1
|
Starosta RT, Larson AA, Meeks NJL, Gracie S, Friederich MW, Gaughan SM, Baker PR, Knupp KG, Michel CR, Reisdorph R, Hock DH, Stroud DA, Wood T, Van Hove JLK. An integrated multi-omics approach allowed ultra-rapid diagnosis of a deep intronic pathogenic variant in PDHX and precision treatment in a neonate critically ill with lactic acidosis. Mitochondrion 2024; 79:101973. [PMID: 39413893 DOI: 10.1016/j.mito.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
The diagnosis of mitochondrial disorders is complex. Rapid whole genome sequencing is a first line test for critically ill neonates and infants allowing rapid diagnosis and treatment. Standard genomic technology and bioinformatic pipelines still have an incomplete diagnostic yield requiring complementary approaches. There are currently limited options for rapid additional tests to continue a diagnostic work-up after a negative rapid whole-genome sequencing result, reflecting a gap in clinical practice. Multi-modal integrative diagnostic approaches derived from systems biology including proteomics and transcriptomics show promise in suspected mitochondrial disorders. In this article, we report the case of a neonate who presented with severe lactic acidosis on the second day of life, for whom an initial report of ultra-rapid genome sequencing was negative. The patient was started on dichloroacetate as an emergency investigational new drug (eIND), with a sharp decline in lactic acid levels and clinical stabilization. A proteomics-based approach identified a complete absence of PDHX protein, leading to a re-review of the genome data for the PDHX gene in which a homozygous deep intronic pathogenic variant was identified. Subsequent testing in the following months confirmed the diagnosis with deficient pyruvate dehydrogenase enzyme activity, reduced protein levels of E3-binding protein, and confirmed by mRNA sequencing to lead to the inclusion of a cryptic exon and a premature stop codon. This case highlights the power of rapid proteomics in guiding genomic analysis. It also shows a promising role for dichloroacetate treatment in controlling lactic acidosis related to PDHX-related pyruvate dehydrogenase complex deficiency.
Collapse
Affiliation(s)
- Rodrigo T Starosta
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Austin A Larson
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Naomi J L Meeks
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Sara Gracie
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Marisa W Friederich
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Sommer M Gaughan
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Peter R Baker
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Kelly G Knupp
- Department of Pediatrics, Section of Pediatric Neurology, University of Colorado, Aurora, CO, USA
| | - Cole R Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Tim Wood
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Johan L K Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
2
|
Van Hove JLK, Friederich MW, Hock DH, Stroud DA, Caruana NJ, Christians U, Schniedewind B, Michel CR, Reisdorph R, Lopez Gonzalez EDJ, Brenner C, Donovan TE, Lee JC, Chatfield KC, Larson AA, Baker PR, McCandless SE, Moore Burk MF. ACAD9 treatment with bezafibrate and nicotinamide riboside temporarily stabilizes cardiomyopathy and lactic acidosis. Mitochondrion 2024; 78:101905. [PMID: 38797357 PMCID: PMC11390326 DOI: 10.1016/j.mito.2024.101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Pathogenic ACAD9 variants cause complex I deficiency. Patients presenting in infancy unresponsive to riboflavin have high mortality. A six-month-old infant presented with riboflavin unresponsive lactic acidosis and life-threatening cardiomyopathy. Treatment with high dose bezafibrate and nicotinamide riboside resulted in marked clinical improvement including reduced lactate and NT-pro-brain type natriuretic peptide levels, with stabilized echocardiographic measures. After a long stable period, the child succumbed from cardiac failure with infection at 10.5 months. Therapy was well tolerated. Peak bezafibrate levels exceeded its EC50. The clinical improvement with this treatment illustrates its potential, but weak PPAR agonist activity of bezafibrate limited its efficacy.
