1
|
Buckley A, Guo C, Laycock A, Cui X, Belinga-Desaunay-Nault MF, Valsami-Jones E, Leonard M, Smith R. Aerosol exposure at air-liquid-interface (AE-ALI) in vitro toxicity system characterisation: Particle deposition and the importance of air control responses. Toxicol In Vitro 2024; 100:105889. [PMID: 38971396 DOI: 10.1016/j.tiv.2024.105889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Experimental systems allowing aerosol exposure (AE) of cell cultures at the air-liquid-interface (ALI) are increasingly being used to assess the toxicity of inhaled contaminants as they are more biomimetic than standard methods using submerged cultures, however, they require detailed characterisation before use. An AE-ALI system combining aerosol generation with a CULTEX® exposure chamber was characterised with respect to particle deposition and the cellular effects of filtered air (typical control) exposures. The effect of system parameters (electrostatic precipitator voltage, air flowrate to cells and insert size) on deposition efficiency and spatial distribution were investigated using ICP-MS and laser ablation ICP-MS, for an aerosol of CeO2 nanoparticles. Deposition varied with conditions, but appropriate choice of operating parameters produced broadly uniform deposition at suitable levels. The impact of air exposure duration on alveolar cells (A549) and primary small airway epithelial cells (SAECs) was explored with respect to LDH release and expression of selected genes. Results indicated that air exposures could have a significant impact on cells (e.g., cytotoxicity and expression of genes, including CXCL1, HMOX1, and SPP1) at relatively short durations (from 10 mins) and that SAECs were more sensitive. These findings indicate that detailed system characterisation is essential to ensure meaningful results.
Collapse
Affiliation(s)
- Alison Buckley
- Toxicology Department, Radiation, Chemical and Environmental Hazards Directorate (RCE), UK Health Security Agency (UKHSA), Harwell Campus, Oxfordshire OX11 0RQ, UK; The National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Exposures and Health (EEH) at Imperial College London in Partnership with UKHSA, School of Public Health, Imperial College London, Michael Uren Biomedical Engineering Hub, White City Campus, Wood Lane, W12 OBZ, UK
| | - Chang Guo
- Toxicology Department, Radiation, Chemical and Environmental Hazards Directorate (RCE), UK Health Security Agency (UKHSA), Harwell Campus, Oxfordshire OX11 0RQ, UK; The National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Exposures and Health (EEH) at Imperial College London in Partnership with UKHSA, School of Public Health, Imperial College London, Michael Uren Biomedical Engineering Hub, White City Campus, Wood Lane, W12 OBZ, UK
| | - Adam Laycock
- Toxicology Department, Radiation, Chemical and Environmental Hazards Directorate (RCE), UK Health Security Agency (UKHSA), Harwell Campus, Oxfordshire OX11 0RQ, UK; The National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Exposures and Health (EEH) at Imperial College London in Partnership with UKHSA, School of Public Health, Imperial College London, Michael Uren Biomedical Engineering Hub, White City Campus, Wood Lane, W12 OBZ, UK
| | - Xianjin Cui
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Nanodot Limited, Loughborough LE11 4NT, UK
| | | | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Martin Leonard
- Toxicology Department, Radiation, Chemical and Environmental Hazards Directorate (RCE), UK Health Security Agency (UKHSA), Harwell Campus, Oxfordshire OX11 0RQ, UK; The National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Exposures and Health (EEH) at Imperial College London in Partnership with UKHSA, School of Public Health, Imperial College London, Michael Uren Biomedical Engineering Hub, White City Campus, Wood Lane, W12 OBZ, UK
| | - Rachel Smith
- Toxicology Department, Radiation, Chemical and Environmental Hazards Directorate (RCE), UK Health Security Agency (UKHSA), Harwell Campus, Oxfordshire OX11 0RQ, UK; The National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Exposures and Health (EEH) at Imperial College London in Partnership with UKHSA, School of Public Health, Imperial College London, Michael Uren Biomedical Engineering Hub, White City Campus, Wood Lane, W12 OBZ, UK
| |
Collapse
|
2
|
Moghaddam SJ, Savai R, Salehi-Rad R, Sengupta S, Kammer MN, Massion P, Beane JE, Ostrin EJ, Priolo C, Tennis MA, Stabile LP, Bauer AK, Sears CR, Szabo E, Rivera MP, Powell CA, Kadara H, Jenkins BJ, Dubinett SM, Houghton AM, Kim CF, Keith RL. Premalignant Progression in the Lung: Knowledge Gaps and Novel Opportunities for Interception of Non-Small Cell Lung Cancer. An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med 2024; 210:548-571. [PMID: 39115548 PMCID: PMC11389570 DOI: 10.1164/rccm.202406-1168st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Indexed: 08/13/2024] Open
Abstract
