losses of the fibres in the corticospinal tract as well as in the splenium and dorsal part of the cingulum. High CSF levels of tau protein were associated with loss of integrity of fibres in the corticospinal tract; lower levels of amyloid-ß were associated with decreasing integrity of fibre tracts of the splenium and posterior cingulate gyrus. Volumetric investigations showed global atrophy of the white matter, but not the grey matter, and particularly not in temporal or mesiotemporal regions, as is typical in later stages of Alzheimer's disease. CONCLUSIONS In summary, alterations of neurodegenerative CSF markers in PMS individuals could be demonstrated which were correlated with structural connectivity losses of the corticospinal tract, the splenium, and the dorsal part of the cingulum, which can also be associated with typical clinical symptoms in these patients. These findings might represent a state of dysfunctional processes with ongoing degenerative and regenerative processes or a kind of accelerated aging. This study should foster further clinical diagnostics like tau- and amyloid-PET imaging as well as novel scientific approaches especially in basic research for further mechanistic proof.
Collapse
Affiliation(s)
- Sarah Jesse
- Department of Neurology, University Hospital Ulm, Oberer Eselsberg 45, D-89081, Ulm, Germany.
- German Centre of Neurodegenerative Diseases (DZNE), Ulm, Germany.
| | - Hans-Peter Müller
- Department of Neurology, University Hospital Ulm, Oberer Eselsberg 45, D-89081, Ulm, Germany
| | | | | | - Albert C Ludolph
- Department of Neurology, University Hospital Ulm, Oberer Eselsberg 45, D-89081, Ulm, Germany
- German Centre of Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Michael Schön
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Tobias M Boeckers
- German Centre of Neurodegenerative Diseases (DZNE), Ulm, Germany
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University Hospital Ulm, Oberer Eselsberg 45, D-89081, Ulm, Germany
- German Centre of Neurodegenerative Diseases (DZNE), Ulm, Germany
| |
Collapse
|
9
|
Srivastava S, Sahin M, Buxbaum JD, Berry-Kravis E, Soorya LV, Thurm A, Bernstein JA, Asante-Otoo A, Bennett WE, Betancur C, Brickhouse TH, Passos Bueno MR, Chopra M, Christensen CK, Cully JL, Dies K, Friedman K, Gummere B, Holder JL, Jimenez-Gomez A, Kerins CA, Khan O, Kohlenberg T, Lacro RV, Levy LA, Levy T, Linnehan D, Loth E, Moshiree B, Neumeyer A, Paul SM, Phelan K, Persico A, Rapaport R, Rogers C, Saland J, Sethuram S, Shapiro J, Tarr PI, White KM, Wickstrom J, Williams KM, Winrow D, Wishart B, Kolevzon A. Updated consensus guidelines on the management of Phelan-McDermid syndrome. Am J Med Genet A 2023; 191:2015-2044. [PMID: 37392087 PMCID: PMC10524678 DOI: 10.1002/ajmg.a.63312] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/04/2023] [Accepted: 05/18/2023] [Indexed: 07/02/2023]
Abstract
Phelan-McDermid syndrome (PMS) is a genetic condition caused by SHANK3 haploinsufficiency and characterized by a wide range of neurodevelopmental and systemic manifestations. The first practice parameters for assessment and monitoring in individuals with PMS were published in 2014; recently, knowledge about PMS has grown significantly based on data from longitudinal phenotyping studies and large-scale genotype-phenotype investigations. The objective of these updated clinical management guidelines was to: (1) reflect the latest in knowledge in PMS and (2) provide guidance for clinicians, researchers, and the general community. A taskforce was established with clinical experts in PMS and representatives from the parent community. Experts joined subgroups based on their areas of specialty, including genetics, neurology, neurodevelopment, gastroenterology, primary care, physiatry, nephrology, endocrinology, cardiology, gynecology, and dentistry. Taskforce members convened regularly between 2021 and 2022 and produced specialty-specific guidelines based on iterative feedback and discussion. Taskforce leaders then established consensus within their respective specialty group and harmonized the guidelines. The knowledge gained over the past decade allows for improved guidelines to assess and monitor individuals with PMS. Since there is limited evidence specific to PMS, intervention mostly follows general guidelines for treating individuals with developmental disorders. Significant evidence has been amassed to guide the management of comorbid neuropsychiatric conditions in PMS, albeit mainly from caregiver report and the experience of clinical experts. These updated consensus guidelines on the management of PMS represent an advance for the field and will improve care in the community. Several areas for future research are also highlighted and will contribute to subsequent updates with more refined and specific recommendations as new knowledge accumulates.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph D. Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | | | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | | | - Afua Asante-Otoo
- Rehabilitation Medicine Department, NIH Clinical Center, Bethesda, MD, USA
| | - William E. Bennett
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Catalina Betancur
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Paris, France
| | - Tegwyn H. Brickhouse
- Department of Dental Public Health & Policy, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Maria Rita Passos Bueno
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maya Chopra
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Celanie K. Christensen
- Division of Developmental Medicine, Department of Pediatrics, Riley Children’s Health, Indianapolis, IN, USA
- Division of Child Neurology, Department of Neurology, Riley Children’s Health, Indianapolis, IN, USA
| | - Jennifer L. Cully
- Department of Pediatrics, College of Medicine and Division of Dentistry and Orthodontics, University of Cincinnati, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Kira Dies
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kate Friedman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - J. Lloyd Holder
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
| | | | - Carolyn A. Kerins
- Department of Pediatric Dentistry, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Omar Khan
- National Institute of Neurological Disease and Stroke, Bethesda, MD, USA
| | | | - Ronald V. Lacro
- Department of Cardiology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | | - Tess Levy
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Eva Loth
- Kings College London, London, UK
| | - Baharak Moshiree
- Department of Medicine, Wake Forest/Atrium Health, Charlotte, NC, USA
| | - Ann Neumeyer
- Lurie Center for Autism, Massachusetts General Hospital, Lexington MA, USA, Harvard Medical School, Boston, MA USA
| | - Scott M. Paul
- Rehabilitation Medicine Department, NIH Clinical Center, Bethesda, MD, USA
| | - Katy Phelan
- Genetics Laboratory, Florida Cancer Specialists and Research Institute, Fort Myers, FL, USA
| | - Antonio Persico
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Robert Rapaport
- Department of Pediatrics, Kravis Children’s Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Jeffrey Saland
- Department of Pediatrics, Kravis Children’s Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Swathi Sethuram
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | | | - Phillip I. Tarr
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Kerry M. White
- Division of Developmental Medicine, Department of Pediatrics, Riley Children’s Health, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Riley Children’s Health, Indianapolis, IN, USA
| | - Jordan Wickstrom
- Sinai Rehabilitation Center, Lifebridge Health, Baltimore, MD, USA
| | - Kent M. Williams
- Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA
| | | | | | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Kravis Children’s Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
10
|
Rolland T, Cliquet F, Anney RJL, Moreau C, Traut N, Mathieu A, Huguet G, Duan J, Warrier V, Portalier S, Dry L, Leblond CS, Douard E, Amsellem F, Malesys S, Maruani A, Toro R, Børglum AD, Grove J, Baron-Cohen S, Packer A, Chung WK, Jacquemont S, Delorme R, Bourgeron T. Phenotypic effects of genetic variants associated with autism. Nat Med 2023; 29:1671-1680. [PMID: 37365347 PMCID: PMC10353945 DOI: 10.1038/s41591-023-02408-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
While over 100 genes have been associated with autism, little is known about the prevalence of variants affecting them in individuals without a diagnosis of autism. Nor do we fully appreciate the phenotypic diversity beyond the formal autism diagnosis. Based on data from more than 13,000 individuals with autism and 210,000 undiagnosed individuals, we estimated the odds ratios for autism associated to rare loss-of-function (LoF) variants in 185 genes associated with autism, alongside 2,492 genes displaying intolerance to LoF variants. In contrast to autism-centric approaches, we investigated the correlates of these variants in individuals without a diagnosis of autism. We show that these variants are associated with a small but significant decrease in fluid intelligence, qualification level and income and an increase in metrics related to material deprivation. These effects were larger for autism-associated genes than in other LoF-intolerant genes. Using brain imaging data from 21,040 individuals from the UK Biobank, we could not detect significant differences in the overall brain anatomy between LoF carriers and non-carriers. Our results highlight the importance of studying the effect of the genetic variants beyond categorical diagnosis and the need for more research to understand the association between these variants and sociodemographic factors, to best support individuals carrying these variants.
Collapse
Affiliation(s)
- Thomas Rolland
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France.
| | - Freddy Cliquet
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Richard J L Anney
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Clara Moreau
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Nicolas Traut
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
- Center for Research and Interdisciplinarity (CRI), Université Paris Descartes, Paris, France
| | - Alexandre Mathieu
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Guillaume Huguet
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada
| | - Jinjie Duan
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Biomedicine and the iSEQ Centre, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Varun Warrier
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Swan Portalier
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Louise Dry
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Claire S Leblond
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Elise Douard
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada
- Département de Pédiatrie, Université de Montréal, Montréal, Québec, Canada
| | - Frédérique Amsellem
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Simon Malesys
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Anna Maruani
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Roberto Toro
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
- Center for Research and Interdisciplinarity (CRI), Université Paris Descartes, Paris, France
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Biomedicine and the iSEQ Centre, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Jakob Grove
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Biomedicine and the iSEQ Centre, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Wendy K Chung
- Simons Foundation, New York, NY, USA
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Sébastien Jacquemont
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada
- Département de Pédiatrie, Université de Montréal, Montréal, Québec, Canada
| | - Richard Delorme
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France.
| |
Collapse
|
11
|
Molloy CJ, Cooke J, Gatford NJF, Rivera-Olvera A, Avazzadeh S, Homberg JR, Grandjean J, Fernandes C, Shen S, Loth E, Srivastava DP, Gallagher L. Bridging the translational gap: what can synaptopathies tell us about autism? Front Mol Neurosci 2023; 16:1191323. [PMID: 37441676 PMCID: PMC10333541 DOI: 10.3389/fnmol.2023.1191323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/24/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple molecular pathways and cellular processes have been implicated in the neurobiology of autism and other neurodevelopmental conditions. There is a current focus on synaptic gene conditions, or synaptopathies, which refer to clinical conditions associated with rare genetic variants disrupting genes involved in synaptic biology. Synaptopathies are commonly associated with autism and developmental delay and may be associated with a range of other neuropsychiatric outcomes. Altered synaptic biology is suggested by both preclinical and clinical studies in autism based on evidence of differences in early brain structural development and altered glutamatergic and GABAergic neurotransmission potentially perturbing excitatory and inhibitory balance. This review focusses on the NRXN-NLGN-SHANK pathway, which is implicated in the synaptic assembly, trans-synaptic signalling, and synaptic functioning. We provide an overview of the insights from preclinical molecular studies of the pathway. Concentrating on NRXN1 deletion and SHANK3 mutations, we discuss emerging understanding of cellular processes and electrophysiology from induced pluripotent stem cells (iPSC) models derived from individuals with synaptopathies, neuroimaging and behavioural findings in animal models of Nrxn1 and Shank3 synaptic gene conditions, and key findings regarding autism features, brain and behavioural phenotypes from human clinical studies of synaptopathies. The identification of molecular-based biomarkers from preclinical models aims to advance the development of targeted therapeutic treatments. However, it remains challenging to translate preclinical animal models and iPSC studies to interpret human brain development and autism features. We discuss the existing challenges in preclinical and clinical synaptopathy research, and potential solutions to align methodologies across preclinical and clinical research. Bridging the translational gap between preclinical and clinical studies will be necessary to understand biological mechanisms, to identify targeted therapies, and ultimately to progress towards personalised approaches for complex neurodevelopmental conditions such as autism.