Collapse
Affiliation(s)
- Johan L K Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA.
| | - Marisa W Friederich
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia; Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia; Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Nikeisha J Caruana
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Uwe Christians
- iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Björn Schniedewind
- iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cole R Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edwin D J Lopez Gonzalez
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Charles Brenner
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Tonia E Donovan
- Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Jessica C Lee
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA
| | - Kathryn C Chatfield
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA; Department of Pediatrics, Section of Cardiology, University of Colorado, Aurora, CO, USA
| | - Austin A Larson
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA
| | - Peter R Baker
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA
| | - Shawn E McCandless
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA
| | - Meghan F Moore Burk
- Department of Physical Medicine and Rehabilitation, Children's Hospital Colorado, 13121 East 16(th) Avenue, Aurora, CO, USA
| |
Collapse
|
3
|
Armirola-Ricaurte C, Morant L, Adant I, Hamed SA, Pipis M, Efthymiou S, Amor-Barris S, Atkinson D, Van de Vondel L, Tomic A, de Vriendt E, Zuchner S, Ghesquiere B, Hanna M, Houlden H, Lunn MP, Reilly MM, Rasic VM, Jordanova A. Biallelic variants in COX18 cause a mitochondrial disorder primarily manifesting as peripheral neuropathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.03.24309787. [PMID: 39006432 PMCID: PMC11245062 DOI: 10.1101/2024.07.03.24309787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Defects in mitochondrial dynamics are a common cause of Charcot-Marie-Tooth disease (CMT), while primary deficiencies in the mitochondrial respiratory chain (MRC) are rare and atypical for this etiology. This study aims to report COX18 as a novel CMT-causing gene. This gene encodes an assembly factor of mitochondrial Complex IV (CIV) that translocates the C-terminal tail of MTCO2 across the mitochondrial inner membrane. Exome sequencing was performed in four affected individuals. The patients and available family members underwent thorough neurological and electrophysiological assessment. The impact of one of the identified variants on splicing, protein levels, and mitochondrial bioenergetics was investigated in patient-derived lymphoblasts. The functionality of the mutant protein was assessed using a Proteinase K protection assay and immunoblotting. Neuronal relevance of COX18 was assessed in a Drosophila melanogaster knockdown model. Exome sequencing coupled with homozygosity mapping revealed a homozygous splice variant c.435-6A>G in COX18 in two siblings with early-onset progressive axonal sensory-motor peripheral neuropathy. By querying external databases, we identified two additional families with rare deleterious biallelic variants in COX18 . All affected individuals presented with axonal CMT and some patients also exhibited central nervous system symptoms, such as dystonia and spasticity. Functional characterization of the c.435-6A>G variant demonstrated that it leads to the expression of an alternative transcript that lacks exon 2, resulting in a stable but defective COX18 isoform. The mutant protein impairs CIV assembly and activity, leading to a reduction in mitochondrial membrane potential. Downregulation of the COX18 homolog in Drosophila melanogaster displayed signs of neurodegeneration, including locomotor deficit and progressive axonal degeneration of sensory neurons. Our study presents genetic and functional evidence that supports COX18 as a newly identified gene candidate for autosomal recessive axonal CMT with or without central nervous system involvement. These findings emphasize the significance of peripheral neuropathy within the spectrum of primary mitochondrial disorders and the role of mitochondrial CIV in the development of CMT. Our research has important implications for the diagnostic workup of CMT patients.