Rationale: Despite significant advances in precision treatments and immunotherapy, lung cancer is the most common cause of cancer death worldwide. To reduce incidence and improve survival rates, a deeper understanding of lung premalignancy and the multistep process of tumorigenesis is essential, allowing timely and effective intervention before cancer development. Objectives: To summarize existing information, identify knowledge gaps, formulate research questions, prioritize potential research topics, and propose strategies for future investigations into the premalignant progression in the lung. Methods: An international multidisciplinary team of basic, translational, and clinical scientists reviewed available data to develop and refine research questions pertaining to the transformation of premalignant lung lesions to advanced lung cancer. Results: This research statement identifies significant gaps in knowledge and proposes potential research questions aimed at expanding our understanding of the mechanisms underlying the progression of premalignant lung lesions to lung cancer in an effort to explore potential innovative modalities to intercept lung cancer at its nascent stages. Conclusions: The identified gaps in knowledge about the biological mechanisms of premalignant progression in the lung, together with ongoing challenges in screening, detection, and early intervention, highlight the critical need to prioritize research in this domain. Such focused investigations are essential to devise effective preventive strategies that may ultimately decrease lung cancer incidence and improve patient outcomes.
Collapse
|
3
|
Walsh D, Bevan J, Harrison F. How Does Airway Surface Liquid Composition Vary in Different Pulmonary Diseases, and How Can We Use This Knowledge to Model Microbial Infections? Microorganisms 2024; 12:732. [PMID: 38674677 PMCID: PMC11052052 DOI: 10.3390/microorganisms12040732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Growth environment greatly alters many facets of pathogen physiology, including pathogenesis and antimicrobial tolerance. The importance of host-mimicking environments for attaining an accurate picture of pathogen behaviour is widely recognised. Whilst this recognition has translated into the extensive development of artificial cystic fibrosis (CF) sputum medium, attempts to mimic the growth environment in other respiratory disease states have been completely neglected. The composition of the airway surface liquid (ASL) in different pulmonary diseases is far less well characterised than CF sputum, making it very difficult for researchers to model these infection environments. In this review, we discuss the components of human ASL, how different lung pathologies affect ASL composition, and how different pathogens interact with these components. This will provide researchers interested in mimicking different respiratory environments with the information necessary to design a host-mimicking medium, allowing for better understanding of how to treat pathogens causing infection in these environments.
Collapse
Affiliation(s)
- Dean Walsh
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK (F.H.)
| | | | | |
Collapse
|
4
|
Raasch K, Dupin I. [Modifications of distal pathways in COPD, in light of recent technological advances in imaging and transcriptomics]. Rev Mal Respir 2024; 41:269-273. [PMID: 38480097 DOI: 10.1016/j.rmr.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 04/15/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease characterized by a non-reversible limitation of expiratory airflow. In patients with COPD, distal airways are the major site of obstruction; early in the course of the disease, they show signs of being remodeled, inflamed, and/or obliterated. Recent technological advances, particularly in imaging and transcriptomics, have provided new information on this key area of the lung. The objective of this review is to provide an updated overall vision of knowledge on distal airways and how they are damaged in COPD.
Collapse
Affiliation(s)
- K Raasch
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France.
| | - I Dupin
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France.
| |
Collapse
|
5
|
Martins LR, Sieverling L, Michelhans M, Schiller C, Erkut C, Grünewald TGP, Triana S, Fröhling S, Velten L, Glimm H, Scholl C. Single-cell division tracing and transcriptomics reveal cell types and differentiation paths in the regenerating lung. Nat Commun 2024; 15:2246. [PMID: 38472236 DOI: 10.1038/s41467-024-46469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Understanding the molecular and cellular processes involved in lung epithelial regeneration may fuel the development of therapeutic approaches for lung diseases. We combine mouse models allowing diphtheria toxin-mediated damage of specific epithelial cell types and parallel GFP-labeling of functionally dividing cells with single-cell transcriptomics to characterize the regeneration of the distal lung. We uncover cell types, including Krt13+ basal and Krt15+ club cells, detect an intermediate cell state between basal and goblet cells, reveal goblet cells as actively dividing progenitor cells, and provide evidence that adventitial fibroblasts act as supporting cells in epithelial regeneration. We also show that diphtheria toxin-expressing cells can persist in the lung, express specific inflammatory factors, and transcriptionally resemble a previously undescribed population in the lungs of COVID-19 patients. Our study provides a comprehensive single-cell atlas of the distal lung that characterizes early transcriptional and cellular responses to concise epithelial injury, encompassing proliferation, differentiation, and cell-to-cell interactions.
