1
|
Kim J, Chang MY. Gene Therapy for Parkinson's Disease Using Midbrain Developmental Genes to Regulate Dopaminergic Neuronal Maintenance. Int J Mol Sci 2024; 25:12369. [PMID: 39596436 PMCID: PMC11594980 DOI: 10.3390/ijms252212369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. It is characterized by the progressive loss of dopaminergic (DAnergic) neurons in the substantia nigra and decreased dopamine (DA) levels, which lead to both motor and non-motor symptoms. Conventional PD treatments aim to alleviate symptoms, but do not delay disease progression. PD gene therapy offers a promising approach to improving current treatments, with the potential to alleviate significant PD symptoms and cause fewer adverse effects than conventional therapies. DA replacement approaches and DA enzyme expression do not slow disease progression. However, DA replacement gene therapies, such as adeno-associated virus (AAV)-glutamic acid decarboxylase (GAD) and L-amino acid decarboxylase (AADC) gene therapies, which increase DA transmitter levels, have been demonstrated to be safe and efficient in early-phase clinical trials. Disease-modifying strategies, which aim to slow disease progression, appear to be potent. These include therapies targeting downstream pathways, neurotrophic factors, and midbrain DAnergic neuronal factors, all of which have shown potential in preclinical and clinical trials. These approaches focus on maintaining the integrity of DAnergic neurons, not just targeting the DA transmitter level itself. In particular, critical midbrain developmental and maintenance factors, such as Nurr1 and Foxa2, can interact synergistically with neighboring glia, in a paracrine mode of action, to protect DAnergic neurons against various toxic factors. Similar outcomes could be achieved by targeting both DAnergic neurons and glial cells with other candidate gene therapies, but in-depth research is needed. Neurotrophic factors, such as neurturin, the glial-cell-line-derived neurotrophic factor (GDNF), the brain-derived neurotrophic factor (BDNF), and the vascular endothelial growth factor (VEGF), are also being investigated for their potential to support DAnergic neuron survival. Additionally, gene therapies targeting key downstream pathways, such as the autophagy-lysosome pathway, mitochondrial function, and endoplasmic reticulum (ER) stress, offer promising avenues. Gene editing and delivery techniques continue to evolve, presenting new opportunities to develop effective gene therapies for PD.
Collapse
Affiliation(s)
- Jintae Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Goyang 10326, Republic of Korea;
| | - Mi-Yoon Chang
- Department of Premedicine, College of Medicine, Hanyang University, FTC12, 222 Wangsimni-ro, Seoul 04763, Republic of Korea
- Biomedical Research Institute, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
2
|
Pihelgas S, Ehala-Aleksejev K, Adamberg S, Kazantseva J, Adamberg K. The gut microbiota of healthy individuals remains resilient in response to the consumption of various dietary fibers. Sci Rep 2024; 14:22208. [PMID: 39333601 PMCID: PMC11436926 DOI: 10.1038/s41598-024-72673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
This study focuses on the resilience of gut microbiota during a five-month multi-interventional nutrition trial. The modulatory effects of beta-glucan, rye bran and two dietary fiber mixtures on the fecal pH and compositional changes of the microbiome of healthy subjects were studied. To analyze the stability of intestinal microbiota, we collected an extensive dataset of sequential fecal samples (23-29 from each participant) during a week of the base, beta-glucan consumption and wash-out periods accompanied by the collection of daily food diary data. Microbiota analyses were also conducted after the end of each fiber intake and wash-out period, along with measurements of fecal organic acids and pH. Based on the dominant bacterial taxa, two prevalent microbiota types were identified. The Prevotella-type microbiota responded more to the tested dietary fibers, while the Bacteroides-type microbiota was the least affected. Three microbiota types could not be clustered and behaved differently. Although we noted individual effects of definite fibers on participants' gut microbiota and metabolic profile, relative abundances of bacteria remained stable in the base period (z-scores - 2.2 to 2.3). In most cases, the bacterial abundances of the final samples remained within the normal fluctuation range stressing out the resilience of healthy microbiota. The pH of all fecal samples varied between 6.1 and 8.3 and was associated with the concentration of organic acids and microbial composition. The effect of dietary fibers on the metabolism of fecal microbiota clearly depended on the individual microbiota type. Combining the analysis of gut microbiota with knowledge of the properties of dietary fibers would provide a powerful strategy for nutrition guidance and disease prevention.
Collapse
Affiliation(s)
- Susan Pihelgas
- AS TFTAK, Mäealuse 2/4B, 12618, Tallinn, Estonia
- School of Natural Sciences and Health, Tallinn University, Narva mnt 25, 10120, Tallinn, Estonia
| | | | - Signe Adamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | | | - Kaarel Adamberg
- AS TFTAK, Mäealuse 2/4B, 12618, Tallinn, Estonia.
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| |
Collapse
|
3
|
Mahato K, Moon JM, Moonla C, Longardner K, Ghodsi H, Litvan I, Wang J. Biosensor Strip for Rapid On-site Assessment of Levodopa Pharmacokinetics along with Motor Performance in Parkinson's Disease. Angew Chem Int Ed Engl 2024; 63:e202403583. [PMID: 38682251 DOI: 10.1002/anie.202403583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
While levodopa (L-Dopa) is the primary treatment for alleviating Parkinson's disease (PD), its efficacy is hindered by challenges such as a short half-life and inconsistent plasma levels. As PD progresses, the rising need for increased and more frequent L-Dopa doses coupled with symptom fluctuations and dyskinesias underscores the urgency for improved comprehension of the interplay between L-Dopa levels and PD motor symptoms. Addressing this critical need, we present a decentralized testing method using a disposable biosensor strip and a universal slope (U-slope) calibration-free approach. This enables reliable, rapid, simple, and cost-effective decentralized L-Dopa measurements from capillary blood. A pilot study with PD persons demonstrates the ability to monitor real-time L-Dopa pharmacokinetics from fingerstick blood after oral L-Dopa-Carbidopa (C-Dopa) tablet administration. Correlating capillary blood L-Dopa levels with PD motor scores revealed a well-defined inverse correlation with temporal motor fluctuations. We compared the resulting dynamic capillary blood L-Dopa levels with plasma L-Dopa levels using the traditional but clinically impractical high-performance liquid chromatography technique. By providing timely feedback on a proper L-Dopa dosing regimen in a decentralized and rapid fashion, this new biosensing platform will facilitate tailored optimal L-Dopa dosing, towards improving symptom management and enhancing health-related quality of life.
Collapse
Affiliation(s)
- Kuldeep Mahato
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jong-Min Moon
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Chochanon Moonla
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Katherine Longardner
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hamidreza Ghodsi
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Irene Litvan
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Lei J, Tang LL, You HJ. Pathological pain: Non-motor manifestations in Parkinson disease and its treatment. Neurosci Biobehav Rev 2024; 161:105646. [PMID: 38569983 DOI: 10.1016/j.neubiorev.2024.105646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
In addition to motor symptoms, non-motor manifestations of Parkinson's disease (PD), i.e. pain, depression, sleep disturbance, and autonomic disorders, have received increasing attention. As one of the non-motor symptoms, pain has a high prevalence and is considered an early pre-motor symptom in the development of PD. In relation to pathological pain and its management in PD, particularly in the early stages, it is hypothesized that the loss of dopaminergic neurons causes a functional deficit in supraspinal structures, leading to an imbalance in endogenous descending modulation. Deficits in dopaminergic-dependent pathways also affect non-dopaminergic neurotransmitter systems that contribute to the pathological processing of nociceptive input, the integration, and modulation of pain in PD. This review examines the onset and progression of pain in PD, with a particular focus on alterations in the central modulation of nociception. The discussion highlights the importance of abnormal endogenous descending facilitation and inhibition in PD pain, which may provide potential clues to a better understanding of the nature of pathological pain and its effective clinical management.
Collapse
Affiliation(s)
- Jing Lei
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, China
| | - Lin-Lin Tang
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China
| | - Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, China.
| |
Collapse
|
5
|
Mihajlović K, Ceddia G, Malod-Dognin N, Novak G, Kyriakis D, Skupin A, Pržulj N. Multi-omics integration of scRNA-seq time series data predicts new intervention points for Parkinson's disease. Sci Rep 2024; 14:10983. [PMID: 38744869 PMCID: PMC11094121 DOI: 10.1038/s41598-024-61844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder without a cure. The onset of PD symptoms corresponds to 50% loss of midbrain dopaminergic (mDA) neurons, limiting early-stage understanding of PD. To shed light on early PD development, we study time series scRNA-seq datasets of mDA neurons obtained from patient-derived induced pluripotent stem cell differentiation. We develop a new data integration method based on Non-negative Matrix Tri-Factorization that integrates these datasets with molecular interaction networks, producing condition-specific "gene embeddings". By mining these embeddings, we predict 193 PD-related genes that are largely supported (49.7%) in the literature and are specific to the investigated PINK1 mutation. Enrichment analysis in Kyoto Encyclopedia of Genes and Genomes pathways highlights 10 PD-related molecular mechanisms perturbed during early PD development. Finally, investigating the top 20 prioritized genes reveals 12 previously unrecognized genes associated with PD that represent interesting drug targets.