Collapse
|
4
|
Yépez Mora VA. Tagungsbericht Genomics of Rare Disease 2024 Conference. MED GENET-BERLIN 2024; 36:145-147. [PMID: 38854646 PMCID: PMC11154174 DOI: 10.1515/medgen-2024-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Affiliation(s)
- Vicente Andres Yépez Mora
- Technische Universität München TUM School of Computation, Information and Technology Boltzmannstr. 3 85748 Garching Germany
| |
Collapse
|
5
|
Spangsberg Petersen US, Dembic M, Martínez-Pizarro A, Richard E, Holm LL, Havelund JF, Doktor TK, Larsen MR, Færgeman NJ, Desviat LR, Andresen BS. Regulating PCCA gene expression by modulation of pseudoexon splicing patterns to rescue enzyme activity in propionic acidemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102101. [PMID: 38204914 PMCID: PMC10776996 DOI: 10.1016/j.omtn.2023.102101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Pseudoexons are nonfunctional intronic sequences that can be activated by deep-intronic sequence variation. Activation increases pseudoexon inclusion in mRNA and interferes with normal gene expression. The PCCA c.1285-1416A>G variation activates a pseudoexon and causes the severe metabolic disorder propionic acidemia by deficiency of the propionyl-CoA carboxylase enzyme encoded by PCCA and PCCB. We characterized this pathogenic pseudoexon activation event in detail and identified hnRNP A1 to be important for normal repression. The PCCA c.1285-1416A>G variation disrupts an hnRNP A1-binding splicing silencer and simultaneously creates a splicing enhancer. We demonstrate that blocking this region of regulation with splice-switching antisense oligonucleotides restores normal splicing and rescues enzyme activity in patient fibroblasts and in a cellular model created by CRISPR gene editing. Interestingly, the PCCA pseudoexon offers an unexploited potential to upregulate gene expression because healthy tissues show relatively high inclusion levels. By blocking inclusion of the nonactivated wild-type pseudoexon, we can increase both PCCA and PCCB protein levels, which increases the activity of the heterododecameric enzyme. Surprisingly, we can increase enzyme activity from residual levels in not only patient fibroblasts harboring PCCA missense variants but also those harboring PCCB missense variants. This is a potential treatment strategy for propionic acidemia.
Collapse
Affiliation(s)
- Ulrika Simone Spangsberg Petersen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Maja Dembic
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense C, Denmark
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense M, Denmark
| | - Ainhoa Martínez-Pizarro
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, CEDEM, CIBERER, IdiPaz, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, CEDEM, CIBERER, IdiPaz, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Lise Lolle Holm
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Jesper Foged Havelund
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Thomas Koed Doktor
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Nils J. Færgeman
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Lourdes Ruiz Desviat
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, CEDEM, CIBERER, IdiPaz, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Brage Storstein Andresen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
6
|
Wang R, Helbig I, Edmondson AC, Lin L, Xing Y. Splicing defects in rare diseases: transcriptomics and machine learning strategies towards genetic diagnosis. Brief Bioinform 2023; 24:bbad284. [PMID: 37580177 PMCID: PMC10516351 DOI: 10.1093/bib/bbad284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 08/16/2023] Open
Abstract
Genomic variants affecting pre-messenger RNA splicing and its regulation are known to underlie many rare genetic diseases. However, common workflows for genetic diagnosis and clinical variant interpretation frequently overlook splice-altering variants. To better serve patient populations and advance biomedical knowledge, it has become increasingly important to develop and refine approaches for detecting and interpreting pathogenic splicing variants. In this review, we will summarize a few recent developments and challenges in using RNA sequencing technologies for rare disease investigation. Moreover, we will discuss how recent computational splicing prediction tools have emerged as complementary approaches for revealing disease-causing variants underlying splicing defects. We speculate that continuous improvements to sequencing technologies and predictive modeling will not only expand our understanding of splicing regulation but also bring us closer to filling the diagnostic gap for rare disease patients.