Collapse
Affiliation(s)
- Leila R Martins
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany.
| | - Lina Sieverling
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany
| | - Michelle Michelhans
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Chiara Schiller
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany
| | - Cihan Erkut
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas G P Grünewald
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, DKFZ, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Sergio Triana
- Structural and Computational Biology, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Broad Institute of Harvard and MIT, Cambridge, USA
- Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, USA
| | - Stefan Fröhling
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Lars Velten
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Hanno Glimm
- Department for Translational Medical Oncology, National Center for Tumor Diseases Dresden (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Translational Functional Cancer Genomics, DKFZ, Heidelberg, Germany
- DKTK, partner site Dresden, Dresden, Germany
| | - Claudia Scholl
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
6
|
Alipour M, Moghanibashi M, Naeimi S, Mohamadynejad P. Integrative bioinformatics analysis reveals ECM and nicotine-related genes in both LUAD and LUSC, but different lung fibrosis-related genes are involved in LUAD and LUSC. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-20. [PMID: 38198447 DOI: 10.1080/15257770.2023.2300982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
There are several bioinformatics studies related to lung cancer, but most of them have mainly focused on either microarray data or RNA-Seq data alone. In this study, we have combined both types of data to identify differentially expressed genes (DEGs) specific to lung cancer subtypes. We obtained six microarray datasets from the GEO and also the expression matrix of LUSC and LUAD from TCGA, which were analyzed by GEO2R tool and GEPIA2, respectively. Enrichment analyses of DEGs were performed using the Enrichr database. Protein module identification was done by MCODE plugin in cytoscape software. We identified 30 LUAD-specific, 17 LUSC-specific, and 17 DEGs shared between LUAD and LUSC. Enrichment analyses revealed that LUSC-specific DEGs are involved in lung fibrosis. In addition, DEGs shared between LUAD and LUSC are involved in extracellular matrix (ECM), nicotine metabolism, and lung fibrosis. We identified lung fibrosis-related genes, including SPP1, MMP9, and CXCL2, involved in both LUAD and LUSC, but SERPINA1 and PLAU genes involved only in LUSC. We also found an important module separately for LUAD-specific, LUSC-specific, and shared DEGs between LUSC and LUAD. S100P, GOLM, AGR2, AK1, TMEM125, SLC2A1, COL1A1, and GHR genes were significantly associated with survival. Our findings suggest that different lung fibrosis-related genes may play roles in LUSC and LUAD. Additionally, nicotine metabolism and ECM remodeling were found to be associated with both LUSC and LUAD, regardless of subtype, emphasizing the role of smoking in the development of lung cancer and ECM in the high aggressiveness and mortality of lung cancer.