Collapse
Affiliation(s)
| | - Gaia Ceddia
- Barcelona Supercomputing Center (BSC), 08034, Barcelona, Spain
| | | | - Gabriela Novak
- The Integrative Cell Signalling Group, Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Dimitrios Kyriakis
- The Integrative Cell Signalling Group, Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander Skupin
- The Integrative Cell Signalling Group, Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- University of California San Diego, La Jolla, CA, 92093, USA
| | - Nataša Pržulj
- Barcelona Supercomputing Center (BSC), 08034, Barcelona, Spain.
- Department of Computer Science, University College London, WC1E 6BT, London, UK.
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
6
|
Farrow SL, Gokuladhas S, Schierding W, Pudjihartono M, Perry JK, Cooper AA, O'Sullivan JM. Identification of 27 allele-specific regulatory variants in Parkinson's disease using a massively parallel reporter assay. NPJ Parkinsons Dis 2024; 10:44. [PMID: 38413607 PMCID: PMC10899198 DOI: 10.1038/s41531-024-00659-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
Genome wide association studies (GWAS) have identified a number of genomic loci that are associated with Parkinson's disease (PD) risk. However, the majority of these variants lie in non-coding regions, and thus the mechanisms by which they influence disease development, and/or potential subtypes, remain largely elusive. To address this, we used a massively parallel reporter assay (MPRA) to screen the regulatory function of 5254 variants that have a known or putative connection to PD. We identified 138 loci with enhancer activity, of which 27 exhibited allele-specific regulatory activity in HEK293 cells. The identified regulatory variant(s) typically did not match the original tag variant within the PD associated locus, supporting the need for deeper exploration of these loci. The existence of allele specific transcriptional impacts within HEK293 cells, confirms that at least a subset of the PD associated regions mark functional gene regulatory elements. Future functional studies that confirm the putative targets of the empirically verified regulatory variants will be crucial for gaining a greater understanding of how gene regulatory network(s) modulate PD risk.
Collapse
Affiliation(s)
- Sophie L Farrow
- Liggins Institute, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand.
| | | | - William Schierding
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
- Department of Ophthalmology, The University of Auckland, Auckland, New Zealand
| | | | - Jo K Perry
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Antony A Cooper
- Australian Parkinsons Mission, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Justin M O'Sullivan
- Liggins Institute, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand.
- Australian Parkinsons Mission, Garvan Institute of Medical Research, Sydney, NSW, Australia.
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore.
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
7
|
Bak MS, Park H, Yoon H, Chung G, Shin H, Shin S, Kim TW, Lee K, Nägerl UV, Kim SJ, Kim SK. Machine learning-based evaluation of spontaneous pain and analgesics from cellular calcium signals in the mouse primary somatosensory cortex using explainable features. Front Mol Neurosci 2024; 17:1356453. [PMID: 38450042 PMCID: PMC10915002 DOI: 10.3389/fnmol.2024.1356453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction Pain that arises spontaneously is considered more clinically relevant than pain evoked by external stimuli. However, measuring spontaneous pain in animal models in preclinical studies is challenging due to methodological limitations. To address this issue, recently we developed a deep learning (DL) model to assess spontaneous pain using cellular calcium signals of the primary somatosensory cortex (S1) in awake head-fixed mice. However, DL operate like a "black box", where their decision-making process is not transparent and is difficult to understand, which is especially evident when our DL model classifies different states of pain based on cellular calcium signals. In this study, we introduce a novel machine learning (ML) model that utilizes features that were manually extracted from S1 calcium signals, including the dynamic changes in calcium levels and the cell-to-cell activity correlations. Method We focused on observing neural activity patterns in the primary somatosensory cortex (S1) of mice using two-photon calcium imaging after injecting a calcium indicator (GCaMP6s) into the S1 cortex neurons. We extracted features related to the ratio of up and down-regulated cells in calcium activity and the correlation level of activity between cells as input data for the ML model. The ML model was validated using a Leave-One-Subject-Out Cross-Validation approach to distinguish between non-pain, pain, and drug-induced analgesic states. Results and discussion The ML model was designed to classify data into three distinct categories: non-pain, pain, and drug-induced analgesic states. Its versatility was demonstrated by successfully classifying different states across various pain models, including inflammatory and neuropathic pain, as well as confirming its utility in identifying the analgesic effects of drugs like ketoprofen, morphine, and the efficacy of magnolin, a candidate analgesic compound. In conclusion, our ML model surpasses the limitations of previous DL approaches by leveraging manually extracted features. This not only clarifies the decision-making process of the ML model but also yields insights into neuronal activity patterns associated with pain, facilitating preclinical studies of analgesics with higher potential for clinical translation.
Collapse
Affiliation(s)
- Myeong Seong Bak
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Division of AI and Data Analysis, Neurogrin Inc., Seoul, Republic of Korea
| | - Haney Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Division of Preclinical R&D, Neurogrin Inc., Seoul, Republic of Korea
| | - Heera Yoon
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Division of Preclinical R&D, Neurogrin Inc., Seoul, Republic of Korea
| | - Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyunjin Shin
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Soonho Shin
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tai Wan Kim
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Kyungjoon Lee
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - U. Valentin Nägerl
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 and University of Bordeaux, Bordeaux, France
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun Kwang Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Cardoso VSL, Valente-Amaral A, Monteiro RFM, Meira CLS, de Meira NS, da Silva MN, Pinheiro JDJV, Bastos GDNT, Felício JS, Yamada ES. Aqueous extract of Swietenia macrophylla leaf exerts an anti-inflammatory effect in a murine model of Parkinson's disease induced by 6-OHDA. Front Neurosci 2024; 18:1351718. [PMID: 38449740 PMCID: PMC10914943 DOI: 10.3389/fnins.2024.1351718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction Parkinson's disease affects 2% of the population aged over 65 years and is the second most common neurodegenerative disorder in the general population. The appearance of motor symptoms is associated with the degeneration of dopaminergic neurons in the nigrostriatal pathway. Clinically significant nonmotor symptoms are also important for severe disability with disease progression. Pharmacological treatment with levodopa, which involves dopamine restitution, results in a temporary improvement in motor symptoms. Among the mechanisms underlying the pathogenesis of the disease are exacerbated oxidative stress, mitochondrial dysfunction, and neuroinflammation. A phytochemical prospecting study showed that the aqueous extract of the leaves from Swietenia macrophylla (Melineaceae), known as mahogany, has polyphenols with antioxidant and anti-inflammatory capacity in a significantly higher percentage than leaf extracts from other Amazonian plants. Furthermore, the antioxidant and anti-inflammatory capacity of aqueous extract of mahogany leaf has already been demonstrated in an in vitro model. In this study, we hypothesized that the aqueous extract of mahogany leaf (AEML) has a neuroprotective effect in a murine model of Parkinson's disease induced by 6-hydroxidopamine (6-OHDA), due to antioxidant and anti-inflammatory properties of its phenolic compounds. Methods Mice were treated daily with the mahogany extract at a dose of 50 mg/kg, starting 7 days before 6-OHDA infusion until post-surgery day 7. Results and discussion The animals from the 6-OHDA/mahogany group, which corresponds to animals injected with the toxin and treated with aqueous extract of the mahogany leaf, presented distinct behavioral phenotypes after apomorphine challenge and were therefore subdivided into 2 groups, 6-OHDA/mahogany F1 and 6-OHDA/mahogany F2. The F1 group showed a significant increase in contralateral rotations, whereas the F2 group did not show rotations after the apomorphine stimulus. In the F1 group, there was an increase, although not significant, in motor performance in the open field and elevated plus maze tests, whereas in the F2 group, there was significant improvement, which may be related to the lesser degree of injury to the nigrostriatal dopaminergic pathway. The TH+ histopathological analysis, a dopaminergic neuron marker, confirmed that the lesion to the nigrostriatal dopaminergic pathway was more pronounced in 6-OHDA/mahogany F1 than in 6-OHDA/mahogany F2. Our main result consisted of signs of improvement in the inflammatory profile in both the F1 and F2 6-OHDA/mahogany groups, such as a lower number of IBA-1+ microglial cells in the ventral striatum and substantia nigra pars compacta and a reduction in GFAP+ expression, an astrocyte marker, in the dorsal striatum. In this study, several bioactive compounds in the aqueous extract of mahogany leaf may have contributed to the observed beneficial effects. Further studies are necessary to better characterize their applicability for treating chronic degenerative diseases with inflammatory and oxidative bases, such as Parkinson's disease.