Collapse
Affiliation(s)
- Robert Wang
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Genomics and Computational Biology Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ingo Helbig
- The Epilepsy NeuroGenetics Initiative, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew C Edmondson
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lan Lin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yi Xing
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Amarasekera SSC, Hock DH, Lake NJ, Calvo SE, Grønborg SW, Krzesinski EI, Amor DJ, Fahey MC, Simons C, Wibrand F, Mootha VK, Lek M, Lunke S, Stark Z, Østergaard E, Christodoulou J, Thorburn DR, Stroud DA, Compton AG. Multi-omics identifies large mitoribosomal subunit instability caused by pathogenic MRPL39 variants as a cause of pediatric onset mitochondrial disease. Hum Mol Genet 2023; 32:2441-2454. [PMID: 37133451 PMCID: PMC10360397 DOI: 10.1093/hmg/ddad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
MRPL39 encodes one of 52 proteins comprising the large subunit of the mitochondrial ribosome (mitoribosome). In conjunction with 30 proteins in the small subunit, the mitoribosome synthesizes the 13 subunits of the mitochondrial oxidative phosphorylation (OXPHOS) system encoded by mitochondrial Deoxyribonucleic acid (DNA). We used multi-omics and gene matching to identify three unrelated individuals with biallelic variants in MRPL39 presenting with multisystem diseases with severity ranging from lethal, infantile-onset (Leigh syndrome spectrum) to milder with survival into adulthood. Clinical exome sequencing of known disease genes failed to diagnose these patients; however quantitative proteomics identified a specific decrease in the abundance of large but not small mitoribosomal subunits in fibroblasts from the two patients with severe phenotype. Re-analysis of exome sequencing led to the identification of candidate single heterozygous variants in mitoribosomal genes MRPL39 (both patients) and MRPL15. Genome sequencing identified a shared deep intronic MRPL39 variant predicted to generate a cryptic exon, with transcriptomics and targeted studies providing further functional evidence for causation. The patient with the milder disease was homozygous for a missense variant identified through trio exome sequencing. Our study highlights the utility of quantitative proteomics in detecting protein signatures and in characterizing gene-disease associations in exome-unsolved patients. We describe Relative Complex Abundance analysis of proteomics data, a sensitive method that can identify defects in OXPHOS disorders to a similar or greater sensitivity to the traditional enzymology. Relative Complex Abundance has potential utility for functional validation or prioritization in many hundreds of inherited rare diseases where protein complex assembly is disrupted.
Collapse
Affiliation(s)
- Sumudu S C Amarasekera
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicole J Lake
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510 USA
| | - Sarah E Calvo
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02446, USA
| | - Sabine W Grønborg
- Department of Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Center for Inherited Metabolic Disease, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Emma I Krzesinski
- Monash Genetics, Monash Health, Melbourne, VIC 3168 Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168 Australia
| | - David J Amor
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Michael C Fahey
- Monash Genetics, Monash Health, Melbourne, VIC 3168 Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168 Australia
| | - Cas Simons
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Flemming Wibrand
- Department of Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Vamsi K Mootha
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02446, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510 USA
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
- Department of Pathology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Zornitza Stark
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
| | - Elsebet Østergaard
- Department of Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - John Christodoulou
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
- Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - David R Thorburn
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
| | - David A Stroud
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Alison G Compton
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| |
Collapse
|
8
|
Lunke S, Bouffler SE, Patel CV, Sandaradura SA, Wilson M, Pinner J, Hunter MF, Barnett CP, Wallis M, Kamien B, Tan TY, Freckmann ML, Chong B, Phelan D, Francis D, Kassahn KS, Ha T, Gao S, Arts P, Jackson MR, Scott HS, Eggers S, Rowley S, Boggs K, Rakonjac A, Brett GR, de Silva MG, Springer A, Ward M, Stallard K, Simons C, Conway T, Halman A, Van Bergen NJ, Sikora T, Semcesen LN, Stroud DA, Compton AG, Thorburn DR, Bell KM, Sadedin S, North KN, Christodoulou J, Stark Z. Integrated multi-omics for rapid rare disease diagnosis on a national scale. Nat Med 2023:10.1038/s41591-023-02401-9. [PMID: 37291213 PMCID: PMC10353936 DOI: 10.1038/s41591-023-02401-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/12/2023] [Indexed: 06/10/2023]
Abstract
Critically ill infants and children with rare diseases need equitable access to rapid and accurate diagnosis to direct clinical management. Over 2 years, the Acute Care Genomics program provided whole-genome sequencing to 290 families whose critically ill infants and children were admitted to hospitals throughout Australia with suspected genetic conditions. The average time to result was 2.9 d and diagnostic yield was 47%. We performed additional bioinformatic analyses and transcriptome sequencing in all patients who remained undiagnosed. Long-read sequencing and functional assays, ranging from clinically accredited enzyme analysis to bespoke quantitative proteomics, were deployed in selected cases. This resulted in an additional 19 diagnoses and an overall diagnostic yield of 54%. Diagnostic variants ranged from structural chromosomal abnormalities through to an intronic retrotransposon, disrupting splicing. Critical care management changed in 120 diagnosed patients (77%). This included major impacts, such as informing precision treatments, surgical and transplant decisions and palliation, in 94 patients (60%). Our results provide preliminary evidence of the clinical utility of integrating multi-omic approaches into mainstream diagnostic practice to fully realize the potential of rare disease genomic testing in a timely manner.