Collapse
Affiliation(s)
- Marzyeh Alipour
- Department of Genetics, Collegue of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | | | - Parisa Mohamadynejad
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
7
|
Sponchiado M, Bonilla AL, Mata L, Jasso-Johnson K, Liao YSJ, Fagan A, Moncada V, Reznikov LR. Club cell CREB regulates the goblet cell transcriptional network and pro-mucin effects of IL-1B. Front Physiol 2023; 14:1323865. [PMID: 38173934 PMCID: PMC10761479 DOI: 10.3389/fphys.2023.1323865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction: Club cells are precursors for mucus-producing goblet cells. Interleukin 1β (IL-1B) is an inflammatory mediator with pro-mucin activities that increases the number of mucus-producing goblet cells. IL-1B-mediated mucin production in alveolar adenocarcinoma cells requires activation of the cAMP response element-binding protein (CREB). Whether the pro-mucin activities of IL-1B require club cell CREB is unknown. Methods: We challenged male mice with conditional loss of club cell Creb1 and wild type littermates with intra-airway IL-1B or vehicle. Secondarily, we studied human "club cell-like" H322 cells. Results: IL-1B increased whole lung mRNA of secreted (Mucin 5ac, Mucin 5b) and tethered (Mucin 1, Mucin 4) mucins independent of genotype. However, loss of club cell Creb1 increased whole lung mRNA of member RAS oncogene family (Rab3D), decreased mRNA of the muscarinic receptor 3 (M3R) and prevented IL-1B mediated increases in purinergic receptor P2Y, (P2ry2) mRNA. IL-1B increased the density of goblet cells containing neutral mucins in wildtype mice but not in mice with loss of club cell Creb1. These findings suggested that club cell Creb1 regulated mucin secretion. Loss of club cell Creb1 also prevented IL-1B-mediated impairments in airway mechanics. Four days of pharmacologic CREB inhibition in H322 cells increased mRNA abundance of forkhead box A2 (FOXA2), a repressor of goblet cell expansion, and decreased mRNA expression of SAM pointed domain containing ETS transcription factor (SPDEF), a driver of goblet cell expansion. Chromatin immunoprecipitation demonstrated that CREB directly bound to the promoter region of FOXA2, but not to the promoter region of SPDEF. Treatment of H322 cells with IL-1B increased cAMP levels, providing a direct link between IL-1B and CREB signaling. Conclusion: Our findings suggest that club cell Creb1 regulates the pro-mucin properties of IL-1B through pathways likely involving FOXA2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Leah R. Reznikov
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Blackburn JB, Li NF, Bartlett NW, Richmond BW. An update in club cell biology and its potential relevance to chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2023; 324:L652-L665. [PMID: 36942863 PMCID: PMC10110710 DOI: 10.1152/ajplung.00192.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Club cells are found in human small airways where they play an important role in immune defense, xenobiotic metabolism, and repair after injury. Over the past few years, data from single-cell RNA sequencing (scRNA-seq) studies has generated new insights into club cell heterogeneity and function. In this review, we integrate findings from scRNA-seq experiments with earlier in vitro, in vivo, and microscopy studies and highlight the many ways club cells contribute to airway homeostasis. We then discuss evidence for loss of club cells or club cell products in the airways of patients with chronic obstructive pulmonary disease (COPD) and discuss potential mechanisms through which this might occur.
Collapse
Affiliation(s)
- Jessica B Blackburn
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, United States
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Ngan Fung Li
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States
| | - Nathan W Bartlett
- Viral Immunology and Respiratory Disease Group, University of Newcastle, Callaghan, New South Wales, Australia
| | - Bradley W Richmond
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, United States
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
9
|
Boateng E, Kovacevic D, Oldenburg V, Rådinger M, Krauss-Etschmann S. Role of airway epithelial cell miRNAs in asthma. FRONTIERS IN ALLERGY 2022; 3:962693. [PMID: 36203653 PMCID: PMC9530201 DOI: 10.3389/falgy.2022.962693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/01/2022] [Indexed: 12/07/2022] Open
Abstract
The airway epithelial cells and overlying layer of mucus are the first point of contact for particles entering the lung. The severity of environmental contributions to pulmonary disease initiation, progression, and exacerbation is largely determined by engagement with the airway epithelium. Despite the cellular cross-talk and cargo exchange in the microenvironment, epithelial cells produce miRNAs associated with the regulation of airway features in asthma. In line with this, there is evidence indicating miRNA alterations related to their multifunctional regulation of asthma features in the conducting airways. In this review, we discuss the cellular components and functions of the airway epithelium in asthma, miRNAs derived from epithelial cells in disease pathogenesis, and the cellular exchange of miRNA-bearing cargo in the airways.