Collapse
Affiliation(s)
- Ciara J. Molloy
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Jennifer Cooke
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Nicholas J. F. Gatford
- Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Medical Sciences Division, Oxford, United Kingdom
| | - Alejandro Rivera-Olvera
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Sahar Avazzadeh
- Physiology and Cellular Physiology Research Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland
| | - Judith R. Homberg
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Joanes Grandjean
- Physiology and Cellular Physiology Research Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland
- Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Cathy Fernandes
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
- FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons, Dublin, Ireland
| | - Eva Loth
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Deepak P. Srivastava
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- The Hospital for SickKids, Toronto, ON, Canada
- The Peter Gilgan Centre for Research and Learning, SickKids Research Institute, Toronto, ON, Canada
- The Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Koza SA, Tabet AC, Bonaglia MC, Andres S, Anderlid BM, Aten E, Stiefsohn D. Consensus recommendations on counselling in Phelan-McDermid syndrome, with special attention to recurrence risk and to ring chromosome 22. Eur J Med Genet 2023; 66:104773. [PMID: 37120077 DOI: 10.1016/j.ejmg.2023.104773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/10/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
This paper focuses on genetic counselling in Phelan-McDermid syndrome (PMS), a rare neurodevelopmental disorder caused by a deletion 22q13.3 or a pathogenic variant in SHANK3. It is one of a series of papers written by the European PMS consortium as a consensus guideline. We reviewed the available literature based on pre-set questions to formulate recommendations on counselling, diagnostic work-up and surveillance for tumours related to ring chromosome 22. All recommendations were approved by the consortium, which consists of professionals and patient representatives, using a voting procedure. PMS can only rarely be diagnosed based solely on clinical features and requires confirmation via genetic testing. In most cases, the family will be referred to a clinical geneticist for counselling after the genetic diagnosis has been made. Family members will be investigated and, if indicated, the chance of recurrence discussed with them. Most individuals with PMS have a de novo deletion or a pathogenic variant of SHANK3. The 22q13.3 deletion can be a simple deletion, a ring chromosome 22, or the result of a parental balanced chromosomal anomaly, influencing the risk of recurrence. Individuals with a ring chromosome 22 have an increased risk of NF2-related schwannomatosis (formerly neurofibromatosis type 2) and atypical teratoid rhabdoid tumours, which are associated with the tumour-suppressor genes NF2 and SMARCB1, respectively, and both genes are located on chromosome 22. The prevalence of PMS due to a ring chromosome 22 is estimated to be 10-20%. The risk of developing a tumour in an individual with a ring chromosome 22 can be calculated as 2-4%. However, those individuals who do develop tumours often have multiple. We recommend referring all individuals with PMS and their parents to a clinical geneticist or a comparably experienced medical specialist for genetic counselling, further genetic testing, follow-up and discussion of prenatal diagnostic testing in subsequent pregnancies. We also recommend karyotyping to diagnose or exclude a ring chromosome 22 in individuals with a deletion 22q13.3 detected by molecular tests. If a ring chromosome 22 is found, we recommend discussing personalised follow-up for NF2-related tumours and specifically cerebral imaging between the age of 14 and 16 years.
Collapse
Affiliation(s)
- Sylvia A Koza
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen, the Netherlands
| | - Anne C Tabet
- Cytogenetic Unit, Genetic Department, Robert Debré Hospital, Human Genetic and Cognitive Function, Pasteur Institute, Paris, France
| | - Maria C Bonaglia
- Cytogenetics Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | | | - Britt-Marie Anderlid
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Emmelien Aten
- Leiden University Medical Center, Department of Clinical Genetics, Leiden, the Netherlands
| | | |
Collapse
|
13
|
van Balkom ID, Burdeus-Olavarrieta M, Cooke J, de Cuba AG, Turner A. Consensus recommendations on mental health issues in Phelan-McDermid syndrome. Eur J Med Genet 2023; 66:104770. [PMID: 37085014 DOI: 10.1016/j.ejmg.2023.104770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
Phelan-McDermid syndrome is a rare genetic condition caused by a deletion encompassing the 22q13.3 region or a pathogenic variant of the gene SHANK3. The clinical presentation is variable, but main characteristics include global developmental delay/intellectual disability (ID), marked speech impairment or delay, along with other features like hypotonia and somatic or psychiatric comorbidities. This publication delineates mental health, developmental and behavioural themes across the lifetime of individuals with PMS as informed by parents/caregivers, experts, and other key professionals involved in PMS care. We put forward several recommendations based on the available literature concerning mental health and behaviour in PMS. Additionally, this article aims to improve our awareness of the importance of considering developmental level of the individual with PMS when assessing mental health and behavioural issues. Understanding how the discrepancy between developmental level and chronological age may impact concerning behaviours offers insight into the meaning of those behaviours and informs care for individuals with PMS, enabling clinicians to address unmet (mental health) care needs and improve quality of life.
Collapse
Affiliation(s)
- Ingrid Dc van Balkom
- Jonx, Department of (Youth) Mental Health and Autism, Lentis Psychiatric Institute, Groningen, the Netherlands; Rob Giel Research Centre, Department of Psychiatry, University Medical Center Groningen, Groningen, the Netherlands.
| | - Monica Burdeus-Olavarrieta
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; School of Psychology, Universidad Autónoma, Madrid, Spain
| | - Jennifer Cooke
- Forensic and Neurodevelopmental Sciences Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, United Kingdom
| | - A Graciela de Cuba
- Jonx, Department of (Youth) Mental Health and Autism, Lentis Psychiatric Institute, Groningen, the Netherlands
| | - Alison Turner
- Phelan-McDermid Syndrome Foundation UK, 99 Highgate W Hill, London, N6 6NR, United Kingdom
| |
Collapse
|
14
|
Matuleviciene A, Siauryte K, Kuiper E. Consensus recommendations on chewing, swallowing and gastrointestinal problems in Phelan-McDermid syndrome. Eur J Med Genet 2023; 66:104763. [PMID: 37054968 DOI: 10.1016/j.ejmg.2023.104763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Gastrointestinal (GI) problems are common in Phelan-McDermid syndrome (PMS). Chewing and swallowing difficulties, dental problems, reflux disease, cyclic vomiting, constipation, incontinence, diarrhoea, and nutritional deficiencies have been most frequently reported. Therefore, this review summarises current findings on GI problems and addresses the fundamental questions, which were based on parental surveys, of how frequent GI problems occur in PMS, what GI problems occur, what consequences (e.g., nutritional deficiencies) GI problems cause for individuals with PMS, and how GI problems can be treated in individuals with PMS. Our findings show that gastrointestinal problems have a detrimental effect on the health of people with PMS and are a significant burden for their families. Therefore, we advise evaluation for these problems and formulate care recommendations.
Collapse
Affiliation(s)
- Ausra Matuleviciene
- Dept. of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.
| | - Kamile Siauryte
- Dept. of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Els Kuiper
- Patient Representative from the European Consensus PMS Group, the Netherlands
| |
Collapse
|
15
|
Schön M, Pablo L, Julián N, Mattina T, Gunnarsson C, Hadzsiev K, Verpelli C, Bourgeron T, Sarah J, van Ravenswaaij-Arts CMA, Hennekam RC. Definition and clinical variability of SHANK3-related Phelan-McDermid syndrome. Eur J Med Genet 2023; 66:104754. [PMID: 37003575 DOI: 10.1016/j.ejmg.2023.104754] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Phelan-McDermid syndrome (PMS) is an infrequently described syndrome that presents with a disturbed development, neurological and psychiatric characteristics, and sometimes other comorbidities. As part of the development of European medical guidelines we studied the definition, phenotype, genotype-phenotype characteristics, and natural history of the syndrome. The number of confirmed diagnoses of PMS in different European countries was also assessed and it could be concluded that PMS is underdiagnosed. The incidence of PMS in European countries is estimated to be at least 1 in 30,000. Next generation sequencing, including analysis of copy number variations, as first tier in diagnostics of individuals with intellectual disability will likely yield a larger number of individuals with PMS than presently known. A definition of PMS by its phenotype is at the present not possible, and therefore PMS-SHANK3 related is defined by the presence of SHANK3 haploinsufficiency, either by a deletion involving region 22q13.2-33 or a pathogenic/likely pathogenic variant in SHANK3. In summarizing the phenotype, we subdivided it into that of individuals with a 22q13 deletion and that of those with a pathogenic/likely pathogenic SHANK3 variant. The phenotype of individuals with PMS is variable, depending in part on the deletion size or, whether only a variant of SHANK3 is present. The core phenotype in the domains development, neurology, and senses are similar in those with deletions and SHANK3 variants, but individuals with a SHANK3 variant more often are reported to have behavioural disorders and less often urogenital malformations and lymphedema. The behavioural disorders may, however, be a less outstanding feature in individuals with deletions accompanied by more severe intellectual disability. Data available on the natural history are limited. Results of clinical trials using insulin-like growth factor I (IGF-1), intranasal insulin, and oxytocin are available, other trials are in progress. The present guidelines for PMS aim at offering tools to caregivers and families to provide optimal care to individuals with PMS.
Collapse
Affiliation(s)
- Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Germany.
| | - Lapunzina Pablo
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII; ITHACA-European Reference Network, Hospital La Paz, Madrid, Spain
| | - Nevado Julián
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII; ITHACA-European Reference Network, Hospital La Paz, Madrid, Spain
| | - Teresa Mattina
- Department of Biomedical and Biotechnological Sciences, Medical Genetics, University of Catania, Catania, Italy
| | - Cecilia Gunnarsson
- Department of Clinical Genetics and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Centre for Rare Diseases in South East Region of Sweden, Linköping University, Linköping, Sweden
| | - Kinga Hadzsiev
- Department of Medical Genetics, Medical School, University of Pécs, Pécs, Hungary
| | | | - Thomas Bourgeron
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, IUF, 75015, Paris, France
| | - Jesse Sarah
- Department of Neurology, Ulm University, Germany
| | | | - Raoul C Hennekam
- Department of Pediatrics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Jesse S, Kuhlmann L, Hildebrand LS, Magelssen H, Schmaus M, Timmermann B, Andres S, Fietkau R, Distel LV. Increased Radiation Sensitivity in Patients with Phelan-McDermid Syndrome. Cells 2023; 12:cells12050820. [PMID: 36899955 PMCID: PMC10000830 DOI: 10.3390/cells12050820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Phelan-McDermid syndrome is an inherited global developmental disorder commonly associated with autism spectrum disorder. Due to a significantly increased radiosensitivity, measured before the start of radiotherapy of a rhabdoid tumor in a child with Phelan-McDermid syndrome, the question arose whether other patients with this syndrome also have increased radiosensitivity. For this purpose, the radiation sensitivity of blood lymphocytes after irradiation with 2Gray was examined using the G0 three-color fluorescence in situ hybridization assay in a cohort of 20 patients with Phelan-McDermid syndrome from blood samples. The results were compared to healthy volunteers, breast cancer patients and rectal cancer patients. Independent of age and gender, all but two patients with Phelan-McDermid syndrome showed significantly increased radiosensitivity, with an average of 0.653 breaks per metaphase. These results correlated neither with the individual genetic findings nor with the individual clinical course, nor with the respective clinical severity of the disease. In our pilot study, we saw a significantly increased radiosensitivity in lymphocytes from patients with Phelan-McDermid syndrome, so pronounced that a dose reduction would be recommended if radiotherapy had to be performed. Ultimately, the question arises as to the interpretation of these data. There does not appear to be an increased risk of tumors in these patients, since tumors are rare overall. The question, therefore, arose as to whether our results could possibly be the basis for processes, such as aging/preaging, or, in this context, neurodegeneration. There are no data on this so far, but this issue should be pursued in further fundamentally based studies in order to better understand the pathophysiology of the syndrome.
Collapse
Affiliation(s)
- Sarah Jesse
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Lukas Kuhlmann
- Department of Radiation Biology, Erlangen University, 91054 Erlangen, Germany
| | - Laura S. Hildebrand
- Department of Radiation Biology, Erlangen University, 91054 Erlangen, Germany
| | - Henriette Magelssen
- Department of Oncology, Oslo University Hospital (The Norwegian Radium Hospital), 0424 Oslo, Norway
| | - Martina Schmaus
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Beate Timmermann
- Clinic for Particle Therapy at WPE, University Hospital Essen, 45147 Essen, Germany
| | | | - Rainer Fietkau
- Department of Radiation Biology, Erlangen University, 91054 Erlangen, Germany
| | - Luitpold V. Distel
- Department of Radiation Biology, Erlangen University, 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
17
|
Burdeus-Olavarrieta M, Nevado J, van Weering-Scholten S, Parker S, Swillen A. Consensus recommendations on communication, language and speech in Phelan-McDermid syndrome. Eur J Med Genet 2023; 66:104745. [PMID: 36871884 DOI: 10.1016/j.ejmg.2023.104745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Phelan-McDermid syndrome is a genetic condition primarily caused by a deletion on the 22q13.3 region or a likely pathogenic/pathogenic variant of SHANK3. The main features comprise global developmental delay, marked impairment or absence of speech, and other clinical characteristics to a variable degree, such as hypotonia or psychiatric comorbidities. A set of clinical guidelines for health professionals covering relevant aspects of clinical management have been written by the European PMS Consortium, and consensus has been reached regarding final recommendations. In this work, attention is given to communication, language and speech impairments in PMS, and the findings from available literature are presented. Findings from the literature review reveal marked speech impairment in up to 88% of deletions and 70% of SHANK3 variants. Absence of speech is frequent and affects 50%-80% of the individuals with PMS. Communicative skills in the expressive domain other than spoken language remain understudied, but some studies offer data on non-verbal language or the use of alternative/augmentative communication support. Loss of language and other developmental skills is reported in around 40% of individuals, with variable course. Deletion size and possibly other clinical variables (e.g., conductive hearing problems, neurological issues, intellectual disability, etc.) are related to communicative and linguistic abilities. Recommendations include regular medical check-ups of hearing and the assessment of other factors influencing communication, thorough evaluation of preverbal and verbal communicative skills, early intervention, and support via alternative/augmentative communication systems.