Collapse
Affiliation(s)
- Váldina Solimar Lopes Cardoso
- Experimental Neuropathology Laboratory, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
- Oncology Research Center and Graduate Program in Oncology and Medical Sciences, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Anderson Valente-Amaral
- Experimental Neuropathology Laboratory, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
- Graduate Program in Neuroscience and Cellular Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Rayan Fidel Martins Monteiro
- Graduate Program in Neuroscience and Cellular Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Neuroinflammation Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Clarina Loius Silva Meira
- Experimental Neuropathology Laboratory, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Natália Silva de Meira
- Experimental Neuropathology Laboratory, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Milton Nascimento da Silva
- Liquid Chromatography Laboratory, Institute of Exact and Natural Science, Federal University of Pará, Belém, Brazil
| | - João de Jesus Viana Pinheiro
- Oncology Research Center and Graduate Program in Oncology and Medical Sciences, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
- Laboratory of Pathological Anatomy and Immunohistochemistry, School of Dentistry, Federal University of Pará, Belém, Brazil
| | - Gilmara de Nazareth Tavares Bastos
- Graduate Program in Neuroscience and Cellular Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Neuroinflammation Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - João Soares Felício
- Oncology Research Center and Graduate Program in Oncology and Medical Sciences, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
- Endocrinology Division, University Hospital João de Barros Barreto, Federal University of Pará, Belém, Brazil
| | - Elizabeth Sumi Yamada
- Experimental Neuropathology Laboratory, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
- Oncology Research Center and Graduate Program in Oncology and Medical Sciences, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
- Graduate Program in Neuroscience and Cellular Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
9
|
Shih LC, Lin RJ, Chen YL, Fu SC. Unravelling the mechanisms of underweight in Parkinson's disease by investigating into the role of gut microbiome. NPJ Parkinsons Dis 2024; 10:28. [PMID: 38267447 PMCID: PMC10808448 DOI: 10.1038/s41531-023-00587-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/03/2023] [Indexed: 01/26/2024] Open
Abstract
Approximately half of patients with Parkinson's disease (PD) suffer from unintentional weight loss and are underweight, complicating the clinical course of PD patients. Gut microbiota alteration has been proven to be associated with PD, and recent studies have shown that gut microbiota could lead to muscle wasting, implying a possible role of gut microbiota in underweight PD. In this study, we aimed to (1) investigate the mechanism underlying underweight in PD patients with respect to gut microbiota and (2) estimate the extent to which gut microbiota may mediate PD-related underweight through mediation analysis. The data were adapted from Hill-Burns et al., in which 330 participants (199 PD, 131 controls) were enrolled in the study. Fecal samples were collected from participants for microbiome analysis. 16S rRNA gene sequence data were processed using DADA2. Mediation analysis was performed to quantify the effect of intestinal microbial alteration on the causal effect of PD on underweight and to identify the key bacteria that significantly mediated PD-related underweight. The results showed that the PD group had significantly more underweight patients (body mass index (BMI) < 18.5) after controlling for age and sex. Ten genera and four species were significantly different in relative abundance between the underweight and non-underweight individuals in the PD group. Mediation analysis showed that 42.29% and 37.91% of the effect of PD on underweight was mediated through intestinal microbial alterations at the genus and species levels, respectively. Five genera (Agathobacter, Eisenbergiella, Fusicatenibacter, Roseburia, Ruminococcaceae_UCG_013) showed significant mediation effects. In conclusion, we found that up to 42.29% of underweight PD cases are mediated by gut microbiota, with increased pro-inflammatory bacteria and decreased SCFA-producing bacteria, which indicates that the pro-inflammatory state, disturbance of metabolism, and interference of appetite regulation may be involved in the mechanism of underweight PD.
Collapse
Affiliation(s)
| | - Ru-Jen Lin
- National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan, ROC
| | - Yan-Lin Chen
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan, ROC
| | - Shih-Chen Fu
- Department of Life Science, National Dong Hwa University, Hualien, Taiwan, ROC.
| |
Collapse
|
10
|
Buhidma Y, Lama J, Duty S. Insight gained from using animal models to study pain in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 174:99-118. [PMID: 38341233 DOI: 10.1016/bs.irn.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Pain is one of the key non-motor symptoms experienced by a large proportion of people living with Parkinson's disease (PD), yet the mechanisms behind this pain remain elusive and as such its treatment remains suboptimal. It is hoped that through the study of animal models of PD, we can start to unravel some of the contributory mechanisms, and perhaps identify models that prove useful as test beds for assessing the efficacy of potential new analgesics. However, just how far along this journey are we right now? Is it even possible to model pain in PD in animal models of the disease? And have we gathered any insight into pain mechanisms from the use of animal models of PD so far? In this chapter we intend to address these questions and in particular highlight the findings generated by others, and our own group, following studies in a range of rodent models of PD.
Collapse
Affiliation(s)
- Yazead Buhidma
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Sensory, Pain and Regeneration Centre, Guy's Campus, London, United Kingdom
| | - Joana Lama
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Sensory, Pain and Regeneration Centre, Guy's Campus, London, United Kingdom
| | - Susan Duty
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Sensory, Pain and Regeneration Centre, Guy's Campus, London, United Kingdom.
| |
Collapse
|
11
|
Nasrolahi A, Shabani Z, Sadigh-Eteghad S, Salehi-Pourmehr H, Mahmoudi J. Stem Cell Therapy for the Treatment of Parkinson's Disease: What Promise Does it Hold? Curr Stem Cell Res Ther 2024; 19:185-199. [PMID: 36815638 DOI: 10.2174/1574888x18666230222144116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 02/24/2023]
Abstract
Parkinson's disease (PD) is a common, progressive neurodegenerative disorder characterized by substantia nigra dopamine cell death and a varied clinical picture that affects older people. Although more than two centuries have passed since the earliest attempts to find a cure for PD, it remains an unresolved problem. With this in mind, cell replacement therapy is a new strategy for treating PD. This novel approach aims to replace degenerated dopaminergic (DAergic) neurons with new ones or provide a new source of cells that can differentiate into DAergic neurons. Induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), neural stem cells (NSCs), and embryonic stem cells (ESCs) are among the cells considered for transplantation therapies. Recently disease-modifying strategies like cell replacement therapies combined with other therapeutic approaches, such as utilizing natural compounds or biomaterials, are proposed to modify the underlying neurodegeneration. In the present review, we discuss the current advances in cell replacement therapy for PD and summarize the existing experimental and clinical evidence supporting this approach.
Collapse
Affiliation(s)
- Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Shabani
- Center for Cerebrovascular Research, University of California, San Francisco, California, USA
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Yamamoto T, Sakakibara R, Uchiyama T, Kuwabara S. Decreased bladder contraction interval induced by periaqueductal grey stimulation is reversed by subthalamic stimulation in a Parkinson's disease model rat. IBRO Neurosci Rep 2023; 15:293-303. [PMID: 37885830 PMCID: PMC10598527 DOI: 10.1016/j.ibneur.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
The medial prefrontal cortex (mPFC) regulates bladder contractions via the periaqueductal grey (PAG). Subthalamic nucleus deep brain stimulation (STN-DBS) modulates urinary afferent information from PAG in Parkinson's disease (PD). We do not know how STN-DBS modulates the activities of mPFC induced by PAG stimulation. We aim to clarify how STN-DBS modulates the neuronal activity of mPFC induced by PAG stimulation and its effects on bladder contraction Experiments were conducted under urethane anesthesia in normal (n = 9) and 6-hydroxydopamine hemi-lesioned PD rats (n = 7). Left-sided PAG stimulation and STN-DBS were applied with simultaneous bladder contraction monitoring. Local field potential (LFP) recording and collection of extracellular fluid in the mPFC were performed before stimulation, during PAG stimulation, during PAG+STN stimulation, and after stimulation. The bladder inter-contraction intervals significantly decreased with PAG stimulation with a concomitant decrease in mPFC LFP power in PD rats. Adding STN stimulation to PAG stimulation significantly increased the bladder inter-contraction intervals with a concomitant increase in mPFC LFP power in PD rats. Several mPFC catecholamine levels were modulated by PAG or PAG+STN stimulation in PD rats. The present study revealed that STN-DBS modulate the activities of mPFC induced by PAG, thereby leading to normalization of bladder contraction.
Collapse
Affiliation(s)
- Tatsuya Yamamoto
- Department of Rehabilitation Sciences, Chiba Prefectural University of Health Sciences, Japan
- Department of Neurology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Ryuji Sakakibara
- Neurology Division, Department of Internal Medicine, Sakura Medical Center, Toho University, Sakura, Japan
| | - Tomoyuki Uchiyama
- Department of Neurology, International University of Health and Welfare, Ichikawa, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
13
|
Dong LG, An MQ, Gu HY, Zhang LG, Zhang JB, Li CJ, Mao CJ, Wang F, Liu CF. PACAP/PAC1-R activation contributes to hyperalgesia in 6-OHDA-induced Parkinson's disease model rats via promoting excitatory synaptic transmission of spinal dorsal horn neurons. Acta Pharmacol Sin 2023; 44:2418-2431. [PMID: 37563446 PMCID: PMC10692161 DOI: 10.1038/s41401-023-01141-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Abstract
Pain is a common annoying non-motor symptom in Parkinson's disease (PD) that causes distress to patients. Treatment for PD pain remains a big challenge, as its underlying mechanisms are elusive. Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor PAC1-R play important roles in regulating a variety of pathophysiological processes. In this study, we investigated whether PACAP/PAC1-R signaling was involved in the mechanisms of PD pain. 6-hydroxydopamine (6-OHDA)-induced PD model was established in rats. Behavioral tests, electrophysiological and Western blotting analysis were conducted 3 weeks later. We found that 6-OHDA rats had significantly lower mechanical paw withdrawal 50% threshold in von Frey filament test and shorter tail flick latency, while mRNA levels of Pacap and Adcyap1r1 (gene encoding PAC1-R) in the spinal dorsal horn were significantly upregulated. Whole-cell recordings from coronal spinal cord slices at L4-L6 revealed that the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in dorsal horn neurons was significantly increased, which was reversed by application of a PAC1-R antagonist PACAP 6-38 (250 nM). Furthermore, we demonstrated that intrathecal microinjection of PACAP 6-38 (0.125, 0.5, 2 μg) dose-dependently ameliorated the mechanical and thermal hyperalgesia in 6-OHDA rats. Inhibition of PACAP/PAC1-R signaling significantly suppressed the activation of Ca2+/calmodulin-dependent protein kinase II and extracellular signal-regulated kinase (ERK) in spinal dorsal horn of 6-OHDA rats. Microinjection of pAAV-Adcyap1r1 into L4-L6 spinal dorsal horn alleviated hyperalgesia in 6-OHDA rats. Intrathecal microinjection of ERK antagonist PD98059 (10 μg) significantly alleviated hyperalgesia in 6-OHDA rats associated with the inhibition of sEPSCs in dorsal horn neurons. In addition, we found that serum PACAP-38 concentration was significantly increased in PD patients with pain, and positively correlated with numerical rating scale score. In conclusion, activation of PACAP/PAC1-R induces the development of PD pain and targeting PACAP/PAC1-R is an alternative strategy for treating PD pain.