Collapse
Affiliation(s)
- Eistine Boateng
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Correspondence: Eistine Boateng
| | - Draginja Kovacevic
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Vladimira Oldenburg
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Madeleine Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Susanne Krauss-Etschmann
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
10
|
Blackburn JB, Schaff JA, Gutor S, Du RH, Nichols D, Sherrill T, Gutierrez AJ, Xin MK, Wickersham N, Zhang Y, Holtzman MJ, Ware LB, Banovich NE, Kropski JA, Blackwell TS, Richmond BW. Secretory Cells Are the Primary Source of pIgR in Small Airways. Am J Respir Cell Mol Biol 2022; 67:334-345. [PMID: 35687143 PMCID: PMC9447142 DOI: 10.1165/rcmb.2021-0548oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Loss of secretory IgA (SIgA) is common in chronic obstructive pulmonary disease (COPD) small airways and likely contributes to disease progression. We hypothesized that loss of SIgA results from reduced expression of pIgR (polymeric immunoglobulin receptor), a chaperone protein needed for SIgA transcytosis, in the COPD small airway epithelium. pIgR-expressing cells were defined and quantified at single-cell resolution in human airways using RNA in situ hybridization, immunostaining, and single-cell RNA sequencing. Complementary studies in mice used immunostaining, primary murine tracheal epithelial cell culture, and transgenic mice with secretory or ciliated cell-specific knockout of pIgR. SIgA degradation by human neutrophil elastase or secreted bacterial proteases from nontypeable Haemophilus influenzae was evaluated in vitro. We found that secretory cells are the predominant cell type responsible for pIgR expression in human and murine airways. Loss of SIgA in small airways was not associated with a reduction in secretory cells but rather a reduction in pIgR protein expression despite intact PIGR mRNA expression. Neutrophil elastase and nontypeable H. influenzae-secreted proteases are both capable of degrading SIgA in vitro and may also contribute to a deficient SIgA immunobarrier in COPD. Loss of the SIgA immunobarrier in small airways of patients with severe COPD is complex and likely results from both pIgR-dependent defects in IgA transcytosis and SIgA degradation.
Collapse
Affiliation(s)
- Jessica B. Blackburn
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Jacob A. Schaff
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Sergey Gutor
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Rui-Hong Du
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - David Nichols
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Taylor Sherrill
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | | | - Matthew K. Xin
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Nancy Wickersham
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Yong Zhang
- Division of Pulmonary and Critical Care Medicine, Washington University–St. Louis, St. Louis, Missouri
| | - Michael J. Holtzman
- Division of Pulmonary and Critical Care Medicine, Washington University–St. Louis, St. Louis, Missouri
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | | | - Jonathan A. Kropski
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Timothy S. Blackwell
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Bradley W. Richmond
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
11
|
Sajjan U. Secretory Cells - New Players in Small Airway Mucosal Immunity? Am J Respir Cell Mol Biol 2022; 67:269-270. [PMID: 35704450 DOI: 10.1165/rcmb.2022-0210ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Umadevi Sajjan
- Temple University, 6558, Thoracic Medicine and Surgery, Philadelphia, Pennsylvania, United States;
| |
Collapse
|
12
|
Li S, Zhao F, Ye J, Li K, Wang Q, Du Z, Yue Q, Wang S, Wu Q, Chen H. Cellular metabolic basis of altered immunity in the lungs of patients with COVID-19. Med Microbiol Immunol 2022; 211:49-69. [PMID: 35022857 PMCID: PMC8755516 DOI: 10.1007/s00430-021-00727-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023]
Abstract
Metabolic pathways drive cellular behavior. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes lung tissue damage directly by targeting cells or indirectly by producing inflammatory cytokines. However, whether functional alterations are related to metabolic changes in lung cells after SARS-CoV-2 infection remains unknown. Here, we analyzed the lung single-nucleus RNA-sequencing (snRNA-seq) data of several deceased COVID-19 patients and focused on changes in transcripts associated with cellular metabolism. We observed upregulated glycolysis and oxidative phosphorylation in alveolar type 2 progenitor cells, which may block alveolar epithelial differentiation and surfactant secretion. Elevated inositol phosphate metabolism in airway progenitor cells may promote neutrophil infiltration and damage the lung barrier. Further, multiple metabolic alterations in the airway goblet cells are associated with impaired muco-ciliary clearance. Increased glycolysis, oxidative phosphorylation, and inositol phosphate metabolism not only enhance macrophage activation but also contribute to SARS-CoV-2 induced lung injury. The cytotoxicity of natural killer cells and CD8+ T cells may be enhanced by glycerolipid and inositol phosphate metabolism. Glycolytic activation in fibroblasts is related to myofibroblast differentiation and fibrogenesis. Glycolysis, oxidative phosphorylation, and glutathione metabolism may also boost the aging, apoptosis and proliferation of vascular smooth muscle cells, resulting in pulmonary arterial hypertension. In conclusion, this preliminary study revealed a possible cellular metabolic basis for the altered innate immunity, adaptive immunity, and niche cell function in the lung after SARS-CoV-2 infection. Therefore, patients with COVID-19 may benefit from therapeutic strategies targeting cellular metabolism in future.