Collapse
Affiliation(s)
- Monica Burdeus-Olavarrieta
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; School of Psychology, Universidad Autónoma, Madrid, Spain.
| | - Julián Nevado
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain; CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain; ITHACA-European Reference Network, Hospital La Paz, Madrid, Spain
| | | | - Susanne Parker
- Phelan-McDermid-Gesellschaft e.V. Geschäftsstelle Universitätsklinikum Ulm, Sekretariat Neurologie, Oberer Eselsberg 45, 89081, Ulm, Germany
| | -
- Coordinated by C.M.A. van Ravenswaaij-Arts, University of Groningen, University Medical Centre Groningen, Dept. Genetics, Groningen, the Netherlands
| | - Ann Swillen
- Center for Human Genetics, University Hospital Leuven, Belgium; Department of Human Genetics, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
18
|
de Coo IF, Jesse S, Le TL, Sala C, Bourgeron T. Consensus recommendations on Epilepsy in Phelan-McDermid syndrome. Eur J Med Genet 2023; 66:104746. [PMID: 36967043 DOI: 10.1016/j.ejmg.2023.104746] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 03/28/2023]
Abstract
Phelan-McDermid syndrome (PMS) is a 22q13.3 deletion syndrome that presents with a disturbed development, neurological and psychiatric characteristics, and sometimes other comorbidities like seizures. The epilepsy manifests itself in a variety of seizure semiologies. Further diagnostics using electroencephalogram (EEG) and brain magnetic resonance imaging (MRI) are important in conjunction with the clinical picture of the seizures to decide whether anticonvulsant therapy is necessary. As part of the development of European consensus guidelines we focussed on the prevalence and semiology of epileptic seizures in PMS associated with a pathogenic variant in the SHANK3 gene or the 22q13 deletion involving SHANK3, in order to then be able to make recommendations regarding diagnosis and therapy.
Collapse
|
19
|
Vitrac A, Leblond CS, Rolland T, Cliquet F, Mathieu A, Maruani A, Delorme R, Schön M, Grabrucker AM, van Ravenswaaij-Arts C, Phelan K, Tabet AC, Bourgeron T. Dissecting the 22q13 region to explore the genetic and phenotypic diversity of patients with Phelan-McDermid syndrome. Eur J Med Genet 2023; 66:104732. [PMID: 36822569 DOI: 10.1016/j.ejmg.2023.104732] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
SHANK3-related Phelan-McDermid syndrome (PMS) is caused by a loss of the distal part of chromosome 22, including SHANK3, or by a pathological SHANK3 variant. There is an important genetic and phenotypic diversity among patients who can present with developmental delay, language impairments, autism, epilepsy, and other symptoms. SHANK3, encoding a synaptic scaffolding protein, is deleted in the majority of patients with PMS and is considered a major gene involved in the neurological impairments of the patients. However, differences in deletion size can influence clinical features, and in some rare cases, deletions at the 22q13 locus in individuals with SHANK3-unrelated PMS do not encompass SHANK3. These individuals with SHANK3-unrelated PMS still display a PMS-like phenotype. This suggests the participation of other 22q13 genes in the pathogenesis of PMS. Here, we review the biological function and potential implication in PMS symptoms of 110 genes located in the 22q13 region, focusing on 35 genes with evidence for association with neurodevelopmental disorders, including 13 genes for epilepsy and 11 genes for microcephaly and/or macrocephaly. Our review is restricted to the 22q13 region, but future large-scale studies using whole genome sequencing and deep-phenotyping are warranted to develop predictive models of clinical trajectories and to target specific medical and educational care for each individual with PMS.
Collapse
Affiliation(s)
- Aline Vitrac
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, IUF, 75015, Paris, France.
| | - Claire S Leblond
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, IUF, 75015, Paris, France
| | - Thomas Rolland
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, IUF, 75015, Paris, France
| | - Freddy Cliquet
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, IUF, 75015, Paris, France
| | - Alexandre Mathieu
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, IUF, 75015, Paris, France
| | - Anna Maruani
- Department of Child and Adolescent Psychiatry, Hôpital Robert Debré, APHP, Paris, France
| | - Richard Delorme
- Department of Child and Adolescent Psychiatry, Hôpital Robert Debré, APHP, Paris, France
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Andreas M Grabrucker
- Bernal Institute, University of Limerick, Limerick, Ireland; Dept. of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute HRI, University of Limerick, Limerick, Ireland
| | - Conny van Ravenswaaij-Arts
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Katy Phelan
- Genetics Laboratory, Florida Cancer Specialists & Research Institute, Fort Myers, FL, 33916, USA
| | | | - Thomas Bourgeron
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, IUF, 75015, Paris, France.
| |
Collapse
|
20
|
Sarasua SM, DeLuca JM, Rogers C, Phelan K, Rennert L, Powder KE, Weisensee K, Boccuto L. Head Size in Phelan-McDermid Syndrome: A Literature Review and Pooled Analysis of 198 Patients Identifies Candidate Genes on 22q13. Genes (Basel) 2023; 14:540. [PMID: 36980813 PMCID: PMC10048319 DOI: 10.3390/genes14030540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/24/2023] Open
Abstract
Phelan-McDermid syndrome (PMS) is a multisystem disorder that is associated with deletions of the 22q13 genomic region or pathogenic variants in the SHANK3 gene. Notable features include developmental issues, absent or delayed speech, neonatal hypotonia, seizures, autism or autistic traits, gastrointestinal problems, renal abnormalities, dolichocephaly, and both macro- and microcephaly. Assessment of the genetic factors that are responsible for abnormal head size in PMS has been hampered by small sample sizes as well as a lack of attention to these features. Therefore, this study was conducted to investigate the relationship between head size and genes on chromosome 22q13. A review of the literature was conducted to identify published cases of 22q13 deletions with information on head size to conduct a pooled association analysis. Across 56 studies, we identified 198 cases of PMS with defined deletion sizes and head size information. A total of 33 subjects (17%) had macrocephaly, 26 (13%) had microcephaly, and 139 (70%) were normocephalic. Individuals with macrocephaly had significantly larger genomic deletions than those with microcephaly or normocephaly (p < 0.0001). A genomic region on 22q13.31 was found to be significantly associated with macrocephaly with CELSR1, GRAMD4, and TBCD122 suggested as candidate genes. Investigation of these genes will aid the understanding of head and brain development.
Collapse
Affiliation(s)
- Sara M. Sarasua
- Healthcare Genetics and Genomics Program, Clemson University School of Nursing, Clemson, SC 29634, USA
| | - Jane M. DeLuca
- Healthcare Genetics and Genomics Program, Clemson University School of Nursing, Clemson, SC 29634, USA
| | | | - Katy Phelan
- Florida Cancer Specialists & Research Institute, Fort Myers, FL 33908, USA
| | - Lior Rennert
- Department of Public Health Sciences, Clemson University, Clemson, SC 29634, USA
| | - Kara E. Powder
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Katherine Weisensee
- Department of Sociology, Anthropology and Criminal Justice, Clemson University, Clemson, SC 29634, USA
| | - Luigi Boccuto
- Healthcare Genetics and Genomics Program, Clemson University School of Nursing, Clemson, SC 29634, USA
| |
Collapse
|
21
|
Walinga M, Jesse S, Alhambra N, Van Buggenhout G. Consensus recommendations on altered sensory functioning in Phelan-McDermid syndrome. Eur J Med Genet 2023; 66:104726. [PMID: 36796507 DOI: 10.1016/j.ejmg.2023.104726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Altered sensory functioning is often observed in individuals with SHANK3 related Phelan-McDermid syndrome (PMS). Compared to typically developing individuals and individuals with an autism spectrum disorder, it has been suggested that there are distinctive features of sensory functioning in PMS. More hyporeactivity symptoms and less hyperreactivity and sensory seeking behaviour are seen, particularly in the auditory domain. Hypersensitivity to touch, possible overheating or turning red easily and reduced pain response are often seen. In this paper the current literature on sensory functioning in PMS is reviewed and recommendations for caregivers, based on consensus within the European PMS consortium, are given.
Collapse
Affiliation(s)
- Margreet Walinga
- University of Groningen, University Medical Center Groningen, Dept. Genetics, Groningen, the Netherlands.
| | - Sarah Jesse
- University of Ulm, Department of Neurology, Ulm, Germany
| | | | | | | |
Collapse
|
22
|
I DV, Proskokova TN. [Phelan-McDermid syndrome associated with a novel heterozygous mutation in the SHANK3 gene]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:124-128. [PMID: 37655421 DOI: 10.17116/jnevro2023123081124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Phelan-McDermid syndrome (PMS) is a hereditary disorder associated with microdeletions of chromosome 22q13 or point mutations in SHANK3, characterized by mental and speech delays, intellectual disability, epilepsy and autism spectrum disorder. We describe a case PMS associated with a heterozygous mutation c.2486delC (p.Pro829fs) in SHANK3. The diagnostic pathway of a female patient with PMS took more than 7 years; the reason for treatment was the onset of epileptic seizures and impaired speech development. The existence of different types of rearrangements and genomic variations can explain the high clinical variability observed in individuals with PMS. Only molecular diagnosis can accurately diagnose individuals with PMS for follow-up and medical genetic counselling of families.
Collapse
Affiliation(s)
- D V I
- Khabarovsk Center for the Development of Psychology and Childhood «Psylogia», Khabarovsk, Russia
- Far-East State Medical University, Khabarovsk, Russia
| | | |
Collapse
|
23
|
Chen L, Yao ZY, Wu X, He SR, Liu YM, Wang XY, Cao DZ, Yang XK, Zhao JB, Ren Z, Li H, Pei Z, Ding HK, Feng ZC. Phelan-McDermid Syndrome in Pediatric Patients With Novel Mutations: Genetic and Phenotypic Analyses. Front Pediatr 2022; 10:888001. [PMID: 36081626 PMCID: PMC9445366 DOI: 10.3389/fped.2022.888001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background PhelanrMcDermid syndrome (PMS) is an uncommon autosomal dominant inherited developmental disorder. The main characteristics are hypotonia, intellectual disability, autism spectrum disorder, autism-like behaviors and tiny facial deformities. Most cases are caused by the deletion of the 22q13 genomic region, including the deletion of SHANK3. Methods Genetic and phenotype evaluations of ten Chinese pediatric patients were performed. The clinical phenotypes and genetic testing results were collected statistically. We analyzed the deletion of the 22q13 genomic region and small mutations in SHANK3 (GRCh37/hg19) and performed parental genotype verification to determine whether it was related to the parents or was a novel mutation. Results The age of the patients diagnosed with PMS ranged from 0 to 12 years old. Nine of the pediatric patients experienced Intellectual Disability, language motion development delay and hypotonia as prominent clinical features. One subject had autism, two subjects had abnormal electroencephalogram discharge and one subject was aborted after fetal diagnosis. Three patients had a SHANK3 mutation or deletion. All but the aborted fetuses had intellectual disability. Among the ten patients, a deletion in the 22q13 region occurred in seven patients, with the smallest being 60.6 kb and the largest being >5.5 Mb. Three patients had heterozygous mutations in the SHANK3 gene. Conclusion All ten patients had novel mutations, and three of these were missense or frameshift mutations. For the first time reported, it is predicted that the amino acid termination code may appear before protein synthesis. The novel mutations we discovered provide a reference for clinical research and the diagnosis of PMS.
Collapse
Affiliation(s)
- Liang Chen
- Department of Neonatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhi-ye Yao
- Department of Neonatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiangtao Wu
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shao-ru He
- Department of Neonatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu-mei Liu
- Department of Neonatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xue-yan Wang
- Prenatal Diagnosis Center, Chongqing Maternal and Child Health Hospital, Chongqing, China
| | - De-zhi Cao
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Xing-kun Yang
- Prenatal Diagnosis Center, Foshan Maternal and Child Health Care Hospital, Foshan, China
| | - Jian-bo Zhao
- Department of Neurology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Zi Ren
- Center for Reproductive Medicine, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong Li
- Pediatric Center, Zhujiang Hospital of the Southern Medical University, Guangzhou, China
| | - Zheng Pei
- Department of Rehabilitation, Guangdong Women and Children Hospital, Guangzhou, China
| | - Hong-ke Ding
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Zhi-chun Feng
- Pediatric Intensive Care Unit, Affiliated Bayi Children's Hospital General Hospital of the People's Liberation Army, Beijing, China
| |
Collapse
|
24
|
State of the Science for Kidney Disorders in Phelan-McDermid Syndrome: UPK3A, FBLN1, WNT7B, and CELSR1 as Candidate Genes. Genes (Basel) 2022; 13:genes13061042. [PMID: 35741804 PMCID: PMC9223119 DOI: 10.3390/genes13061042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 01/27/2023] Open
Abstract
Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder caused by chromosomal rearrangements affecting the 22q13.3 region or by SHANK3 pathogenic variants. The scientific literature suggests that up to 40% of individuals with PMS have kidney disorders, yet little research has been conducted on the renal system to assess candidate genes attributed to these disorders. Therefore, we first conducted a systematic review of the literature to identify kidney disorders in PMS and then pooled the data to create a cohort of individuals to identify candidate genes for renal disorders in PMS. We found 7 types of renal disorders reported: renal cysts, renal hypoplasia or agenesis, hydronephrosis, vesicoureteral reflux, kidney dysplasia, horseshoe kidneys, and pyelectasis. Association analysis from the pooled data from 152 individuals with PMS across 22 articles identified three genomic regions spanning chromosomal bands 22q13.31, 22q13.32, and 22q13.33, significantly associated with kidney disorders. We propose UPK3A, FBLN1, WNT7B, and CELSR1, located from 4.5 Mb to 5.5 Mb from the telomere, as candidate genes. Our findings support the hypothesis that genes included in this region may play a role in the pathogenesis of kidney disorders in PMS.