Collapse
Affiliation(s)
- Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Australian Genomics, Melbourne, Victoria, Australia
| | | | - Chirag V Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Sarah A Sandaradura
- Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
- Children's Hospital Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Meredith Wilson
- Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
- Children's Hospital Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Jason Pinner
- Sydney Children's Hospitals Network - Randwick, Sydney, New South Wales, Australia
- Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Matthew F Hunter
- Monash Genetics, Monash Health, Melbourne, Victoria, Australia
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Christopher P Barnett
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, North Adelaide, South Australia, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mathew Wallis
- Tasmanian Clinical Genetics Service, Tasmanian Health Service, Hobart, Tasmania, Australia
- School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Benjamin Kamien
- Genetic Services of Western Australia, Perth, Western Australia, Australia
| | - Tiong Y Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Mary-Louise Freckmann
- Department of Clinical Genetics, The Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Belinda Chong
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Dean Phelan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - David Francis
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Karin S Kassahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Thuong Ha
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
- Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, South Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Song Gao
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Peer Arts
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, South Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Matilda R Jackson
- Australian Genomics, Melbourne, Victoria, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Hamish S Scott
- Australian Genomics, Melbourne, Victoria, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, South Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Stefanie Eggers
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Simone Rowley
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Kirsten Boggs
- Australian Genomics, Melbourne, Victoria, Australia
- Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
- Sydney Children's Hospitals Network - Randwick, Sydney, New South Wales, Australia
| | - Ana Rakonjac
- Australian Genomics, Melbourne, Victoria, Australia
- Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
- Sydney Children's Hospitals Network - Randwick, Sydney, New South Wales, Australia
| | - Gemma R Brett
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Michelle G de Silva
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Amanda Springer
- Monash Genetics, Monash Health, Melbourne, Victoria, Australia
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Michelle Ward
- Genetic Services of Western Australia, Perth, Western Australia, Australia
| | - Kirsty Stallard
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Cas Simons
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Thomas Conway
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Andreas Halman
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Nicole J Van Bergen
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Tim Sikora
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Liana N Semcesen
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - David A Stroud
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Alison G Compton
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - David R Thorburn
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Katrina M Bell
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Simon Sadedin
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Kathryn N North
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Australian Genomics, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - John Christodoulou
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Australian Genomics, Melbourne, Victoria, Australia
- Children's Hospital Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia.