Collapse
Affiliation(s)
- Li-Guo Dong
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Meng-Qi An
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Han-Ying Gu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Li-Ge Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Jin-Bao Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Cheng-Jie Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Cheng-Jie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830063, China.
| |
Collapse
|
14
|
Alizadeh P, Terroba-Chambi C, Achen B, Bruno V. Pain in monogenic Parkinson's disease: a comprehensive review. Front Neurol 2023; 14:1248828. [PMID: 38020640 PMCID: PMC10643218 DOI: 10.3389/fneur.2023.1248828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Pain, a challenging symptom experienced by individuals diagnosed with Parkinson's disease (PD), still lacks a comprehensive understanding of its underlying pathophysiological mechanisms. A systematic investigation of its prevalence and impact on the quality of life in patients affected by monogenic forms of PD has yet to be undertaken. This comprehensive review aims to provide an overview of the association between pain and monogenic forms of PD, specifically focusing on pathogenic variants in SNCA, PRKN, PINK1, PARK7, LRRK2, GBA1, VPS35, ATP13A2, DNAJC6, FBXO7, and SYNJ1. Sixty-three articles discussing pain associated with monogenic PD were identified and analyzed. The included studies exhibited significant heterogeneity in design, sample size, and pain outcome measures. Nonetheless, the findings of this review suggest that patients with monogenic PD may experience specific types of pain depending on the pathogenic variant present, distinguishing them from non-carriers. For instance, individuals with SNCA pathogenic variants have reported painful dystonia, lower extremity pain, dorsal pain, and upper back pain. However, these observations are primarily based on case reports with unclear prevalence. Painful lower limb dystonia and lower back pain are prominent symptoms in PRKN carriers. A continual correlation has been noted between LRRK2 mutations and the emergence of pain, though the conflicting research outcomes pose challenges in reaching definitive conclusions. Individuals with PINK1 mutation carriers also frequently report experiencing pain. Pain has been frequently reported as an initial symptom and the most troublesome one in GBA1-PD patients compared to those with idiopathic PD. The evidence regarding pain in ATP13A2, PARK7, VPS35, DNAJC6, FBXO7, and SYNJ1pathogenic variants is limited and insufficient. The potential linkage between genetic profiles and pain outcomes holds promising clinical implications, allowing for the potential stratification of patients in clinical trials and the development of personalized treatments for pain in monogenic PD. In conclusion, this review underscores the need for further research to unravel the intricate relationship between pain and monogenic forms of PD. Standardized methodologies, larger sample sizes, and longitudinal studies are essential to elucidate the underlying mechanisms and develop targeted therapeutic interventions for pain management in individuals with monogenic PD.
Collapse
Affiliation(s)
- Parisa Alizadeh
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
| | | | - Beatrice Achen
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Veronica Bruno
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
| |
Collapse
|
15
|
Acero VP, Cribas ES, Browne KD, Rivellini O, Burrell JC, O’Donnell JC, Das S, Cullen DK. Bedside to bench: the outlook for psychedelic research. Front Pharmacol 2023; 14:1240295. [PMID: 37869749 PMCID: PMC10588653 DOI: 10.3389/fphar.2023.1240295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/30/2023] [Indexed: 10/24/2023] Open
Abstract
There has recently been a resurgence of interest in psychedelic compounds based on studies demonstrating their potential therapeutic applications in treating post-traumatic stress disorder, substance abuse disorders, and treatment-resistant depression. Despite promising efficacy observed in some clinical trials, the full range of biological effects and mechanism(s) of action of these compounds have yet to be fully established. Indeed, most studies to date have focused on assessing the psychological mechanisms of psychedelics, often neglecting the non-psychological modes of action. However, it is important to understand that psychedelics may mediate their therapeutic effects through multi-faceted mechanisms, such as the modulation of brain network activity, neuronal plasticity, neuroendocrine function, glial cell regulation, epigenetic processes, and the gut-brain axis. This review provides a framework supporting the implementation of a multi-faceted approach, incorporating in silico, in vitro and in vivo modeling, to aid in the comprehensive understanding of the physiological effects of psychedelics and their potential for clinical application beyond the treatment of psychiatric disorders. We also provide an overview of the literature supporting the potential utility of psychedelics for the treatment of brain injury (e.g., stroke and traumatic brain injury), neurodegenerative diseases (e.g., Parkinson's and Alzheimer's diseases), and gut-brain axis dysfunction associated with psychiatric disorders (e.g., generalized anxiety disorder and major depressive disorder). To move the field forward, we outline advantageous experimental frameworks to explore these and other novel applications for psychedelics.
Collapse
Affiliation(s)
- Victor P. Acero
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily S. Cribas
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kevin D. Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Olivia Rivellini
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Justin C. Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - John C. O’Donnell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Suradip Das
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
16
|
Odongo R, Bellur O, Abdik E, Çakır T. Brain-wide transcriptome-based metabolic alterations in Parkinson's disease: human inter-region and human-experimental model correlations. Mol Omics 2023; 19:522-537. [PMID: 36928892 DOI: 10.1039/d2mo00343k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Alterations in brain metabolism are closely associated with the molecular hallmarks of Parkinson's disease (PD). A clear understanding of the main metabolic perturbations in PD is therefore important. Here, we retrospectively analysed the expression of metabolic genes from 34 PD-control post-mortem human brain transcriptome data comparisons from literature, spanning multiple brain regions. We found high metabolic correlations between the Substantia nigra (SN)- and cerebral cortex-derived tissues. Moreover, three clusters of PD patient cohorts were identified based on perturbed metabolic processes in the SN - each characterised by perturbations in (a) bile acid metabolism (b) omega-3 fatty acid metabolism, and (c) lipoic acid and androgen metabolism - metabolic themes not comprehensively addressed in PD. These perturbations were supported by concurrence between transcriptome and proteome changes in the expression patterns for CBR1, ECI2, BDH2, CYP27A1, ALDH1B1, ALDH9A1, ADH5, ALDH7A1, L1CAM, and PLXNB3 genes, providing a valuable resource for drug targeting and diagnosis. Also, we analysed 58 PD-control transcriptome data comparisons from in vivo/in vitro disease models and identified experimental PD models with significant correlations to matched human brain regions. Collectively, our findings suggest metabolic alterations in several brain regions, heterogeneity in metabolic alterations between study cohorts for the SN tissues and the need to optimize current experimental models to advance research on metabolic aspects of PD.
Collapse
Affiliation(s)
- Regan Odongo
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| | - Orhan Bellur
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| | - Ecehan Abdik
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| |
Collapse
|
17
|
Yun SJ, Hyun SE, Oh BM, Seo HG. Fully immersive virtual reality exergames with dual-task components for patients with Parkinson's disease: a feasibility study. J Neuroeng Rehabil 2023; 20:92. [PMID: 37464349 PMCID: PMC10355082 DOI: 10.1186/s12984-023-01215-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Dual-task training in Parkinson's disease (PD) improves spatiotemporal gait parameters, cognition, and quality of life. Virtual reality (VR) has been used as a therapeutic tool for patients to participate in activities in a safe environment, engage in multisensory experiences, and improve motivation and interest in rehabilitation. This study aimed to investigate the feasibility of fully immersive VR exergames with dual-task components in patients with PD. METHODS We developed VR exergames (go/no-go punch game, go/no-go stepping game, and number punch game) to improve habitual behavior control using motor-cognitive dual-task performance in patients with PD. The participants underwent 10 sessions 2-3 times a week, consisting of 30 min per session. The Unified Parkinson's Disease Rating Scale, Timed Up and Go test (TUG) under single- and dual-task (cognitive and physical) conditions, Berg balance scale (BBS), Stroop test, trail-making test, and digit span were evaluated before and after intervention. The Simulator Sickness Questionnaire (SSQ) was used to assess VR cybersickness. Usability was assessed using a self-reported questionnaire. RESULTS Twelve patients were enrolled and completed the entire training session. The mean age of participants was 73.83 ± 6.09 years; mean disease duration was 128.83 ± 76.96 months. The Hoehn and Yahr stages were 2.5 in seven patients and 3 in five patients. A significant improvement was observed in BBS and Stroop color-word test (p = 0.047 and p = 0.003, respectively). TUG time and dual-task interferences showed positive changes, but these changes were not statistically significant. The median SSQ total score was 28.05 (IQR: 29.92), 13.09 (IQR: 11.22), and 35.53 (IQR: 52.36) before, after the first session, and after the final session, respectively; the differences were not significant. Overall satisfaction with the intervention was 6.0 (IQR: 1.25) on a 7-point Likert-type scale. CONCLUSIONS Fully immersive VR exergames combined with physical and cognitive tasks may be used for rehabilitation of patients with PD without causing serious adverse effects. Furthermore, the exergames using dual-task components improved executive function and balance. Further development of VR training content may be needed to improve motor and dual-task performances. Trial registration NCT04787549 ( https://clinicaltrials.gov/ct2/show/NCT04787549 ).