Collapse
|
25
|
Nevado J, García-Miñaúr S, Palomares-Bralo M, Vallespín E, Guillén-Navarro E, Rosell J, Bel-Fenellós C, Mori MÁ, Milá M, del Campo M, Barrúz P, Santos-Simarro F, Obregón G, Orellana C, Pachajoa H, Tenorio JA, Galán E, Cigudosa JC, Moresco A, Saleme C, Castillo S, Gabau E, Pérez-Jurado L, Barcia A, Martín MS, Mansilla E, Vallcorba I, García-Murillo P, Cammarata-Scalisi F, Gonçalves Pereira N, Blanco-Lago R, Serrano M, Ortigoza-Escobar JD, Gener B, Seidel VA, Tirado P, Lapunzina P. Variability in Phelan-McDermid Syndrome in a Cohort of 210 Individuals. Front Genet 2022; 13:652454. [PMID: 35495150 PMCID: PMC9044489 DOI: 10.3389/fgene.2022.652454] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/16/2022] [Indexed: 12/18/2022] Open
Abstract
Phelan-McDermid syndrome (PMS, OMIM# 606232) results from either different rearrangements at the distal region of the long arm of chromosome 22 (22q13.3) or pathogenic sequence variants in the SHANK3 gene. SHANK3 codes for a structural protein that plays a central role in the formation of the postsynaptic terminals and the maintenance of synaptic structures. Clinically, patients with PMS often present with global developmental delay, absent or severely delayed speech, neonatal hypotonia, minor dysmorphic features, and autism spectrum disorders (ASD), among other findings. Here, we describe a cohort of 210 patients with genetically confirmed PMS. We observed multiple variant types, including a significant number of small deletions (<0.5 Mb, 64/189) and SHANK3 sequence variants (21 cases). We also detected multiple types of rearrangements among microdeletion cases, including a significant number with post-zygotic mosaicism (9.0%, 17/189), ring chromosome 22 (10.6%, 20/189), unbalanced translocations (de novo or inherited, 6.4%), and additional rearrangements at 22q13 (6.3%, 12/189) as well as other copy number variations in other chromosomes, unrelated to 22q deletions (14.8%, 28/189). We compared the clinical and genetic characteristics among patients with different sizes of deletions and with SHANK3 variants. Our findings suggest that SHANK3 plays an important role in this syndrome but is probably not uniquely responsible for all the spectrum features in PMS. We emphasize that only an adequate combination of different molecular and cytogenetic approaches allows an accurate genetic diagnosis in PMS patients. Thus, a diagnostic algorithm is proposed.
Collapse
Affiliation(s)
- Julián Nevado
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, Madrid, Spain
| | - Sixto García-Miñaúr
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, Madrid, Spain
| | - María Palomares-Bralo
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, Madrid, Spain
| | - Elena Vallespín
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, Madrid, Spain
| | | | | | - Cristina Bel-Fenellós
- Departamento de Investigación y Psicología en Educación, Facultad de Educación, UCM, Madrid, Spain
- CEE Estudio-3, Afanias, Madrid, Spain
| | - María Ángeles Mori
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, Madrid, Spain
| | | | | | - Pilar Barrúz
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Fernando Santos-Simarro
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, Madrid, Spain
| | | | | | | | - Jair Antonio Tenorio
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, Madrid, Spain
| | - Enrique Galán
- Hospital Materno-Infantil Infanta Cristina, Badajoz, Spain
| | | | | | - César Saleme
- Maternity Nuestra Señora de la Merced, Tucumán, Argentina
| | - Silvia Castillo
- Sección Genética, Hospital Clínico Universidad de Chile, Santiago, Chile
- Clínica Alemana, Santiago, Chile
| | | | - Luis Pérez-Jurado
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- Servicio de Genética, Instituto de Investigaciones Médicas Hospital del Mar (IMIM)/Universitat Pompeu Fabra, Barcelona, Spain
| | - Ana Barcia
- Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Maria Soledad Martín
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Elena Mansilla
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, Madrid, Spain
| | - Isabel Vallcorba
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, Madrid, Spain
| | | | | | | | - Raquel Blanco-Lago
- Servicio de Neuropediatría, Hospital Universitario Central de Asturias, Oviedo (Asturias), Spain
| | - Mercedes Serrano
- Unidad de Neuropediatría, Hospital San Joan de Deu, Barcelona, Spain
| | | | | | | | - Pilar Tirado
- Servicio de Neuropediatría, Hospital Universitario La Paz, Madrid, Spain
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, Madrid, Spain
| |
Collapse
|
26
|
Boccuto L, Mitz A, Abenavoli L, Sarasua SM, Bennett W, Rogers C, DuPont B, Phelan K. Phenotypic Variability in Phelan–McDermid Syndrome and Its Putative Link to Environmental Factors. Genes (Basel) 2022; 13:genes13030528. [PMID: 35328081 PMCID: PMC8950073 DOI: 10.3390/genes13030528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
Phelan–McDermid syndrome (PMS) is a multi-systemic disorder characterized by both genetic and phenotypic variability. Genetic abnormalities causing PMS span from pathogenic variants of the SHANK3 gene to chromosomal rearrangements affecting the 22q13 region and leading to the loss of up to over nine megabases. The clinical presentation of individuals with PMS includes intellectual disability, neonatal hypotonia, delayed or absent speech, developmental delay, and minor dysmorphic facial features. Several other features may present with differences in age of onset and/or severity: seizures, autism, regression, sleep disorders, gastrointestinal problems, renal disorders, dysplastic toenails, and disrupted thermoregulation. Among the causes of this phenotypic variability, the size of the 22q13 deletion has effects that may be influenced by environmental factors interacting with haploinsufficiency or hemizygous variants of certain genes. Another mechanism linking environmental factors and phenotypic variability in PMS involves the loss of one copy of genes like BRD1 or CYP2D6, located at 22q13 and involved in the regulation of genomic methylation or pharmacokinetics, which are also influenced by external agents, such as diet and drugs. Overall, several non-mutually exclusive genetic and epigenetic mechanisms interact with environmental factors and may contribute to the clinical variability observed in individuals with PMS. Characterization of such factors will help to better manage this disorder.
Collapse
Affiliation(s)
- Luigi Boccuto
- Healthcare Genetics Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC 29634, USA;
- Correspondence: ; Tel.: +1-864-6561437
| | - Andrew Mitz
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy;
| | - Sara M. Sarasua
- Healthcare Genetics Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC 29634, USA;
| | - William Bennett
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Indiana University School of Medicine/Riley Hospital for Children, Indianapolis, IN 46202, USA;
| | - Curtis Rogers
- Greenwood Genetic Center, Greenwood, SC 29646, USA; (C.R.); (B.D.)
| | - Barbara DuPont
- Greenwood Genetic Center, Greenwood, SC 29646, USA; (C.R.); (B.D.)
| | - Katy Phelan
- Genetics Laboratory, Florida Cancer Specialists &Research Institute, Fort Myers, FL 33916, USA;
| |
Collapse
|
27
|
Cammarata-Scalisi F, Callea M, Martinelli D, Willoughby CE, Tadich AC, Araya Castillo M, Lacruz-Rengel MA, Medina M, Grimaldi P, Bertini E, Nevado J. Clinical and Genetic Aspects of Phelan-McDermid Syndrome: An Interdisciplinary Approach to Management. Genes (Basel) 2022; 13:504. [PMID: 35328058 PMCID: PMC8955098 DOI: 10.3390/genes13030504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Phelan-McDermid syndrome (PMS) is a rare, heterogeneous, and complex neurodevelopmental disorder. It is generally caused by a heterozygous microdeletion of contiguous genes located in the distal portion of the long arm of chromosome 22, including the SHANK3 gene. Sequence variants of SHANK3, including frameshift, nonsense mutations, small indels and splice site mutations also result in PMS. Furthermore, haploinsufficiency in SHANK3 has been suggested as the main cause of PMS. SHANK3 is also associated with intellectual disability, autism spectrum disorder and schizophrenia. The phenotype of PMS is variable, and lacks a distinctive phenotypic characteristic, so the clinical diagnosis should be confirmed by genetic analysis. PMS is a multi-system disorder, and clinical care must encompass various specialties and therapists. The role of risperidone, intranasal insulin, insulin growth factor 1, and oxytocin as potential therapeutic options in PMS will be discussed in this review. The diagnosis of PMS is important to provide an appropriate clinical evaluation, treatment, and genetic counseling.
Collapse
Affiliation(s)
- Francisco Cammarata-Scalisi
- Pediatric Service, Regional of Antofagasta Hospital, Antofagasta 1240835, Chile; (F.C.-S.); (A.C.T.); (M.M.)
| | - Michele Callea
- Pediatric Dentistry and Special Dental Care Unit, Meyer Children’s University Hospital, 50139 Florence, Italy
| | - Diego Martinelli
- Unit of Metabolism, Bambino Gesù Children’s Research Hospital IRCCS, 00165 Rome, Italy
| | - Colin Eric Willoughby
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, UK;
| | - Antonio Cárdenas Tadich
- Pediatric Service, Regional of Antofagasta Hospital, Antofagasta 1240835, Chile; (F.C.-S.); (A.C.T.); (M.M.)
| | | | | | - Marco Medina
- Pediatric Service, Regional of Antofagasta Hospital, Antofagasta 1240835, Chile; (F.C.-S.); (A.C.T.); (M.M.)
| | - Piercesare Grimaldi
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Torino, Italy;
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Department of Neurosciences, Bambino Gesu’ Children’s Research Hospital IRCCS, 00165 Rome, Italy;
| | - Julián Nevado
- Instituto de Genética Médica y Molecular (INGEMM), Instituto de Investigación del Hospital Universitario La Paz (IdIPaz), 28046 Madrid, Spain; or
- Centro de Investigación Biomédica en RED de Enfermedades Raras (CIBERER), 28046 Madrid, Spain
- ITHACA, European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Hospital La Paz, 28046 Madrid, Spain
| |
Collapse
|
28
|
Levy T, Foss-Feig JH, Betancur C, Siper PM, Trelles-Thorne MDP, Halpern D, Frank Y, Lozano R, Layton C, Britvan B, Bernstein JA, Buxbaum JD, Berry-Kravis E, Powell CM, Srivastava S, Sahin M, Soorya L, Thurm A, Kolevzon A. Strong evidence for genotype-phenotype correlations in Phelan-McDermid syndrome: results from the developmental synaptopathies consortium. Hum Mol Genet 2022; 31:625-637. [PMID: 34559195 PMCID: PMC8863417 DOI: 10.1093/hmg/ddab280] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022] Open
Abstract
Individuals with Phelan-McDermid syndrome (PMS) present with a wide range of developmental, medical, cognitive and behavioral abnormalities. Previous literature has begun to elucidate genotype-phenotype associations that may contribute to the wide spectrum of features. Here, we report results of genotype-phenotype associations in a cohort of 170 individuals with PMS. Genotypes were defined as Class I deletions (including SHANK3 only or SHANK3 with ARSA and/or ACR and RABL2B), Class II deletions (all other deletions) or sequence variants. Phenotype data were derived prospectively from direct evaluation, caregiver interview and questionnaires, and medical history. Analyses revealed individuals with Class I deletions or sequence variants had fewer delayed developmental milestones and higher cognitive ability compared to those with Class II deletions but had more skill regressions. Individuals with Class II deletions were more likely to have a variety of medical features, including renal abnormalities, spine abnormalities, and ataxic gait. Those with Class I deletions or sequence variants were more likely to have psychiatric diagnoses including bipolar disorder, depression, and schizophrenia. Autism spectrum disorder diagnoses did not differ between groups. This study represents the largest and most rigorous genotype-phenotype analysis in PMS to date and provides important information for considering clinical functioning, trajectories and comorbidities as a function of specific genetic alteration.