- Australian Genomics, Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
Happ HC, Schneider PN, Hong JH, Goes E, Bandouil M, Biar CG, Ramamurthy A, Reese F, Engel K, Weckhuysen S, Scheffer IE, Mefford HC, Calhoun JD, Carvill GL. Long-read sequencing and profiling of RNA-binding proteins reveals the pathogenic mechanism of aberrant splicing of an SCN1A poison exon in epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.538282. [PMID: 37205386 PMCID: PMC10187291 DOI: 10.1101/2023.05.04.538282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pathogenic loss-of-function SCN1A variants cause a spectrum of seizure disorders. We previously identified variants in individuals with SCN1A -related epilepsy that fall in or near a poison exon (PE) in SCN1A intron 20 (20N). We hypothesized these variants lead to increased PE inclusion, which introduces a premature stop codon, and, therefore, reduced abundance of the full-length SCN1A transcript and Na v 1.1 protein. We used a splicing reporter assay to interrogate PE inclusion in HEK293T cells. In addition, we used patient-specific induced pluripotent stem cells (iPSCs) differentiated into neurons to quantify 20N inclusion by long and short-read sequencing and Na v 1.1 abundance by western blot. We performed RNA-antisense purification with mass spectrometry to identify RNA-binding proteins (RBPs) that could account for the aberrant PE splicing. We demonstrate that variants in/near 20N lead to increased 20N inclusion by long-read sequencing or splicing reporter assay and decreased Na v 1.1 abundance. We also identified 28 RBPs that differentially interact with variant constructs compared to wild-type, including SRSF1 and HNRNPL. We propose a model whereby 20N variants disrupt RBP binding to splicing enhancers (SRSF1) and suppressors (HNRNPL), to favor PE inclusion. Overall, we demonstrate that SCN1A 20N variants cause haploinsufficiency and SCN1A -related epilepsies. This work provides insights into the complex control of RBP-mediated PE alternative splicing, with broader implications for PE discovery and identification of pathogenic PE variants in other genetic conditions.
Collapse
|
10
|
Van Bergen NJ, Gunanayagam K, Bournazos AM, Walvekar AS, Warmoes MO, Semcesen LN, Lunke S, Bommireddipalli S, Sikora T, Patraskaki M, Jones DL, Garza D, Sebire D, Gooley S, McLean CA, Naidoo P, Rajasekaran M, Stroud DA, Linster CL, Wallis M, Cooper ST, Christodoulou J. Severe NAD(P)HX Dehydratase (NAXD) Neurometabolic Syndrome May Present in Adulthood after Mild Head Trauma. Int J Mol Sci 2023; 24:ijms24043582. [PMID: 36834994 PMCID: PMC9963268 DOI: 10.3390/ijms24043582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
We have previously reported that pathogenic variants in a key metabolite repair enzyme NAXD cause a lethal neurodegenerative condition triggered by episodes of fever in young children. However, the clinical and genetic spectrum of NAXD deficiency is broadening as our understanding of the disease expands and as more cases are identified. Here, we report the oldest known individual succumbing to NAXD-related neurometabolic crisis, at 32 years of age. The clinical deterioration and demise of this individual were likely triggered by mild head trauma. This patient had a novel homozygous NAXD variant [NM_001242882.1:c.441+3A>G:p.?] that induces the mis-splicing of the majority of NAXD transcripts, leaving only trace levels of canonically spliced NAXD mRNA, and protein levels below the detection threshold by proteomic analysis. Accumulation of damaged NADH, the substrate of NAXD, could be detected in the fibroblasts of the patient. In agreement with prior anecdotal reports in paediatric patients, niacin-based treatment also partly alleviated some clinical symptoms in this adult patient. The present study extends our understanding of NAXD deficiency by uncovering shared mitochondrial proteomic signatures between the adult and our previously reported paediatric NAXD cases, with reduced levels of respiratory complexes I and IV as well as the mitoribosome, and the upregulation of mitochondrial apoptotic pathways. Importantly, we highlight that head trauma in adults, in addition to paediatric fever or illness, may precipitate neurometabolic crises associated with pathogenic NAXD variants.
Collapse
Affiliation(s)
- Nicole J. Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3002, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3002, Australia
- Correspondence: (N.J.V.B.); (J.C.)