Collapse
Affiliation(s)
- Seo Jung Yun
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Human Systems Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Eun Hyun
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- National Traffic Injury Rehabilitation Hospital, Yangpyeong, Republic of Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Stephens AD, Villegas AF, Chung CW, Vanderpoorten O, Pinotsi D, Mela I, Ward E, McCoy TM, Cubitt R, Routh AF, Kaminski CF, Kaminski Schierle GS. α-Synuclein fibril and synaptic vesicle interactions lead to vesicle destruction and increased lipid-associated fibril uptake into iPSC-derived neurons. Commun Biol 2023; 6:526. [PMID: 37188797 PMCID: PMC10185682 DOI: 10.1038/s42003-023-04884-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
Monomeric alpha-synuclein (aSyn) is a well characterised protein that importantly binds to lipids. aSyn monomers assemble into amyloid fibrils which are localised to lipids and organelles in insoluble structures found in Parkinson's disease patient's brains. Previous work to address pathological aSyn-lipid interactions has focused on using synthetic lipid membranes, which lack the complexity of physiological lipid membranes. Here, we use physiological membranes in the form of synaptic vesicles (SV) isolated from rodent brain to demonstrate that lipid-associated aSyn fibrils are more easily taken up into iPSC-derived cortical i3Neurons. Lipid-associated aSyn fibril characterisation reveals that SV lipids are an integrated part of the fibrils and while their fibril morphology differs from aSyn fibrils alone, the core fibril structure remains the same, suggesting the lipids lead to the increase in fibril uptake. Furthermore, SV enhance the aggregation rate of aSyn, yet increasing the SV:aSyn ratio causes a reduction in aggregation propensity. We finally show that aSyn fibrils disintegrate SV, whereas aSyn monomers cause clustering of SV using small angle neutron scattering and high-resolution imaging. Disease burden on neurons may be impacted by an increased uptake of lipid-associated aSyn which could enhance stress and pathology, which in turn may have fatal consequences for neurons.
Collapse
Affiliation(s)
- Amberley D Stephens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| | - Ana Fernandez Villegas
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Chyi Wei Chung
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Department of Physics, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Oliver Vanderpoorten
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Dorothea Pinotsi
- Scientific Center for Optical and Electron Microscopy, ETH Zürich, Zürich, Switzerland
| | - Ioanna Mela
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Edward Ward
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Thomas M McCoy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | - Alexander F Routh
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
19
|
Buhidma Y, Hobbs C, Malcangio M, Duty S. Periaqueductal grey and spinal cord pathology contribute to pain in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:69. [PMID: 37100804 PMCID: PMC10133233 DOI: 10.1038/s41531-023-00510-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Pain is a key non-motor feature of Parkinson's disease (PD) that significantly impacts on life quality. The mechanisms underlying chronic pain in PD are poorly understood, hence the lack of effective treatments. Using the 6-hydroxydopamine (6-OHDA) lesioned rat model of PD, we identified reductions in dopaminergic neurons in the periaqueductal grey (PAG) and Met-enkephalin in the dorsal horn of the spinal cord that were validated in human PD tissue samples. Pharmacological activation of D1-like receptors in the PAG, identified as the DRD5+ phenotype located on glutamatergic neurons, alleviated the mechanical hypersensitivity seen in the Parkinsonian model. Downstream activity in serotonergic neurons in the Raphé magnus (RMg) was also reduced in 6-OHDA lesioned rats, as detected by diminished c-FOS positivity. Furthermore, we identified increased pre-aggregate α-synuclein, coupled with elevated activated microglia in the dorsal horn of the spinal cord in those people that experienced PD-related pain in life. Our findings have outlined pathological pathways involved in the manifestation of pain in PD that may present targets for improved analgesia in people with PD.
Collapse
Affiliation(s)
- Yazead Buhidma
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, SE1 1UL, UK
| | - Carl Hobbs
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, SE1 1UL, UK
| | - Marzia Malcangio
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, SE1 1UL, UK
| | - Susan Duty
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
20
|
Wiesman AI, Donhauser PW, Degroot C, Diab S, Kousaie S, Fon EA, Klein D, Baillet S. Aberrant neurophysiological signaling associated with speech impairments in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:61. [PMID: 37059749 PMCID: PMC10104849 DOI: 10.1038/s41531-023-00495-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/16/2023] [Indexed: 04/16/2023] Open
Abstract
Difficulty producing intelligible speech is a debilitating symptom of Parkinson's disease (PD). Yet, both the robust evaluation of speech impairments and the identification of the affected brain systems are challenging. Using task-free magnetoencephalography, we examine the spectral and spatial definitions of the functional neuropathology underlying reduced speech quality in patients with PD using a new approach to characterize speech impairments and a novel brain-imaging marker. We found that the interactive scoring of speech impairments in PD (N = 59) is reliable across non-expert raters, and better related to the hallmark motor and cognitive impairments of PD than automatically-extracted acoustical features. By relating these speech impairment ratings to neurophysiological deviations from healthy adults (N = 65), we show that articulation impairments in patients with PD are associated with aberrant activity in the left inferior frontal cortex, and that functional connectivity of this region with somatomotor cortices mediates the influence of cognitive decline on speech deficits.
Collapse
Affiliation(s)
- Alex I Wiesman
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
| | - Peter W Donhauser
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
- Ernst Strüngmann Institute for Neuroscience, Frankfurt, Germany
| | - Clotilde Degroot
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
| | - Sabrina Diab
- Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada
| | - Shanna Kousaie
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Edward A Fon
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
| | - Denise Klein
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada.
- Center for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada.
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada.
| |
Collapse
|
21
|
Applying the CRISPR/Cas9 for treating human and animal diseases: a comprehensive review. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Abstract
Recently, genome editing tools have been extensively used in many biomedical sciences. The gene editing system is applied to modify the DNA sequences in the cellular system to comprehend their physiological response. A developing genome editing technology like clustered regularly short palindromic repeats (CRISPR) is widely expended in medical sciences. CRISPR and CRISPR-associated protein 9 (CRISPR/Cas9) system is being exploited to edit any DNA mutations related to inherited ailments to investigate in animals (in vivo) and cell lines (in vitro). Remarkably, CRISPR/Cas9 could be employed to examine treatments of many human genetic diseases such as Cystic fibrosis, Tyrosinemia, Phenylketonuria, Muscular dystrophy, Parkinson’s disease, Retinoschisis, Hemophilia, β-Thalassemia and Atherosclerosis. Moreover, CRISPR/Cas9 was used for disease resistance such as Tuberculosis, Johne’s diseases, chronic enteritis, and Brucellosis in animals. Finally, this review discusses existing progress in treating hereditary diseases using CRISPR/Cas9 technology and the high points accompanying obstacles.