Collapse
Affiliation(s)
- Shuangyan Li
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, 890 Jingu Road, Tianjin, 300350, China
| | - Fuxiaonan Zhao
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, 890 Jingu Road, Tianjin, 300350, China
| | - Jing Ye
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, 890 Jingu Road, Tianjin, 300350, China
| | - Kuan Li
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, 890 Jingu Road, Tianjin, 300350, China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, 890 Jingu Road, Tianjin, 300350, China
| | - Qi Wang
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, 890 Jingu Road, Tianjin, 300350, China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, 890 Jingu Road, Tianjin, 300350, China
| | - Zhongchao Du
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, 890 Jingu Road, Tianjin, 300350, China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, 890 Jingu Road, Tianjin, 300350, China
| | - Qing Yue
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, 890 Jingu Road, Tianjin, 300350, China
| | - Sisi Wang
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, 890 Jingu Road, Tianjin, 300350, China
| | - Qi Wu
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, 890 Jingu Road, Tianjin, 300350, China.
- Department of Basic Medicine, Haihe Hospital, Tianjin University, 890 Jingu Road, Tianjin, 300350, China.
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, 890 Jingu Road, Tianjin, 300350, China.
- Department of Basic Medicine, Haihe Hospital, Tianjin University, 890 Jingu Road, Tianjin, 300350, China.
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, 890 Jingu Road, Tianjin, 300350, China.
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, 890 Jingu Road, Tianjin, 300350, China.
| |
Collapse
|
13
|
Gribben KC, Poole JA, Nelson AJ, Farazi PA, Wichman CS, Heires AJ, Romberger DJ, LeVan TD. Relationships of serum CC16 levels with smoking status and lung function in COPD. Respir Res 2022; 23:247. [PMID: 36114505 PMCID: PMC9479424 DOI: 10.1186/s12931-022-02158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/21/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The club cell secretory protein (CC16) has anti-inflammatory and antioxidant effects, and low CC16 serum levels have been associated with both risk and progression of COPD, yet the interaction between smoking and CC16 on lung function outcomes remains unknown. METHODS Utilizing cross-sectional data on United States veterans, CC16 serum concentrations were measured by ELISA and log transformed for analyses. Spirometry was conducted and COPD status was defined by post-bronchodilator FEV1/FVC ratio < 0.7. Smoking measures were self-reported on questionnaire. Multivariable logistic and linear regression were employed to examine associations between CC16 levels and COPD, and lung function with adjustment for covariates. Unadjusted Pearson correlations described relationships between CC16 level and lung function measures, pack-years smoked, and years since smoking cessation. RESULTS The study population (N = 351) was mostly male, white, with an average age over 60 years. An interaction between CC16 and smoking status on FEV1/FVC ratio was demonstrated among subjects with COPD (N = 245, p = 0.01). There was a positive correlation among former smokers and negative correlation among current or never smokers with COPD. Among former smokers with COPD, CC16 levels were also positively correlated with years since smoking cessation, and inversely related with pack-years smoked. Increasing CC16 levels were associated with lower odds of COPD (ORadj = 0.36, 95% CI 0.22-0.57, Padj < 0.0001). CONCLUSIONS Smoking status is an important effect modifier of CC16 relationships with lung function. Increasing serum CC16 corresponded to increases in FEV1/FVC ratio in former smokers with COPD versus opposite relationships in current or never smokers. Additional longitudinal studies may be warranted to assess relationship of CC16 with smoking cessation on lung function among subjects with COPD.
Collapse
Affiliation(s)
- Kelli C. Gribben
- grid.266813.80000 0001 0666 4105Department of Epidemiology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Jill A. Poole
- grid.266813.80000 0001 0666 4105Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Amy J. Nelson
- grid.266813.80000 0001 0666 4105Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Paraskevi A. Farazi
- grid.266813.80000 0001 0666 4105Department of Epidemiology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Christopher S. Wichman
- grid.266813.80000 0001 0666 4105Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Art J. Heires
- grid.266813.80000 0001 0666 4105Division of Pulmonary, Critical Care and Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Debra J. Romberger
- grid.266813.80000 0001 0666 4105Division of Pulmonary, Critical Care and Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198 USA ,grid.478099.b0000 0004 0420 0296VA Nebraska Western Iowa Healthcare System, Omaha, NE 68105 USA
| | - Tricia D. LeVan
- grid.266813.80000 0001 0666 4105Department of Epidemiology, University of Nebraska Medical Center, Omaha, NE 68198 USA ,grid.266813.80000 0001 0666 4105Division of Pulmonary, Critical Care and Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198 USA ,grid.478099.b0000 0004 0420 0296VA Nebraska Western Iowa Healthcare System, Omaha, NE 68105 USA
| |
Collapse
|