| | - Karen Gunanayagam
- Department of Neurology, Royal Hobart Hospital, Hobart, TAS 7000, Australia
| | - Adam M. Bournazos
- Kids Neuroscience Centre, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- The Children’s Medical Research Institute, 214 Hawkesbury Road, Westmead, Sydney, NSW 2145, Australia
| | - Adhish S. Walvekar
- Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Marc O. Warmoes
- Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Liana N. Semcesen
- Department of Biochemistry & Pharmacology, Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Melbourne, VIC 3002, Australia
| | - Sebastian Lunke
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3002, Australia
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, VIC 3002, Australia
| | - Shobhana Bommireddipalli
- Kids Neuroscience Centre, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- The Children’s Medical Research Institute, 214 Hawkesbury Road, Westmead, Sydney, NSW 2145, Australia
| | - Tim Sikora
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3002, Australia
| | - Myrto Patraskaki
- Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Dean L. Jones
- Department of Neurology, Royal Hobart Hospital, Hobart, TAS 7000, Australia
- School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Denisse Garza
- Tasmanian Clinical Genetics Service, Royal Hobart Hospital, Hobart, TAS 7000, Australia
| | - Dale Sebire
- Department of Neurology, Royal Hobart Hospital, Hobart, TAS 7000, Australia
| | - Samuel Gooley
- Department of Neurology, Royal Hobart Hospital, Hobart, TAS 7000, Australia
| | - Catriona A. McLean
- Department of Anatomical Pathology, Alfred Hospital, Melbourne, VIC 3002, Australia
| | - Parm Naidoo
- Department of Medical Imaging, Royal Hobart Hospital, Hobart, TAS 7000, Australia
| | - Mugil Rajasekaran
- Department of Medical Imaging, Royal Hobart Hospital, Hobart, TAS 7000, Australia
| | - David A. Stroud
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3002, Australia
- Department of Biochemistry & Pharmacology, Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Melbourne, VIC 3002, Australia
| | - Carole L. Linster
- Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Mathew Wallis
- School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
- Tasmanian Clinical Genetics Service, Royal Hobart Hospital, Hobart, TAS 7000, Australia
| | - Sandra T. Cooper
- Kids Neuroscience Centre, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- The Children’s Medical Research Institute, 214 Hawkesbury Road, Westmead, Sydney, NSW 2145, Australia
- Discipline of Child and Adolescent Health, Faculty of Health and Medicine, University of Sydney, Sydney, NSW 2006, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3002, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3002, Australia
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, VIC 3002, Australia
- Discipline of Child and Adolescent Health, Faculty of Health and Medicine, University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (N.J.V.B.); (J.C.)
| |
Collapse
|
11
|
RNAseq Analysis of FABP4 Knockout Mouse Hippocampal Transcriptome Suggests a Role for WNT/β-Catenin in Preventing Obesity-Induced Cognitive Impairment. Int J Mol Sci 2023; 24:ijms24043381. [PMID: 36834799 PMCID: PMC9961923 DOI: 10.3390/ijms24043381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Microglial fatty-acid binding protein 4 (FABP4) is a regulator of neuroinflammation. We hypothesized that the link between lipid metabolism and inflammation indicates a role for FABP4 in regulating high fat diet (HFD)-induced cognitive decline. We have previously shown that obese FABP4 knockout mice exhibit decreased neuroinflammation and cognitive decline. FABP4 knockout and wild type mice were fed 60% HFD for 12 weeks starting at 15 weeks old. Hippocampal tissue was dissected and RNA-seq was performed to measure differentially expressed transcripts. Reactome molecular pathway analysis was utilized to examine differentially expressed pathways. Results showed that HFD-fed FABP4 knockout mice have a hippocampal transcriptome consistent with neuroprotection, including associations with decreased proinflammatory signaling, ER stress, apoptosis, and cognitive decline. This is accompanied by an increase in transcripts upregulating neurogenesis, synaptic plasticity, long-term potentiation, and spatial working memory. Pathway analysis revealed that mice lacking FABP4 had changes in metabolic function that support reduction in oxidative stress and inflammation, and improved energy homeostasis and cognitive function. Analysis suggested a role for WNT/β-Catenin signaling in the protection against insulin resistance, alleviating neuroinflammation and cognitive decline. Collectively, our work shows that FABP4 represents a potential target in alleviating HFD-induced neuroinflammation and cognitive decline and suggests a role for WNT/β-Catenin in this protection.
Collapse
|