Collapse
Affiliation(s)
- Tess Levy
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jennifer H Foss-Feig
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Catalina Betancur
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Paris 75005, France
| | - Paige M Siper
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria del Pilar Trelles-Thorne
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Danielle Halpern
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yitzchak Frank
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Reymundo Lozano
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christina Layton
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bari Britvan
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Neurological Sciences, Biochemistry, Rush University Medical Center, Chicago, Illinois 60612, USA
| | - Craig M Powell
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Psychiatry and Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Latha Soorya
- Department of Psychiatry, Rush University Medical Center, Chicago, Illinois 60612, USA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Alexander Kolevzon
- To whom correspondence should be addressed at. Tel: 212-659-9134; Fax: 212-996-8931;
| | | |
Collapse
|
29
|
Phelan K, Boccuto L, Powell CM, Boeckers TM, van Ravenswaaij-Arts C, Rogers RC, Sala C, Verpelli C, Thurm A, Bennett WE, Winrow CJ, Garrison SR, Toro R, Bourgeron T. Phelan-McDermid syndrome: a classification system after 30 years of experience. Orphanet J Rare Dis 2022; 17:27. [PMID: 35093143 PMCID: PMC8800328 DOI: 10.1186/s13023-022-02180-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/16/2022] [Indexed: 01/15/2023] Open
Abstract
Phelan-McDermid syndrome (PMS) was initially called the 22q13 deletion syndrome based on its etiology as a deletion of the distal long arm of chromosome 22. These included terminal and interstitial deletions, as well as other structural rearrangements. Later, pathogenetic variants and deletions of the SHANK3 gene were found to result in a phenotype consistent with PMS. The association between SHANK3 and PMS led investigators to consider disruption/deletion of SHANK3 to be a prerequisite for diagnosing PMS. This narrow definition of PMS based on the involvement of SHANK3 has the adverse effect of causing patients with interstitial deletions of chromosome 22 to “lose” their diagnosis. It also results in underreporting of individuals with interstitial deletions of 22q13 that preserve SHANK3. To reduce the confusion for families, clinicians, researchers, and pharma, a simple classification for PMS has been devised. PMS and will be further classified as PMS-SHANK3 related or PMS-SHANK3 unrelated. PMS can still be used as a general term, but this classification system is inclusive. It allows researchers, regulatory agencies, and other stakeholders to define SHANK3 alterations or interstitial deletions not affecting the SHANK3 coding region.
Collapse
|
30
|
Rysstad AL, Kildahl AN, Skavhaug JO, Dønnum MS, Helverschou SB. Case study: organizing outpatient pharmacological treatment of bipolar disorder in autism, intellectual disability and Phelan-McDermid syndrome (22q13.3 deletion syndrome). INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2022; 68:378-387. [PMID: 35603006 PMCID: PMC9122368 DOI: 10.1080/20473869.2020.1756113] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Phelan-McDermid syndrome (PHMDS)/22q13.3 deletion syndrome is a rare genetic disorder associated with autism spectrum disorder (ASD), intellectual disability (ID), and bipolar disorder. While numerous cases have been reported describing successful pharmacological treatment of bipolar disorder in PHMDS, there is currently little guidance available on how to organize and execute such treatment. The aim of the current case study was to explore how pharmacological treatment of bipolar disorder in PHMDS may be organized and evaluated in an outpatient setting. Through a complex process of try and fail, including systematic evaluation of any change to the intervention and never implementing more than one change at the time, the patient gradually improved, regaining his communicative and adaptive skills. Four years passed from referral to this result was achieved. Organizing assessment and treatment as a collaborative effort involving specialized mental health professionals, professional caregivers and the patient's family proved feasible. Many of the challenges present in assessment of psychiatric disorder in individuals with ASD and ID are likely to be present also in evaluation of treatment effects, particularly in disorders where symptoms occur in phases. The approach described in the current paper may contribute to reducing the impact of these challenges.
Collapse
Affiliation(s)
- Anne Langseth Rysstad
- Section for Intellectual Disabilities and Autism, Vestre Viken Hospital Trust, Asker, Norway
- Correspondence to: Anne Langseth Rysstad Section for Intellectual Disabilities and Autism, Seksjon utviklingshemming og autisme – Blakstad psyk. avd., Vestre Viken HF, Postboks 800, Asker, 3004Drammen.
| | - Arvid Nikolai Kildahl
- Regional Section Mental Health, Intellectual Disabilities/Autism, Oslo University Hospital, Oslo, Norway
- NevSom Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias, Oslo University Hospital, Oslo, Norway
| | - Jon Olav Skavhaug
- Section for Intellectual Disabilities and Autism, Vestre Viken Hospital Trust, Asker, Norway
| | - Monica Stolen Dønnum
- Section for Intellectual Disabilities and Autism, Vestre Viken Hospital Trust, Asker, Norway
| | - Sissel Berge Helverschou
- NevSom Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
31
|
The Emerging Role of the Gut-Brain-Microbiota Axis in Neurodevelopmental Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:141-156. [PMID: 36587154 DOI: 10.1007/978-3-031-05843-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Autism spectrum disorder (ASD; autism) is a prevalent neurodevelopmental disorder associated with changes in gut-brain axis communication. Gastrointestinal (GI) symptoms are experienced by a large proportion of individuals diagnosed with autism. Several mutations associated with autism modify cellular communication via neuronal synapses. It has been suggested that modifications to the enteric nervous system, an intrinsic nervous system of the GI tract, could contribute to GI dysfunction. Changes in gut motility, permeability, and the mucosal barrier as well as shifts in the large population of microbes inhabiting the GI tract could contribute to GI symptoms. Preclinical research has demonstrated that mice expressing the well-studied R451C missense mutation in Nlgn3 gene, which encodes cell adhesion protein neuroligin-3 at neuronal synapses, exhibit GI dysfunction. Specifically, NL3R451C mice show altered colonic motility and faster small intestinal transit. As well as dysmotility, macrophages located within the gut-associated lymphoid tissue of the NL3R451C mouse caecum show altered morphology, suggesting that neuro-inflammation pathways are modified in this model. Interestingly, NL3R451C mice maintained in a shared environment demonstrate fecal microbial dysbiosis indicating a role for the nervous system in regulating gut microbial populations. To better understand host-microbe interactions, further clarification and comparison of clinical and animal model profiles of dysbiosis should be obtained, which in turn will provide better insights into the efforts taken to design personalized microbial therapies. In addition to changes in neurophysiological measures, the mucosal component of the GI barrier may contribute to GI dysfunction more broadly in individuals diagnosed with a wide range of neurological disorders. As the study of GI dysfunction advances to encompass multiple components of the gut-brain-microbiota axis, findings will help understand future directions such as microbiome engineering and optimisation of the mucosal barrier for health.
Collapse
|
32
|
Frewer V, Gilchrist CP, Collins SE, Williams K, Seal ML, Leventer RJ, Amor DJ. A systematic review of brain MRI findings in monogenic disorders strongly associated with autism spectrum disorder. J Child Psychol Psychiatry 2021; 62:1339-1352. [PMID: 34426966 DOI: 10.1111/jcpp.13510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Research on monogenic forms of autism spectrum disorder (autism) can inform our understanding of genetic contributions to the autism phenotype; yet, there is much to be learned about the pathways from gene to brain structure to behavior. This systematic review summarizes and evaluates research on brain magnetic resonance imaging (MRI) findings in monogenic conditions that have strong association with autism. This will improve understanding of the impact of genetic variability on brain structure and related behavioral traits in autism. METHODS The search strategy for this systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Risk of bias (ROB) assessment was completed on included studies using the Newcastle-Ottawa Scales. RESULTS Of 4,287 studies screened, 69 were included pertaining to 13 of the top 20 genes with the strongest association with autism. The greatest number of studies related to individuals with PTEN variants and autism. Brain MRI abnormalities were reported for 12 of the 13 genes studied, and in 51.7% of participants across all 13 genes, including 100% of participants with ARID1B variants. Specific MRI findings were highly variable, with no clear patterns emerging within or between the 13 genes, although white matter abnormalities were the most common. Few studies reported specific details about methods for acquisition and processing of brain MRI, and descriptors for brain abnormalities were variable. ROB assessment indicated high ROB for all studies, largely due to small sample sizes and lack of comparison groups. CONCLUSIONS Brain abnormalities are common in this population of individuals, in particular, children; however, a range of different brain abnormalities were reported within and between genes. Directions for future neuroimaging research in monogenic autism are suggested.
Collapse
Affiliation(s)
- Veronica Frewer
- Murdoch Children's Research Institute, Parkville, Vic., Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Vic., Australia
| | - Courtney P Gilchrist
- Murdoch Children's Research Institute, Parkville, Vic., Australia.,Neurodevelopment in Health and Disease, RMIT University, Bundoora, Vic., Australia
| | - Simonne E Collins
- Murdoch Children's Research Institute, Parkville, Vic., Australia.,School of Psychological Sciences, Turner Institute for Brain & Mental Health, Monash University, Melbourne, Vic., Australia
| | - Katrina Williams
- Monash University, Melbourne, Vic., Australia.,Monash Children's Hospital, Melbourne, Vic., Australia
| | - Marc L Seal
- Murdoch Children's Research Institute, Parkville, Vic., Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Vic., Australia
| | - Richard J Leventer
- Murdoch Children's Research Institute, Parkville, Vic., Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Vic., Australia.,Royal Children's Hospital, Parkville, Vic., Australia
| | - David J Amor
- Murdoch Children's Research Institute, Parkville, Vic., Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Vic., Australia.,Royal Children's Hospital, Parkville, Vic., Australia
| |
Collapse
|
33
|
Jain L, Oberman LM, Beamer L, Cascio L, May M, Srikanth S, Skinner C, Jones K, Allen B, Rogers C, Phelan K, Kaufmann WE, DuPont B, Sarasua SM, Boccuto L. Genetic and metabolic profiling of individuals with Phelan-McDermid syndrome presenting with seizures. Clin Genet 2021; 101:87-100. [PMID: 34664257 DOI: 10.1111/cge.14074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/23/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
Phelan-McDermid syndrome (PMS) (OMIM*606232) is a rare genetic disorder characterized by intellectual disability, autistic features, speech delay, minor dysmorphia, and seizures. This study was conducted to investigate the prevalence of seizures and the association with genetic and metabolic features since there has been little research related to seizures in PMS. For 57 individuals, seizure data was collected from caregiver interviews, genetic data from existing cytogenetic records and Sanger sequencing for nine 22q13 genes, and metabolic profiling from the Phenotype Mammalian MicroArray (PM-M) developed by Biolog. Results showed that 46% of individuals had seizures with the most common type being absence and grand-mal seizures. Seizures were most prevalent in individuals with pathogenic SHANK3 mutations (70%), those with deletion sizes >4 Mb (16%), and those with deletion sizes <4 Mb (71%) suggesting involvement of genes in addition to SHANK3. Additionally, a 3 Mb genomic region on 22q13.31 containing the gene TBC1D22A, was found to be significantly associated with seizure prevalence. A distinct metabolic profile was identified for individuals with PMS with seizures and suggested among other features a disrupted utilization of main energy sources using Biolog plates. The results of this study will be helpful for clinicians and families in anticipating seizures in these children and for researchers to identify candidate genes for the seizure phenotype.
Collapse
Affiliation(s)
- Lavanya Jain
- Greenwood Genetic Center, Greenwood, South Carolina, USA.,School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, South Carolina, USA
| | - Lindsay M Oberman
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA.,Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | - Laura Beamer
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Lauren Cascio
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Melanie May
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | | | - Cindy Skinner
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Kelly Jones
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Bridgette Allen
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, South Carolina, USA
| | - Curtis Rogers
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Katy Phelan
- Genetics Laboratory, Florida Cancer Specialists and Research Institute, Fort Myers, Florida, USA
| | - Walter E Kaufmann
- Greenwood Genetic Center, Greenwood, South Carolina, USA.,Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA.,Anavex Life Sciences Corp, New York, New York, USA
| | - Barbara DuPont
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Sara M Sarasua
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, South Carolina, USA
| | - Luigi Boccuto
- Greenwood Genetic Center, Greenwood, South Carolina, USA.,School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, South Carolina, USA.,Clemson University School of Health Research, Clemson, South Carolina, USA
| |
Collapse
|
34
|
Dyar B, Meaddough E, Sarasua SM, Rogers C, Phelan K, Boccuto L. Genetic Findings as the Potential Basis of Personalized Pharmacotherapy in Phelan-McDermid Syndrome. Genes (Basel) 2021; 12:1192. [PMID: 34440366 PMCID: PMC8392667 DOI: 10.3390/genes12081192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Phelan-McDermid syndrome (PMS) is a genetic disorder often characterized by autism or autistic-like behavior. Most cases are associated with haploinsufficiency of the SHANK3 gene resulting from deletion of the gene at 22q13.3 or from a pathogenic variant in the gene. Treatment of PMS often targets SHANK3, yet deletion size varies from <50 kb to >9 Mb, potentially encompassing dozens of genes and disrupting regulatory elements altering gene expression, inferring the potential for multiple therapeutic targets. Repurposed drugs have been used in clinical trials investigating therapies for PMS: insulin-like growth factor 1 (IGF-1) for its effect on social and aberrant behaviors, intranasal insulin for improvements in cognitive and social ability, and lithium for reversing regression and stabilizing behavior. The pharmacogenomics of PMS is complicated by the CYP2D6 enzyme which metabolizes antidepressants and antipsychotics often used for treatment. The gene coding for CYP2D6 maps to 22q13.2 and is lost in individuals with deletions larger than 8 Mb. Because PMS has diverse neurological and medical symptoms, many concurrent medications may be prescribed, increasing the risk for adverse drug reactions. At present, there is no single best treatment for PMS. Approaches to therapy are necessarily complex and must target variable behavioral and physical symptoms of PMS.