Collapse
|
22
|
Batiha GES, Al-kuraishy HM, Al-Gareeb AI, Elekhnawy E. SIRT1 pathway in Parkinson's disease: a faraway snapshot but so close. Inflammopharmacology 2023; 31:37-56. [PMID: 36580159 PMCID: PMC9957916 DOI: 10.1007/s10787-022-01125-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022]
Abstract
Silent information regulator (SIRT) has distinctive enzymatic activities and physiological functions to control cell-cycle progression, gene expression, and DNA stability by targeting histone and non-histone proteins. SIRT1 enhances synaptic formation and synaptic activity, and therefore, can reduce the progression of various degenerative brain diseases including Parkinson's disease (PD). SIRT1 activity is decreased by aging with a subsequent increased risk for the development of degenerative brain diseases. Inhibition of SIRT1 promotes inflammatory reactions since SIRT1 inhibits transcription of nuclear factor kappa B (NF-κB) which also inhibits SIRT1 activation via activation of microRNA and miR-34a which reduce NAD synthesis. SIRT1 is highly expressed in microglia as well as neurons, and has antioxidant and anti-inflammatory effects. Therefore, this review aimed to find the possible role of SIRT1 in PD neuropathology. SIRT1 has neuroprotective effects; therefore, downregulation of SIRT1 during aging promotes p53 expression and may increase the vulnerability of neuronal cell deaths. PD neuropathology is linked with the sequence of inflammatory changes and the release of pro-inflammatory cytokines due to the activation of inflammatory signaling pathways. In addition, oxidative stress, inflammatory disorders, mitochondrial dysfunction, and apoptosis contribute mutually to PD neuropathology. Thus, SIRT1 and SIRT1 activators play a crucial role in the mitigation of PD neuropathology through the amelioration of oxidative stress, inflammatory disorders, mitochondrial dysfunction, apoptosis, and inflammatory signaling pathways.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 AlBeheira Egypt
| | - Hayder M. Al-kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132 Iraq
| | - Ali I. Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132 Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| |
Collapse
|
23
|
Morinan G, Dushin Y, Sarapata G, Rupprechter S, Peng Y, Girges C, Salazar M, Milabo C, Sibley K, Foltynie T, Cociasu I, Ricciardi L, Baig F, Morgante F, Leyland LA, Weil RS, Gilron R, O’Keeffe J. Computer vision quantification of whole-body Parkinsonian bradykinesia using a large multi-site population. NPJ Parkinsons Dis 2023; 9:10. [PMID: 36707523 PMCID: PMC9883391 DOI: 10.1038/s41531-023-00454-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Parkinson's disease (PD) is a common neurological disorder, with bradykinesia being one of its cardinal features. Objective quantification of bradykinesia using computer vision has the potential to standardise decision-making, for patient treatment and clinical trials, while facilitating remote assessment. We utilised a dataset of part-3 MDS-UPDRS motor assessments, collected at four independent clinical and one research sites on two continents, to build computer-vision-based models capable of inferring the correct severity rating robustly and consistently across all identifiable subgroups of patients. These results contrast with previous work limited by small sample sizes and small numbers of sites. Our bradykinesia estimation corresponded well with clinician ratings (interclass correlation 0.74). This agreement was consistent across four clinical sites. This result demonstrates how such technology can be successfully deployed into existing clinical workflows, with consumer-grade smartphone or tablet devices, adding minimal equipment cost and time.
Collapse
Affiliation(s)
- Gareth Morinan
- Machine Medicine Technologies Ltd., The Leather Market Unit 1.1.1 11/13 Weston Street, London, SE1 3ER UK
| | - Yuriy Dushin
- Machine Medicine Technologies Ltd., The Leather Market Unit 1.1.1 11/13 Weston Street, London, SE1 3ER, UK.
| | - Grzegorz Sarapata
- Machine Medicine Technologies Ltd., The Leather Market Unit 1.1.1 11/13 Weston Street, London, SE1 3ER UK
| | - Samuel Rupprechter
- Machine Medicine Technologies Ltd., The Leather Market Unit 1.1.1 11/13 Weston Street, London, SE1 3ER UK
| | - Yuwei Peng
- Machine Medicine Technologies Ltd., The Leather Market Unit 1.1.1 11/13 Weston Street, London, SE1 3ER UK
| | - Christine Girges
- grid.436283.80000 0004 0612 2631Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Maricel Salazar
- grid.436283.80000 0004 0612 2631Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Catherine Milabo
- grid.436283.80000 0004 0612 2631Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Krista Sibley
- grid.436283.80000 0004 0612 2631Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Thomas Foltynie
- grid.436283.80000 0004 0612 2631Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Ioana Cociasu
- grid.264200.20000 0000 8546 682XNeuroscience Research Centre, Molecular and Clinical Sciences Research Institute, St George’s, University of London, Cranmer Terrace, London, SW17 0RE UK
| | - Lucia Ricciardi
- grid.264200.20000 0000 8546 682XNeuroscience Research Centre, Molecular and Clinical Sciences Research Institute, St George’s, University of London, Cranmer Terrace, London, SW17 0RE UK
| | - Fahd Baig
- grid.264200.20000 0000 8546 682XNeuroscience Research Centre, Molecular and Clinical Sciences Research Institute, St George’s, University of London, Cranmer Terrace, London, SW17 0RE UK
| | - Francesca Morgante
- grid.264200.20000 0000 8546 682XNeuroscience Research Centre, Molecular and Clinical Sciences Research Institute, St George’s, University of London, Cranmer Terrace, London, SW17 0RE UK ,grid.10438.3e0000 0001 2178 8421Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy, Via Consolare Valeria, 98165 Messina, Italy
| | - Louise-Ann Leyland
- grid.436283.80000 0004 0612 2631Dementia Research Center, Institute of Neurology, University College London, Queen Square, London, WC1N 3AR UK
| | - Rimona S. Weil
- grid.436283.80000 0004 0612 2631Dementia Research Center, Institute of Neurology, University College London, Queen Square, London, WC1N 3AR UK
| | - Ro’ee Gilron
- grid.266102.10000 0001 2297 6811The Starr Lab, University of California San Francisco, 513 Parnassus Ave, HSE-823, San Francisco, CA 94143 USA
| | - Jonathan O’Keeffe
- Machine Medicine Technologies Ltd., The Leather Market Unit 1.1.1 11/13 Weston Street, London, SE1 3ER UK
| |
Collapse
|
24
|
Trabjerg MS, Andersen DC, Huntjens P, Mørk K, Warming N, Kullab UB, Skjønnemand MLN, Oklinski MK, Oklinski KE, Bolther L, Kroese LJ, Pritchard CEJ, Huijbers IJ, Corthals A, Søndergaard MT, Kjeldal HB, Pedersen CFM, Nieland JDV. Inhibition of carnitine palmitoyl-transferase 1 is a potential target in a mouse model of Parkinson's disease. NPJ Parkinsons Dis 2023; 9:6. [PMID: 36681683 PMCID: PMC9867753 DOI: 10.1038/s41531-023-00450-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 12/01/2022] [Indexed: 01/22/2023] Open
Abstract
Glucose metabolism is dysregulated in Parkinson's disease (PD) causing a shift toward the metabolism of lipids. Carnitine palmitoyl-transferase 1A (CPT1A) regulates the key step in the metabolism of long-chain fatty acids. The aim of this study is to evaluate the effect of downregulating CPT1, either genetically with a Cpt1a P479L mutation or medicinally on PD using chronic rotenone mouse models using C57Bl/6J and Park2 knockout mice. We show that Cpt1a P479L mutant mice are resistant to rotenone-induced PD, and that inhibition of CPT1 is capable of restoring neurological function, normal glucose metabolism, and alleviate markers of PD in the midbrain. Furthermore, we show that downregulation of lipid metabolism via CPT1 alleviates pathological motor and non-motor behavior, oxidative stress, and disrupted glucose homeostasis in Park2 knockout mice. Finally, we confirm that rotenone induces gut dysbiosis in C57Bl/6J and, for the first time, in Park2 knockout mice. We show that this dysbiosis is alleviated by the downregulation of the lipid metabolism via CPT1.
Collapse
Affiliation(s)
- Michael Sloth Trabjerg
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Dennis Christian Andersen
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Pam Huntjens
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Kasper Mørk
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Nikolaj Warming
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ulla Bismark Kullab
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Marie-Louise Nibelius Skjønnemand
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Michal Krystian Oklinski
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Kirsten Egelund Oklinski
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Luise Bolther
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lona J. Kroese
- grid.430814.a0000 0001 0674 1393Mouse Clinic for Cancer and Aging (MCCA) Transgenic Facility, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Colin E. J. Pritchard
- grid.430814.a0000 0001 0674 1393Mouse Clinic for Cancer and Aging (MCCA) Transgenic Facility, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ivo J. Huijbers
- grid.430814.a0000 0001 0674 1393Mouse Clinic for Cancer and Aging (MCCA) Transgenic Facility, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Angelique Corthals
- grid.258202.f0000 0004 1937 0116Department of Science, John Jay College of Criminal Justice, City University of New York, New York, NY 10019 USA
| | | | | | - Cecilie Fjord Morre Pedersen
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - John Dirk Vestergaard Nieland
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
25
|
Abrantes M, Rodrigues D, Domingues T, Nemala SS, Monteiro P, Borme J, Alpuim P, Jacinto L. Ultrasensitive dopamine detection with graphene aptasensor multitransistor arrays. J Nanobiotechnology 2022; 20:495. [DOI: 10.1186/s12951-022-01695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2022] Open
Abstract
AbstractDetecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and therapeutics. However, neurotransmitter sensors for real-world applications must reliably detect low concentrations of target analytes from small volume working samples. Herein, a platform for robust and ultrasensitive detection of dopamine, an essential neurotransmitter that underlies several brain disorders, based on graphene multitransistor arrays (gMTAs) functionalized with a selective DNA aptamer is presented. High-yield scalable methodologies optimized at the wafer level were employed to integrate multiple graphene transistors on small-size chips (4.5 × 4.5 mm). The multiple sensor array configuration permits independent and simultaneous replicate measurements of the same sample that produce robust average data, reducing sources of measurement variability. This procedure allowed sensitive and reproducible dopamine detection in ultra-low concentrations from small volume samples across physiological buffers and high ionic strength complex biological samples. The obtained limit-of-detection was 1 aM (10–18) with dynamic detection ranges spanning 10 orders of magnitude up to 100 µM (10–8), and a 22 mV/decade peak sensitivity in artificial cerebral spinal fluid. Dopamine detection in dopamine-depleted brain homogenates spiked with dopamine was also possible with a LOD of 1 aM, overcoming sensitivity losses typically observed in ion-sensitive sensors in complex biological samples. Furthermore, we show that our gMTAs platform can detect minimal changes in dopamine concentrations in small working volume samples (2 µL) of cerebral spinal fluid samples obtained from a mouse model of Parkinson’s Disease. The platform presented in this work can lead the way to graphene-based neurotransmitter sensors suitable for real-world academic and pre-clinical pharmaceutical research as well as clinical diagnosis.