Collapse
Affiliation(s)
- Brianna Dyar
- Healthcare Genetics Program, School of Nursing, Clemson University, Clemson, SC 29634, USA; (B.D.); (E.M.); (S.M.S.)
| | - Erika Meaddough
- Healthcare Genetics Program, School of Nursing, Clemson University, Clemson, SC 29634, USA; (B.D.); (E.M.); (S.M.S.)
| | - Sara M. Sarasua
- Healthcare Genetics Program, School of Nursing, Clemson University, Clemson, SC 29634, USA; (B.D.); (E.M.); (S.M.S.)
| | | | - Katy Phelan
- Florida Cancer Specialists & Research Institute, Fort Myers, FL 33905, USA;
| | - Luigi Boccuto
- Healthcare Genetics Program, School of Nursing, Clemson University, Clemson, SC 29634, USA; (B.D.); (E.M.); (S.M.S.)
| |
Collapse
|
35
|
Burdeus-Olavarrieta M, San José-Cáceres A, García-Alcón A, González-Peñas J, Hernández-Jusdado P, Parellada-Redondo M. Characterisation of the clinical phenotype in Phelan-McDermid syndrome. J Neurodev Disord 2021; 13:26. [PMID: 34246244 PMCID: PMC8272382 DOI: 10.1186/s11689-021-09370-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 05/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS) is a rare genetic disorder compromising the 22q13 terminal region and affecting SHANK3, a gene crucial to the neurobehavioural phenotype and strongly linked to autism (ASD) and intellectual disability (ID). The condition is characterised by global developmental delay, ID, speech impairments, hypotonia and autistic behaviours, although its presentation and symptom severity vary widely. In this study, we provide a thorough description of the behavioural profile in PMS and explore differences related to deletion size and language ability. METHODS We used standard clinical assessment instruments to measure altered behaviour, adaptive skills and autistic symptomatology in sixty participants with PMS (30 females, median age 8.5 years, SD=7.1). We recorded background information and other clinical manifestations and explored associations with deletion size. We performed descriptive and inferential analyses for group comparison. RESULTS We found delayed gross and fine motor development, delayed and impaired language (~70% of participants non or minimally verbal), ID of different degrees and adaptive functioning ranging from severe to borderline impairment. Approximately 40% of participants experienced developmental regression, and half of those regained skills. Autistic symptoms were frequent and variable in severity, with a median ADOS-2 CSS score of 6 for every domain. Sensory processing anomalies, hyperactivity, attentional problems and medical comorbidities were commonplace. The degree of language and motor development appeared to be associated with deletion size. CONCLUSIONS This study adds to previous research on the clinical descriptions of PMS and supports results suggesting wide variability of symptom severity and its association with deletion size. It makes the case for suitable psychotherapeutic and pharmacological approaches, for longitudinal studies to strengthen our understanding of possible clinical courses and for more precise genomic analysis.
Collapse
Affiliation(s)
- Mónica Burdeus-Olavarrieta
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Calle Ibiza 43, 28009, Madrid, Spain. .,IiSGM, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. .,School of Psychology, Universidad Autónoma, Madrid, Spain.
| | - Antonia San José-Cáceres
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Calle Ibiza 43, 28009, Madrid, Spain.,IiSGM, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Alicia García-Alcón
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Calle Ibiza 43, 28009, Madrid, Spain.,IiSGM, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,School of Medicine, Universidad Complutense, Madrid, Spain
| | - Javier González-Peñas
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Calle Ibiza 43, 28009, Madrid, Spain.,IiSGM, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBERSAM, Centro de Investigación Biomédica en Red Salud Mental, Madrid, Spain
| | - Patricia Hernández-Jusdado
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Calle Ibiza 43, 28009, Madrid, Spain
| | - Mara Parellada-Redondo
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Calle Ibiza 43, 28009, Madrid, Spain.,IiSGM, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
36
|
Srikanth S, Jain L, Zepeda-Mendoza C, Cascio L, Jones K, Pauly R, DuPont B, Rogers C, Sarasua S, Phelan K, Morton C, Boccuto L. Position effects of 22q13 rearrangements on candidate genes in Phelan-McDermid syndrome. PLoS One 2021; 16:e0253859. [PMID: 34228749 PMCID: PMC8259982 DOI: 10.1371/journal.pone.0253859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022] Open
Abstract
Phelan-McDermid syndrome (PMS) is a multi-system disorder characterized by significant variability in clinical presentation. The genetic etiology is also variable with differing sizes of deletions in the chromosome 22q13 region and types of genetic abnormalities (e.g., terminal or interstitial deletions, translocations, ring chromosomes, or SHANK3 variants). Position effects have been shown to affect gene expression and function and play a role in the clinical presentation of various genetic conditions. This study employed a topologically associating domain (TAD) analysis approach to investigate position effects of chromosomal rearrangements on selected candidate genes mapped to 22q13 in 81 individuals with PMS. Data collected were correlated with clinical information from these individuals and with expression and metabolic profiles of lymphoblastoid cells from selected cases. The data confirmed TAD predictions for genes encompassed in the deletions and the clinical and molecular data indicated clear differences among individuals with different 22q13 deletion sizes. The results of the study indicate a positive correlation between deletion size and phenotype severity in PMS and provide evidence of the contribution of other genes to the clinical variability in this developmental disorder by reduced gene expression and altered metabolomics.
Collapse
Affiliation(s)
- Sujata Srikanth
- Greenwood Genetic Center, Greenwood, SC, United States of America
| | - Lavanya Jain
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC, United States of America
| | - Cinthya Zepeda-Mendoza
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Lauren Cascio
- Greenwood Genetic Center, Greenwood, SC, United States of America
| | - Kelly Jones
- Greenwood Genetic Center, Greenwood, SC, United States of America
| | - Rini Pauly
- Greenwood Genetic Center, Greenwood, SC, United States of America
| | - Barb DuPont
- Greenwood Genetic Center, Greenwood, SC, United States of America
| | - Curtis Rogers
- Greenwood Genetic Center, Greenwood, SC, United States of America
| | - Sara Sarasua
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC, United States of America
| | - Katy Phelan
- Genetics Laboratory, Florida Cancer Specialists and Research Institute, Fort Myers, FL, United States of America
| | - Cynthia Morton
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States of America
- Division of Human Communication, Development and Hearing, School of Biological Sciences, Manchester Academic Health Science Center, Manchester, United Kingdom
| | - Luigi Boccuto
- Greenwood Genetic Center, Greenwood, SC, United States of America
- School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, United States of America
| |
Collapse
|
37
|
Schenkel LC, Aref-Eshghi E, Rooney K, Kerkhof J, Levy MA, McConkey H, Rogers RC, Phelan K, Sarasua SM, Jain L, Pauly R, Boccuto L, DuPont B, Cappuccio G, Brunetti-Pierri N, Schwartz CE, Sadikovic B. DNA methylation epi-signature is associated with two molecularly and phenotypically distinct clinical subtypes of Phelan-McDermid syndrome. Clin Epigenetics 2021; 13:2. [PMID: 33407854 PMCID: PMC7789817 DOI: 10.1186/s13148-020-00990-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/09/2020] [Indexed: 12/31/2022] Open
Abstract
Background Phelan-McDermid syndrome is characterized by a range of neurodevelopmental phenotypes with incomplete penetrance and variable expressivity. It is caused by a variable size and breakpoint microdeletions in the distal long arm of chromosome 22, referred to as 22q13.3 deletion syndrome, including the SHANK3 gene. Genetic defects in a growing number of neurodevelopmental genes have been shown to cause genome-wide disruptions in epigenomic profiles referred to as epi-signatures in affected individuals. Results In this study we assessed genome-wide DNA methylation profiles in a cohort of 22 individuals with Phelan-McDermid syndrome, including 11 individuals with large (2 to 5.8 Mb) 22q13.3 deletions, 10 with small deletions (< 1 Mb) or intragenic variants in SHANK3 and one mosaic case. We describe a novel genome-wide DNA methylation epi-signature in a subset of individuals with Phelan-McDermid syndrome. Conclusion We identified the critical region including the BRD1 gene as responsible for the Phelan-McDermid syndrome epi-signature. Metabolomic profiles of individuals with the DNA methylation epi-signature showed significantly different metabolomic profiles indicating evidence of two molecularly and phenotypically distinct clinical subtypes of Phelan-McDermid syndrome.
Collapse
Affiliation(s)
- L C Schenkel
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, N6A5W9, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A3K7, Canada
| | - E Aref-Eshghi
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, N6A5W9, Canada
| | - K Rooney
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, N6A5W9, Canada
| | - J Kerkhof
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, N6A5W9, Canada
| | - M A Levy
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, N6A5W9, Canada
| | - H McConkey
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, N6A5W9, Canada
| | - R C Rogers
- Greenville Office, Greenwood Genetic Center, Greenville, SC, 29605, USA
| | - K Phelan
- Genetics Laboratory, Florida Cancer Specialists and Research Institute, Fort Myers, FL, 33816, USA
| | | | - L Jain
- Greenwood Genetic Center, Greenwood, SC, 29646, USA.,Clemson University, Clemson, SC, 29634, USA
| | - R Pauly
- Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - L Boccuto
- Greenwood Genetic Center, Greenwood, SC, 29646, USA.,Clemson University, Clemson, SC, 29634, USA
| | - B DuPont
- Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - G Cappuccio
- Department of Translational Medicine, University Federico II, 80131, Naples, NA, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, NA, Italy
| | - N Brunetti-Pierri
- Department of Translational Medicine, University Federico II, 80131, Naples, NA, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, NA, Italy
| | - C E Schwartz
- Greenwood Genetic Center, Greenwood, SC, 29646, USA.
| | - B Sadikovic
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, N6A5W9, Canada. .,Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A3K7, Canada.
| |
Collapse
|
38
|
Liu C, Li D, Yang H, Li H, Xu Q, Zhou B, Hu C, Li C, Wang Y, Qiao Z, Jiang YH, Xu X. Altered striatum centered brain structures in SHANK3 deficient Chinese children with genotype and phenotype profiling. Prog Neurobiol 2020; 200:101985. [PMID: 33388374 PMCID: PMC8572121 DOI: 10.1016/j.pneurobio.2020.101985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/15/2020] [Accepted: 12/27/2020] [Indexed: 12/01/2022]
Abstract
SHANK3 deficiency represents one of the most replicated monogenic risk factors for autism spectrum disorder (ASD) and SHANK3 caused ASD presents a unique opportunity to understand the underlying neuropathological mechanisms of ASD. In this study, genetic tests, comprehensive clinical and neurobehavioral evaluations, as well as multimodal structural MRI using voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) were conducted in SHANK3 group (N = 14 with SHANK3 defects), ASD controls (N = 26 with idiopathic ASD without SHANK3 defects) and typically developing (TD) controls (N = 32). Phenotypically, we reported several new features in Chinese SHANK3 deficient children including anteverted nares, sensory stimulation seeking, dental abnormalities and hematological problems. In SHANK3 group, VBM revealed decreased grey matter volumes mainly in dorsal striatum, amygdala, hippocampus and parahippocampal gyrus; TBSS demonstrated decreased fractional anisotropy in multiple tracts involving projection, association and commissural fibers, including middle cerebral peduncle, corpus callosum, superior longitudinal fasciculus, corona radiata, external and internal capsule, and posterior thalamic radiation, etc. We report that the disrupted striatum centered brain structures are associated with SHANK3 deficient children. Study of subjects with monogenic cause offer specific insights into the neuroimaging studies of ASD. The discovery may support a path for future functional connectivity studies to allow for more in-depth understandings of the abnormal neural circuits and the underlying neuropathological mechanisms for ASD.
Collapse
Affiliation(s)
- Chunxue Liu
- Department of Child Health Care, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, China
| | - Dongyun Li
- Department of Child Health Care, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, China
| | - Haowei Yang
- Department of Radiology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, China
| | - Huiping Li
- Department of Child Health Care, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, China
| | - Qiong Xu
- Department of Child Health Care, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, China
| | - Bingrui Zhou
- Department of Child Health Care, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, China
| | - Chunchun Hu
- Department of Child Health Care, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, China
| | - Chunyang Li
- Department of Child Health Care, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, China
| | - Yi Wang
- Department of Child Health Care, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, China
| | - Zhongwei Qiao
- Department of Radiology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, China.
| | - Yong-Hui Jiang
- Department of Genetics, Pediatrics and Neuroscience, Yale University School of Medicine, New Heaven CT 06520 USA.
| | - Xiu Xu
- Department of Child Health Care, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, China.
| |
Collapse
|
39
|
Brignell A, Gu C, Holm A, Carrigg B, Sheppard DA, Amor DJ, Morgan AT. Speech and language phenotype in Phelan-McDermid (22q13.3) syndrome. Eur J Hum Genet 2020; 29:564-574. [PMID: 33293697 DOI: 10.1038/s41431-020-00761-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/23/2020] [Indexed: 11/09/2022] Open
Abstract
Communication difficulties are a core feature of Phelan-McDermid syndrome (PMS). However, a specific speech and language phenotype has not been delineated, preventing prognostic counselling and development of targeted therapies. We examined speech, language, social and functional communication abilities in 21 individuals with PMS (with SHANK3 involvement), using standardised assessments. Mean age was 9.7 years (SD 4.1) and 57% were female. Deletion size ranged from 41 kb to 8.3 Mb. Nine participants (45%) were non-verbal. Four (19%) had greater verbal ability, speaking in at least 4-5 word sentences, but with speech sound errors. Standard scores for receptive and expressive language were low (typically >3 SD below the mean). Language age equivalency was 13-16 months on average (range 2-53 months). There was a significant association between deletion size and the ability to use phrases. Participants with smaller deletion sizes were more likely to be able to use phrases (odds ratio: 0.36, 95% CI: 0.14-0.95, p = 0.040). Adaptive behaviour (life skills) was low in all areas (>2 SD below mean). Scores in communication were markedly lower than for daily living (p = 0.008) and socialisation (p < 0.001). A common linguistic profile was characterised by severe impairment across receptive, expressive and social language domains. Yet data indicated greater communicative intent than appeared to be capitalised by current therapies. Early implementation of augmentative (e.g. computer-assisted) modes of communication, alongside promotion of oral language, is essential to harness this intent, accelerate language development and reduce frustration. Future trials should examine the added benefit of targeted speech motor interventions in those with greater verbal capacity.
Collapse
Affiliation(s)
- Amanda Brignell
- Murdoch Children's Research Institute, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| | - Conway Gu
- University of Melbourne, Melbourne, Australia
| | | | | | - Daisy A Sheppard
- Murdoch Children's Research Institute, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| | - David J Amor
- Murdoch Children's Research Institute, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| | - Angela T Morgan
- Murdoch Children's Research Institute, Melbourne, Australia. .,University of Melbourne, Melbourne, Australia.
| |
Collapse
|
40
|
Li S, Xi KW, Liu T, Zhang Y, Zhang M, Zeng LD, Li J. Fraternal twins with Phelan-McDermid syndrome not involving the SHANK3 gene: case report and literature review. BMC Med Genomics 2020; 13:146. [PMID: 33023580 PMCID: PMC7539423 DOI: 10.1186/s12920-020-00802-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/23/2020] [Indexed: 12/01/2022] Open
Abstract
Background Phelan-McDermid syndrome (PMS, OMIM#606232), or 22q13 deletion syndrome, is a rare genetic disorder caused by deletion of the distal long arm of chromosome 22 with a variety of clinical features that display considerably heterogeneous degrees of severity. The SHANK3 gene is understood to be the critical gene for the neurological features of this syndrome. Case presentation We describe one pair of boy-girl twins with a 22q13 deletion not involving the SHANK3 gene. Interestingly, the clinical and molecular findings of the two patients were identical, likely resulting from germline mosaicism in a parent. The boy-girl twins showed intellectual disability, speech absence, facial dysmorphism, cyanosis, large fleshy hands and feet, dysplastic fingernails and abnormal behaviors, and third-generation sequencing showed an identical de novo interstitial deletion of 6.0 Mb in the 22q13.31-q13.33 region. Conclusions Our case suggests that prenatal diagnosis is essential for normal parents with affected children due to the theoretical possibility of parental germline mosaicism. Our results also indicated that other genes located in the 22q13 region may have a role in explaining symptoms in individuals with PMS. In particular, we propose that four candidate genes, CELSR1, ATXN10, FBLN1 and WNT7B, may also be involved in the etiology of the clinical features of PMS. However, more studies of smaller interstitial deletions with 22q13 are needed to corroborate our hypothesis and better define the genotype-phenotype correlation. Our findings contribute to a more comprehensive understanding of PMS.
Collapse
Affiliation(s)
- Shan Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Ke-Wang Xi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Ting Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Ying Zhang
- Central Laboratory, The First Hospital of Lanzhou University, Lanzhou, China
| | - Meng Zhang
- GeneMind Biosciences Company Limited, Shenzhen, China
| | - Li-Dong Zeng
- GeneMind Biosciences Company Limited, Shenzhen, China
| | - Juan Li
- Central Laboratory, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
41
|
Vitrac A, Pons S, Balkota M, Lemière N, Raïs C, Bourgeois JP, Maskos U, Bourgeron T, Cloëz-Tayarani I. A chimeric mouse model to study human iPSC-derived neurons: the case of a truncating SHANK3 mutation. Sci Rep 2020; 10:13315. [PMID: 32769989 PMCID: PMC7414912 DOI: 10.1038/s41598-020-70056-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/17/2020] [Indexed: 11/09/2022] Open
Abstract
Using human induced pluripotent stem cells (iPSC), recent studies have shown that the events underlying autism spectrum disorders (ASD) can occur during neonatal development. We previously analyzed the iPSC-derived pyramidal cortical neurons of a subset of patients with ASD carrying de novo heterozygous mutations in postsynaptic SHANK3 protein, in culture. We reported altered spinogenesis of those neurons. The transplantation of human iPSC-derived neuronal precursors into mouse brain represents a novel option for in vivo analysis of mutations affecting the human brain. In this study, we transplanted the neuronal precursor cells (NPC) into the cortex of newborn mice to analyze their integration and maturation at early stages of development and studied axonal projections of transplanted human neurons into adult mouse brain. We then co-transplanted NPC from a control individual and from a patient carrying a de novo heterozygous SHANK3 mutation. We observed a reduction in cell soma size of selective neuronal categories and in axonal projections at 30 days post-transplantation. In contrast to previous in vitro studies, we did not observe any alteration in spinogenesis at this early age. The humanized chimeric mouse models offer the means to analyze ASD-associated mutations further and provide the opportunity to visualize phenotypes in vivo.
Collapse
Affiliation(s)
- Aline Vitrac
- Human Genetics and Cognitive Functions, CNRS UMR 3571 « Genes, Synapses and Cognition », Université de Paris, Institut Pasteur, Paris, France
| | - Stéphanie Pons
- Integrative Neurobiology of Cholinergic Systems, CNRS UMR 3571 « Genes, Synapses and Cognition », Institut Pasteur, Paris, France
| | - Marta Balkota
- Integrative Neurobiology of Cholinergic Systems, CNRS UMR 3571 « Genes, Synapses and Cognition », Institut Pasteur, Paris, France
| | - Nathalie Lemière
- Human Genetics and Cognitive Functions, CNRS UMR 3571 « Genes, Synapses and Cognition », Université de Paris, Institut Pasteur, Paris, France
| | - Célia Raïs
- Integrative Neurobiology of Cholinergic Systems, CNRS UMR 3571 « Genes, Synapses and Cognition », Institut Pasteur, Paris, France.,Collège Doctoral, Sorbonne Université, Paris, France
| | - Jean-Pierre Bourgeois
- Human Genetics and Cognitive Functions, CNRS UMR 3571 « Genes, Synapses and Cognition », Université de Paris, Institut Pasteur, Paris, France
| | - Uwe Maskos
- Integrative Neurobiology of Cholinergic Systems, CNRS UMR 3571 « Genes, Synapses and Cognition », Institut Pasteur, Paris, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, CNRS UMR 3571 « Genes, Synapses and Cognition », Université de Paris, Institut Pasteur, Paris, France
| | - Isabelle Cloëz-Tayarani
- Integrative Neurobiology of Cholinergic Systems, CNRS UMR 3571 « Genes, Synapses and Cognition », Institut Pasteur, Paris, France.
| |
Collapse
|
42
|
Bacchelli E, Cameli C, Viggiano M, Igliozzi R, Mancini A, Tancredi R, Battaglia A, Maestrini E. An integrated analysis of rare CNV and exome variation in Autism Spectrum Disorder using the Infinium PsychArray. Sci Rep 2020; 10:3198. [PMID: 32081867 PMCID: PMC7035424 DOI: 10.1038/s41598-020-59922-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/19/2020] [Indexed: 01/11/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition with a complex and heterogeneous genetic etiology. While a proportion of ASD risk is attributable to common variants, rare copy-number variants (CNVs) and protein-disrupting single-nucleotide variants (SNVs) have been shown to significantly contribute to ASD etiology. We analyzed a homogeneous cohort of 127 ASD Italian families genotyped with the Illumina PsychArray, to perform an integrated analysis of CNVs and SNVs and to assess their contribution to ASD risk. We observed a higher burden of rare CNVs, especially deletions, in ASD individuals versus unaffected controls. Furthermore, we identified a significant enrichment of rare CNVs intersecting ASD candidate genes reported in the SFARI database. Family-based analysis of rare SNVs genotyped by the PsychArray also indicated an increased transmission of rare SNV variants from heterozygous parents to probands, supporting a multigenic model of ASD risk with significant contributions of both variant types. Moreover, our study reinforced the evidence for a significant role of VPS13B, WWOX, CNTNAP2, RBFOX1, MACROD2, APBA2, PARK2, GPHN, and RNF113A genes in ASD susceptibility. Finally, we showed that the PsychArray, besides providing useful genotyping data in psychiatric disorders, is a valuable and cost-efficient tool for genic CNV detection, down to 10 kb.
Collapse
Affiliation(s)
- Elena Bacchelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Cinzia Cameli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marta Viggiano
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Roberta Igliozzi
- IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128, Calambrone, Pisa, Italy
| | - Alice Mancini
- IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128, Calambrone, Pisa, Italy
| | - Raffaella Tancredi
- IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128, Calambrone, Pisa, Italy
| | - Agatino Battaglia
- IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128, Calambrone, Pisa, Italy
| | - Elena Maestrini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| |
Collapse
|
43
|
Kolevzon A, Delaby E, Berry-Kravis E, Buxbaum JD, Betancur C. Neuropsychiatric decompensation in adolescents and adults with Phelan-McDermid syndrome: a systematic review of the literature. Mol Autism 2019; 10:50. [PMID: 31879555 PMCID: PMC6930682 DOI: 10.1186/s13229-019-0291-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/09/2019] [Indexed: 12/22/2022] Open
Abstract
Phelan-McDermid syndrome (PMS) is caused by haploinsufficiency of the SHANK3 gene on chromosome 22q13.33 and is characterized by intellectual disability, hypotonia, severe speech impairments, and autism spectrum disorder. Emerging evidence indicates that there are changes over time in the phenotype observed in individuals with PMS, including severe neuropsychiatric symptoms and loss of skills occurring in adolescence and adulthood. To gain further insight into these phenomena and to better understand the long-term course of the disorder, we conducted a systematic literature review and identified 56 PMS cases showing signs of behavioral and neurologic decompensation in adolescence or adulthood (30 females, 25 males, 1 gender unknown). Clinical presentations included features of bipolar disorder, catatonia, psychosis, and loss of skills, occurring at a mean age of 20 years. There were no apparent sex differences in the rates of these disorders except for catatonia, which appeared to be more frequent in females (13 females, 3 males). Reports of individuals with point mutations in SHANK3 exhibiting neuropsychiatric decompensation and loss of skills demonstrate that loss of one copy of SHANK3 is sufficient to cause these manifestations. In the majority of cases, no apparent cause could be identified; in others, symptoms appeared after acute events, such as infections, prolonged or particularly intense seizures, or changes in the individual's environment. Several individuals had a progressive neurological deterioration, including one with juvenile onset metachromatic leukodystrophy, a severe demyelinating disorder caused by recessive mutations in the ARSA gene in 22q13.33. These reports provide insights into treatment options that have proven helpful in some cases, and are reviewed herein. Our survey highlights how little is currently known about neuropsychiatric presentations and loss of skills in PMS and underscores the importance of studying the natural history in individuals with PMS, including both cross-sectional and long-term longitudinal analyses. Clearer delineation of these neuropsychiatric symptoms will contribute to their recognition and prompt management and will also help uncover the underlying biological mechanisms, potentially leading to improved interventions.
Collapse
Affiliation(s)
- Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Elsa Delaby
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Paris, France
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Neurological Sciences, Biochemistry, Rush University Medical Center, Chicago, Illinois USA
| | - Joseph D. Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Catalina Betancur
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
44
|
Jesse S, Müller HP, Schoen M, Asoglu H, Bockmann J, Huppertz HJ, Rasche V, Ludolph AC, Boeckers TM, Kassubek J. Severe white matter damage in SHANK3 deficiency: a human and translational study. Ann Clin Transl Neurol 2019; 7:46-58. [PMID: 31788990 PMCID: PMC6952316 DOI: 10.1002/acn3.50959] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/14/2022] Open
Abstract
Objective Heterozygous SHANK3 mutations or partial deletions of the long arm of chromosome 22, also known as Phelan–McDermid syndrome, result in a syndromic form of the autism spectrum as well as in global developmental delay, intellectual disability, and several neuropsychiatric comorbidities. The exact pathophysiological mechanisms underlying the disease are still far from being deciphered but studies of SHANK3 models have contributed to the understanding of how the loss of the synaptic protein SHANK3 affects neuronal function. Methods and results Diffusion tensor imaging‐based and automatic volumetric brain mapping were performed in 12 SHANK3‐deficient participants (mean age 19 ± 15 years) versus 14 age‐ and gender‐matched controls (mean age 29 ± 5 years). Using whole brain–based spatial statistics, we observed a highly significant pattern of white matter alterations in participants with SHANK3 mutations with focus on the long association fiber tracts, particularly the uncinate tract and the inferior fronto‐occipital fasciculus. In contrast, only subtle gray matter volumetric abnormalities were detectable. In a back‐translational approach, we observed similar white matter alterations in heterozygous isoform–specific Shank3 knockout (KO) mice. Here, in the baseline data sets, the comparison of Shank3 heterozygous KO vs wildtype showed significant fractional anisotropy reduction of the long fiber tract systems in the KO model. The multiparametric Magnetic Resonance Imaging (MRI) analysis by DTI and volumetry demonstrated a pathology pattern with severe white matter alterations and only subtle gray matter changes in the animal model. Interpretation In summary, these translational data provide strong evidence that the SHANK3‐deficiency–associated pathomechanism presents predominantly with a white matter disease. Further studies should concentrate on the role of SHANK3 during early axonal pathfinding/wiring and in myelin formation.