Collapse
|
26
|
Alonso-Juarez M, Fekete R, Baizabal-Carvallo JF. Objective and self-perceived lower limb weakness in Parkinson's disease. Ther Adv Neurol Disord 2022; 15:17562864221136903. [PMID: 36389280 PMCID: PMC9647295 DOI: 10.1177/17562864221136903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/18/2022] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Lower limb weakness is a long-recognized symptom in patients with Parkinson's disease (PD), described by James Parkinson in his seminal report on 'paralysis agitans'. However, little is known on the frequency, clinical correlations, and association with objective decrease in muscle strength in such patients. OBJECTIVE The objective of this study was to assess the frequency of objective and perceived lower limb weakness in patients with PD. METHODS We studied 90 consecutive patients with PD and 52 age-matched controls. We recorded clinical and demographic variables, as well as perceived weakness and allied abnormal lower limb sensations, including 'heavy legs', 'fatigued legs', and 'pain'. Symptoms consistent with restless legs syndrome were not considered. Lower limb strength was determined in both legs by means of the Medical Research Council scale, dynamometric (leg flexion) and weighting machine (leg pressure) measures. RESULTS Weakness and allied abnormal lower limb sensations were reported in 69% of patients with PD and 21% of healthy controls. Patients with PD had decreased leg pressure compared with healthy controls (p = 0.002). Among patients with PD, an association between perceived leg weakness (and allied sensations) and gait freezing (p = 0.001) was observed in the multivariate regression analysis; however, these variables only explained 30.4% of the variance. Moreover, PD patients with and without abnormal lower limb sensations had similar muscle strength by objective measurements. CONCLUSION Perceived lower limb weakness and allied abnormal sensations are common in patients with PD. However, there is a dissociation between perceived weakness and objective muscle strength in the lower limbs. These abnormal sensations were mostly related to gait freezing but a causal association is questionable.
Collapse
Affiliation(s)
| | | | - José Fidel Baizabal-Carvallo
- Department of Sciences and Engineering,
University of Guanajuato, Ave León 428, Jardines del Moral, C.P. 37320 León,
Guanajuato, México
| |
Collapse
|
27
|
Raj K, Singh S, Chib S, Mallan S. Microbiota- Brain-Gut-Axis Relevance to Parkinson's Disease: Potential Therapeutic Effects of Probiotics. Curr Pharm Des 2022; 28:3049-3067. [PMID: 36200207 DOI: 10.2174/1381612828666221003112300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/02/2022] [Indexed: 01/28/2023]
Abstract
Parkinson's disease (PD) is the second most common type of neurogenerative disease among middleaged and older people, characterized by aggregation of alpha-synuclein and dopaminergic neuron loss. The microbiota- gut-brain axis is a dynamic bidirectional communication network and is involved in the pathogenesis of PD. The aggregation of misfolded protein alpha-synuclein is a neuropathological characteristic of PD, originates in the gut and migrates to the central nervous system (CNS) through the vagus nerve and olfactory bulb. The change in the architecture of gut microbiota increases the level short-chain fatty acids (SCFAs) and other metabolites, acting on the neuroendocrine system and modulating the concentrations of gamma-Aminobutyric acid (GABA), serotonin, and other neurotransmitters. It also alters the vagus and intestinal signalling, influencing the brain and behaviour by activating microglia and systemic cytokines. Both experimental and clinical reports indicate the role of intestinal dysbiosis and microbiota host interaction in neurodegeneration. Probiotics are live microorganisms that modify the gut microbiota in the small intestine to avoid neurological diseases. Probiotics have been shown in clinical and preclinical studies to be effective in the treatment of PD by balancing the gut microbiota. In this article, we described the role of gut-microbiota in the pathogenesis of PD. The article aims to explore the mechanistic strategy of the gut-brain axis and its relation with motor impairment and the use of probiotics to maintain gut microbial flora and prevent PD-like symptoms.
Collapse
Affiliation(s)
- Khadga Raj
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Shivani Chib
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Sudhanshu Mallan
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| |
Collapse
|
28
|
Boyd RJ, Avramopoulos D, Jantzie LL, McCallion AS. Neuroinflammation represents a common theme amongst genetic and environmental risk factors for Alzheimer and Parkinson diseases. J Neuroinflammation 2022; 19:223. [PMID: 36076238 PMCID: PMC9452283 DOI: 10.1186/s12974-022-02584-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
Multifactorial diseases are characterized by inter-individual variation in etiology, age of onset, and penetrance. These diseases tend to be relatively common and arise from the combined action of genetic and environmental factors; however, parsing the convoluted mechanisms underlying these gene-by-environment interactions presents a significant challenge to their study and management. For neurodegenerative disorders, resolving this challenge is imperative, given the enormous health and societal burdens they impose. The mechanisms by which genetic and environmental effects may act in concert to destabilize homeostasis and elevate risk has become a major research focus in the study of common disease. Emphasis is further being placed on determining the extent to which a unifying biological principle may account for the progressively diminishing capacity of a system to buffer disease phenotypes, as risk for disease increases. Data emerging from studies of common, neurodegenerative diseases are providing insights to pragmatically connect mechanisms of genetic and environmental risk that previously seemed disparate. In this review, we discuss evidence positing inflammation as a unifying biological principle of homeostatic destabilization affecting the risk, onset, and progression of neurodegenerative diseases. Specifically, we discuss how genetic variation associated with Alzheimer disease and Parkinson disease may contribute to pro-inflammatory responses, how such underlying predisposition may be exacerbated by environmental insults, and how this common theme is being leveraged in the ongoing search for effective therapeutic interventions.
Collapse
Affiliation(s)
- Rachel J Boyd
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Dimitri Avramopoulos
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lauren L Jantzie
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Andrew S McCallion
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
29
|
Longitudinal corpus callosum microstructural decline in early-stage Parkinson’s disease in association with akinetic-rigid symptom severity. NPJ Parkinsons Dis 2022; 8:108. [PMID: 36038586 PMCID: PMC9424284 DOI: 10.1038/s41531-022-00372-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 08/02/2022] [Indexed: 12/26/2022] Open
Abstract
Previous diffusion tensor imaging (DTI) studies of Parkinson’s disease (PD) show reduced microstructural integrity of the corpus callosum (CC) relative to controls, although the characteristics of such callosal degradation remain poorly understood. Here, we utilized a longitudinal approach to identify microstructural decline in the entire volume of the CC and its functional subdivisions over 2 years and related the callosal changes to motor symptoms in early-stage PD. The study sample included 61 PD subjects (N = 61, aged 45–82, 38 M & 23 F, H&Y ≤ 2) from the Parkinson’s Progressive Markers Initiative database (PPMI). Whole-brain voxel-wise results revealed significant fractional anisotropy (FA) and mean diffusivity (MD) changes in the CC, especially in the genu and splenium. Using individually drawn CC regions of interest (ROI), our analysis further revealed that almost all subdivisions of the CC show significant decline in FA to certain extents over the two-year timeframe. Additionally, FA seemed lower in the right hemisphere of the CC at both time-points, and callosal FA decline was associated with FA and MD decline in widespread cortical and subcortical areas. Notably, multiple regression analysis revealed that across-subject akinetic-rigid severity was negatively associated with callosal FA at baseline and 24 months follow-up, and the effect was strongest in the anterior portion of the CC. These results suggest that callosal microstructure alterations in the anterior CC may serve as a viable biomarker for akinetic-rigid symptomology and disease progression, even in early PD.
Collapse
|
30
|
Roussos G, Herrero TR, Hill DL, Dowling AV, L T M Müller M, Evers LJW, Burton J, Derungs A, Fisher K, Kilambi KP, Mehrotra N, Bhatnagar R, Sardar S, Stephenson D, Adams JL, Ray Dorsey E, Cosman J. Identifying and characterising sources of variability in digital outcome measures in Parkinson's disease. NPJ Digit Med 2022; 5:93. [PMID: 35840653 PMCID: PMC9284971 DOI: 10.1038/s41746-022-00643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Smartphones and wearables are widely recognised as the foundation for novel Digital Health Technologies (DHTs) for the clinical assessment of Parkinson's disease. Yet, only limited progress has been made towards their regulatory acceptability as effective drug development tools. A key barrier in achieving this goal relates to the influence of a wide range of sources of variability (SoVs) introduced by measurement processes incorporating DHTs, on their ability to detect relevant changes to PD. This paper introduces a conceptual framework to assist clinical research teams investigating a specific Concept of Interest within a particular Context of Use, to identify, characterise, and when possible, mitigate the influence of SoVs. We illustrate how this conceptual framework can be applied in practice through specific examples, including two data-driven case studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Luc J W Evers
- Radboud University Medical Center and Radboud University, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rahman MU, Bilal M, Shah JA, Kaushik A, Teissedre PL, Kujawska M. CRISPR-Cas9-Based Technology and Its Relevance to Gene Editing in Parkinson's Disease. Pharmaceutics 2022; 14:1252. [PMID: 35745824 PMCID: PMC9229276 DOI: 10.3390/pharmaceutics14061252] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) and other chronic and debilitating neurodegenerative diseases (NDs) impose a substantial medical, emotional, and financial burden on individuals and society. The origin of PD is unknown due to a complex combination of hereditary and environmental risk factors. However, over the last several decades, a significant amount of available data from clinical and experimental studies has implicated neuroinflammation, oxidative stress, dysregulated protein degradation, and mitochondrial dysfunction as the primary causes of PD neurodegeneration. The new gene-editing techniques hold great promise for research and therapy of NDs, such as PD, for which there are currently no effective disease-modifying treatments. As a result, gene therapy may offer new treatment options, transforming our ability to treat this disease. We present a detailed overview of novel gene-editing delivery vehicles, which is essential for their successful implementation in both cutting-edge research and prospective therapeutics. Moreover, we review the most recent advancements in CRISPR-based applications and gene therapies for a better understanding of treating PD. We explore the benefits and drawbacks of using them for a range of gene-editing applications in the brain, emphasizing some fascinating possibilities.