Collapse
Affiliation(s)
- Sarah Jesse
- Department of Neurology, Ulm University, Ulm, Germany
| | | | - Michael Schoen
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Harun Asoglu
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Juergen Bockmann
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | - Volker Rasche
- Core Facility Small Animal MRI, Ulm University, Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Ulm, Germany.,DZNE Site, Ulm, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,DZNE Site, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, Ulm University, Ulm, Germany
| |
Collapse
|
45
|
Inan C, Sayin NC, Gurkan H, Atli E, Gursoy Erzincan S, Uzun I, Sutcu H, Dogan S, Ikbal Atli E, Varol F. Schizencephaly accompanied by occipital encephalocele and deletion of chromosome 22q13.32: a case report. Fetal Pediatr Pathol 2019; 38:496-502. [PMID: 31130048 DOI: 10.1080/15513815.2019.1604921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Schizencephaly is a neuronal migration anomaly characterized by presence of a cleft between ependymal layer of the ventricle and pia mater of the cerebral cortex. It may be associated with additional cerebral abnormalities, including polymicrogyria, pachygyria, gray matter heterotopy, ventriculomegaly and corpus callosum agenesis. Case Report: We present a female fetus with schizencephaly accompanied by occipital encephalocele, polymicrogyria, agenesis of the corpus callosum, dysmorphic facies and cardiac muscular ventricular septal defect. Array comparative genomic hybridization (array-cGH) analysis revealed a deletion of chromosome 22q13.32 including FAM19A5 gene that is a member of TAFA family. Conclusions: Schizencephaly may be accompanied by unexpected structural and genetic anomalies as in our case with occipital encephalocele, dysmorphic facies, cardiac ventricular septal defect and chromosome 22q13.32 deletion.
Collapse
Affiliation(s)
- Cihan Inan
- Division of Perinatology, Department of Obstetrics & Gynecology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - N Cenk Sayin
- Division of Perinatology, Department of Obstetrics & Gynecology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Hakan Gurkan
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Engin Atli
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Selen Gursoy Erzincan
- Division of Perinatology, Department of Obstetrics & Gynecology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Isil Uzun
- Division of Perinatology, Department of Obstetrics & Gynecology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Havva Sutcu
- Division of Perinatology, Department of Obstetrics & Gynecology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Sumeyra Dogan
- Department of Radiology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Emine Ikbal Atli
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Fusun Varol
- Division of Perinatology, Department of Obstetrics & Gynecology, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
46
|
Droogmans G, Swillen A, Van Buggenhout G. Deep Phenotyping of Development, Communication and Behaviour in Phelan-McDermid Syndrome. Mol Syndromol 2019; 10:294-305. [PMID: 32021603 DOI: 10.1159/000503840] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2019] [Indexed: 12/11/2022] Open
Abstract
Phelan-McDermid syndrome (PMS; also referred to as 22q13.3 deletion syndrome) is a congenital condition due to a microdeletion in the SHANK3 gene. Cognitive and communicative deficits as well as behaviour in the autism spectrum are often noticed in affected individuals. The aim of the present study was to obtain a detailed phenotype of the development, communication, and behaviour of 15 individuals with PMS by using both quantitative (questionnaires) and qualitative methods (interviews and observations). In addition, data from the patients' medical records were included. In a subgroup of participants (n = 5), data from a previous study were incorporated to enable a comparison over 2 points in time (longitudinal course). Results indicate a severe to profound level of intellectual disability in all participants, impaired adaptive behaviour, a low level of speech and language, a high incidence of features of autism spectrum disorder (ASD), and a high sensory threshold. Younger individuals (age <18 years) exhibited more challenging behaviour and features of ASD. In older individuals with PMS, a regression across many developmental and adaptive domains was frequently reported and observed. We did not find a relation between the deletion size and the severity of the phenotype. Implications of the findings and recommendations for clinical practice and future research are discussed.
Collapse
Affiliation(s)
- Gilles Droogmans
- Department of Human Genetics, University of Leuven (KU Leuven), Leuven, Belgium
| | - Ann Swillen
- Department of Human Genetics, University of Leuven (KU Leuven), Leuven, Belgium.,Centre for Human Genetics, University Hospitals Leuven (UZ Leuven), Leuven, Belgium
| | - Griet Van Buggenhout
- Department of Human Genetics, University of Leuven (KU Leuven), Leuven, Belgium.,Centre for Human Genetics, University Hospitals Leuven (UZ Leuven), Leuven, Belgium
| |
Collapse
|
47
|
Verhoeven WMA, Egger JIM, de Leeuw N. A longitudinal perspective on the pharmacotherapy of 24 adult patients with Phelan McDermid syndrome. Eur J Med Genet 2019; 63:103751. [PMID: 31465867 DOI: 10.1016/j.ejmg.2019.103751] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 08/12/2019] [Accepted: 08/24/2019] [Indexed: 02/03/2023]
Abstract
Over the past years, 24 patients with Phelan-McDermid syndrome were carefully investigated with respect to history, somatic and neurologic antecedents, treatment history, behavioural issues, and psychiatric symptoms including possible catatonic features and regression phenomena. Patients were originally referred for specialized diagnosis and treatment advice because of recurrent challenging behaviours along with instable mood. In all, standardized neuropsychiatric examination was performed including assessment of intellectual and adaptive functioning as well as communication and behaviour concerns. Psychiatric diagnoses were actualized in interdisciplinary consultation meetings according to ICD-10 guidelines. The course of disease was periodically monitored with respect to treatment efficacy and psychopathology over a period varying from one to five years. In 18 patients, a deletion encompassing part of or the entire SHANK3 gene was found. All comprised two or more genes in addition to SHANK3. In six patients, a pathogenic variant in this gene was detected. The psychopathological profile of all patients (nine were published before) was characterized by symptoms from the autism and schizoaffective spectrum while in five, periodic catatonic symptoms were also established. In their third decade, four patients with the deletion subtype developed a regression-like gradual decline of functioning. Based on actual psychiatric classification, in 18 patients, a diagnosis of atypical bipolar disorder was established of which symptoms typically started from late adolescence onward. In most patients, treatment with mood stabilizing agents in combination with individually designed contextual measures, and if indicated with the addition of an atypical antipsychotic, resulted in gradual stabilization of mood and behaviour.
Collapse
Affiliation(s)
- Willem M A Verhoeven
- Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, the Netherlands; Erasmus University Medical Centre, Department of Psychiatry, Rotterdam, the Netherlands; Centre for Consultation and Expertise, Utrecht, the Netherlands.
| | - Jos I M Egger
- Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Stevig Specialized and Forensic Care for people with Intellectual Disabilities, Oostrum, the Netherlands
| | - Nicole de Leeuw
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
48
|
Abstract
OBJECTIVE The aim of the study was to evaluate gastrointestinal symptoms and continence in the context of Phelan-McDermid Syndrome (PMS). METHODS A prospective evaluation of children with PMS (n = 17) at the National Institutes of Health. RESULTS Parent-reported history of symptoms were common: constipation (65%), reflux (59%), choking/gagging (41%), and more than half received gastrointestinal specialty care. No aspiration was noted in 11/11 participants who completed modified barium swallows. Four participants met criteria for functional constipation, 2 of whom had abnormal colonic transit studies. Stool incontinence was highly prevalent (13/17) with nonretentive features present in 12/17. Participants who were continent had significantly smaller genetic deletions (P = 0.01) and higher nonverbal mental age (P = 0.03) compared with incontinent participants. CONCLUSIONS Incontinence is common in PMS and associated with intellectual functioning and gene deletion size. Management strategies may differ based on the presence of nonretentive fecal incontinence, functional constipation, and degree of intellectual disability for children with PMS.
Collapse
|
49
|
Samogy-Costa CI, Varella-Branco E, Monfardini F, Ferraz H, Fock RA, Barbosa RHA, Pessoa ALS, Perez ABA, Lourenço N, Vibranovski M, Krepischi A, Rosenberg C, Passos-Bueno MR. A Brazilian cohort of individuals with Phelan-McDermid syndrome: genotype-phenotype correlation and identification of an atypical case. J Neurodev Disord 2019; 11:13. [PMID: 31319798 PMCID: PMC6637483 DOI: 10.1186/s11689-019-9273-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/07/2019] [Indexed: 11/16/2022] Open
Abstract
Background Phelan-McDermid syndrome (PMS) is a rare genetic disorder characterized by global developmental delay, intellectual disability (ID), autism spectrum disorder (ASD), and mild dysmorphisms associated with several comorbidities caused by SHANK3 loss-of-function mutations. Although SHANK3 haploinsufficiency has been associated with the major neurological symptoms of PMS, it cannot explain the clinical variability seen among individuals. Our goals were to characterize a Brazilian cohort of PMS individuals, explore the genotype-phenotype correlation underlying this syndrome, and describe an atypical individual with mild phenotype. Methodology A total of 34 PMS individuals were clinically and genetically evaluated. Data were obtained by a questionnaire answered by parents, and dysmorphic features were assessed via photographic evaluation. We analyzed 22q13.3 deletions and other potentially pathogenic copy number variants (CNVs) and also performed genotype-phenotype correlation analysis to determine whether comorbidities, speech status, and ASD correlate to deletion size. Finally, a Brazilian cohort of 829 ASD individuals and another independent cohort of 2297 ID individuals was used to determine the frequency of PMS in these disorders. Results Our data showed that 21% (6/29) of the PMS individuals presented an additional rare CNV, which may contribute to clinical variability in PMS. Increased pain tolerance (80%), hypotonia (85%), and sparse eyebrows (80%) were prominent clinical features. An atypical case diagnosed with PMS at 18 years old and IQ within the normal range is here described. Among Brazilian ASD or ID individuals referred to CNV analyses, the frequency of 22q13.3 deletion was 0.6% (5/829) and 0.61% (15/2297), respectively. Finally, renal abnormalities, lymphedema, and language impairment were found to be positively associated with deletion sizes, and the minimum deletion to cause these abnormalities is here suggested. Conclusions This is the first work describing a cohort of Brazilian individuals with PMS. Our results confirm the impact of 22q13 deletions on ASD and several comorbidities, such as hypotonia. The estimation of a minimal deletion size for developing lymphedema and renal problem can assist prediction of prognosis in PMS individuals, particularly those diagnosed in early infancy. We also identified one atypical individual carrying SHANK3 deletion, suggesting that resilience to such mutations occurs. This case expands the clinical spectrum of variability in PMS and opens perspectives to identify protective mechanisms that can minimize the severity of this condition. Electronic supplementary material The online version of this article (10.1186/s11689-019-9273-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claudia Ismania Samogy-Costa
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco (CEGH-CEL), Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Elisa Varella-Branco
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco (CEGH-CEL), Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Frederico Monfardini
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco (CEGH-CEL), Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Helen Ferraz
- Programa de Engenharia Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Ambrósio Fock
- Centro de Genética Médica, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - André Luiz Santos Pessoa
- Ambulatório de Neurogenética, Hospital Albert Sabin, São Paulo, Brazil.,Faculdade de Medicina, Universidade Estadual do Ceará, UECE, Fortaleza, Brazil
| | | | - Naila Lourenço
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco (CEGH-CEL), Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Vibranovski
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco (CEGH-CEL), Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Krepischi
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco (CEGH-CEL), Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Carla Rosenberg
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco (CEGH-CEL), Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco (CEGH-CEL), Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
50
|
Zhou Y, Sharma J, Ke Q, Landman R, Yuan J, Chen H, Hayden DS, Fisher JW, Jiang M, Menegas W, Aida T, Yan T, Zou Y, Xu D, Parmar S, Hyman JB, Fanucci-Kiss A, Meisner O, Wang D, Huang Y, Li Y, Bai Y, Ji W, Lai X, Li W, Huang L, Lu Z, Wang L, Anteraper SA, Sur M, Zhou H, Xiang AP, Desimone R, Feng G, Yang S. Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature 2019; 570:326-331. [DOI: 10.1038/s41586-019-1278-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/13/2019] [Indexed: 01/09/2023]
|