Collapse
Affiliation(s)
- Mujeeb ur Rahman
- Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland;
| | - Muhammad Bilal
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China;
| | - Junaid Ali Shah
- College of Life Sciences, Jilin University, Changchun 130012, China;
- Fergana Medical Institute of Public Health Uzbekistan, Fergana 150110, Uzbekistan
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA;
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Pierre-Louis Teissedre
- Institut des Sciences de la Vigne et du Vin, Université de Bordeaux, EA 4577, Œnologie, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France;
- Institut des Sciences de la Vigne et du Vin, INRA, USC 1366 INRA, IPB, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
| | - Małgorzata Kujawska
- Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland;
| |
Collapse
|
32
|
Neuroimaging signatures predicting motor improvement to focused ultrasound subthalamotomy in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:70. [PMID: 35665753 PMCID: PMC9166695 DOI: 10.1038/s41531-022-00332-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/13/2022] [Indexed: 11/24/2022] Open
Abstract
Subthalamotomy using transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) is a novel and promising treatment for Parkinson’s Disease (PD). In this study, we investigate if baseline brain imaging features can be early predictors of tcMRgFUS-subthalamotomy efficacy, as well as which are the post-treatment brain changes associated with the clinical outcomes. Towards this aim, functional and structural neuroimaging and extensive clinical data from thirty-five PD patients enrolled in a double-blind tcMRgFUS-subthalamotomy clinical trial were analyzed. A multivariate cross-correlation analysis revealed that the baseline multimodal imaging data significantly explain (P < 0.005, FWE-corrected) the inter-individual variability in response to treatment. Most predictive features at baseline included neural fluctuations in distributed cortical regions and structural integrity in the putamen and parietal regions. Additionally, a similar multivariate analysis showed that the population variance in clinical improvements is significantly explained (P < 0.001, FWE-corrected) by a distributed network of concurrent functional and structural brain changes in frontotemporal, parietal, occipital, and cerebellar regions, as opposed to local changes in very specific brain regions. Overall, our findings reveal specific quantitative brain signatures highly predictive of tcMRgFUS-subthalamotomy responsiveness in PD. The unanticipated weight of a cortical-subcortical-cerebellar subnetwork in defining clinical outcome extends the current biological understanding of the mechanisms associated with clinical benefits.
Collapse
|
33
|
Prange S, Klinger H, Laurencin C, Danaila T, Thobois S. Depression in Patients with Parkinson's Disease: Current Understanding of its Neurobiology and Implications for Treatment. Drugs Aging 2022; 39:417-439. [PMID: 35705848 PMCID: PMC9200562 DOI: 10.1007/s40266-022-00942-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 12/11/2022]
Abstract
Depression is one of the most frequent and burdensome non-motor symptoms in Parkinson’s disease (PD), across all stages. Even when its severity is mild, PD depression has a great impact on quality of life for these patients and their caregivers. Accordingly, accurate diagnosis, supported by validated scales, identification of risk factors, and recognition of motor and non-motor symptoms comorbid to depression are critical to understanding the neurobiology of depression, which in turn determines the effectiveness of dopaminergic drugs, antidepressants and non-pharmacological interventions. Recent advances using in vivo functional and structural imaging demonstrate that PD depression is underpinned by dysfunction of limbic networks and monoaminergic systems, depending on the stage of PD and its associated symptoms, including apathy, anxiety, rapid eye movement sleep behavior disorder (RBD), cognitive impairment and dementia. In particular, the evolution of serotonergic, noradrenergic, and dopaminergic dysfunction and abnormalities of limbic circuits across time, involving the anterior cingulate and orbitofrontal cortices, amygdala, thalamus and ventral striatum, help to delineate the variable expression of depression in patients with prodromal, early and advanced PD. Evidence is accumulating to support the use of dual serotonin and noradrenaline reuptake inhibitors (desipramine, nortriptyline, venlafaxine) in patients with PD and moderate to severe depression, while selective serotonin reuptake inhibitors, repetitive transcranial magnetic stimulation and cognitive behavioral therapy may also be considered. In all patients, recent findings advocate that optimization of dopamine replacement therapy and evaluation of deep brain stimulation of the subthalamic nucleus to improve motor symptoms represents an important first step, in addition to physical activity. Overall, this review indicates that increasing understanding of neurobiological changes help to implement a roadmap of tailored interventions for patients with PD and depression, depending on the stage and comorbid symptoms underlying PD subtypes and their prognosis.
Collapse
Affiliation(s)
- Stéphane Prange
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, NS-PARK/FCRIN Network, 59 Boulevard Pinel, 69500, Bron, France. .,Physiopathology of the Basal Ganglia Team, Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, 67 Boulevard Pinel, 69675, Bron, France. .,Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Hélène Klinger
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, NS-PARK/FCRIN Network, 59 Boulevard Pinel, 69500, Bron, France
| | - Chloé Laurencin
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, NS-PARK/FCRIN Network, 59 Boulevard Pinel, 69500, Bron, France.,Physiopathology of the Basal Ganglia Team, Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, 67 Boulevard Pinel, 69675, Bron, France
| | - Teodor Danaila
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, NS-PARK/FCRIN Network, 59 Boulevard Pinel, 69500, Bron, France.,Physiopathology of the Basal Ganglia Team, Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, 67 Boulevard Pinel, 69675, Bron, France
| | - Stéphane Thobois
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, NS-PARK/FCRIN Network, 59 Boulevard Pinel, 69500, Bron, France. .,Physiopathology of the Basal Ganglia Team, Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, 67 Boulevard Pinel, 69675, Bron, France. .,Faculté de Médecine et de Maïeutique Lyon Sud Charles Mérieux, Univ Lyon, Université Claude Bernard Lyon 1, Oullins, France.
| |
Collapse
|
34
|
Bavinton CE, Sternke-Hoffmann R, Yamashita T, Knipe PC, Hamilton AD, Luo J, Thompson S. Rationally designed helical peptidomimetics disrupt α-synuclein fibrillation. Chem Commun (Camb) 2022; 58:5132-5135. [PMID: 35380562 DOI: 10.1039/d2cc00212d] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Misfolding of the human protein α-synuclein results in toxic fibrils and the aggregation of Lewy bodies, which are a hallmark of Parkinson's disease in brain tissue. Here we disclose a supramolecular approach where peptidomimetics are rationally designed and pre-organised to recognize the surface of native helical α-Syn by forming complementary contacts with key patches of protein surface composed of charged and hydrophobic residues. Under lipid-catalyzed conditions the mimetics slow the rate of aggregation (thioflavin-T assay) and disrupt the misfolding pathway (electron microscopy of aggregates). This hypothesis is supported by comparison with a series of negative control compounds and with circular dichroism spectroscopy. Given the approach relies on selective recognition of both amino acid sequence and conformation (helical secondary structure) there is potential to develop these compounds as tools to unravel the currently intractable structure-function relationships of (i) missense mutation, and (ii) amyloid polymorphism with disease pathogenesis.
Collapse
Affiliation(s)
- Clementine E Bavinton
- School of Chemistry and the Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | | | - Tohru Yamashita
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Peter C Knipe
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.,School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Belfast, BT9 5AG, UK
| | - Andrew D Hamilton
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.,Department of Chemistry, New York University, 100 Washington Square East, NY 10003, USA
| | - Jinghui Luo
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland.
| | - Sam Thompson
- School of Chemistry and the Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK. .,Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| |
Collapse
|
35
|
Ferulic Acid Exerts Neuroprotective Effects via Autophagy Induction in C. elegans and Cellular Models of Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3723567. [PMID: 35242276 PMCID: PMC8888115 DOI: 10.1155/2022/3723567] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a complex neurological disorder characterized by motor and nonmotor features. Although some drugs have been developed for the therapy of PD in a clinical setting, they only alleviate the clinical symptoms and have yet to show a cure. In this study, by employing the C. elegans model of PD, we found that ferulic acid (FA) significantly inhibited α-synuclein accumulation and improved dyskinesia in NL5901 worms. Meanwhile, FA remarkably decreased the degeneration of dopaminergic (DA) neurons, improved the food-sensing behavior, and reduced the level of reactive oxygen species (ROS) in 6-OHDA-induced BZ555 worms. The mechanistic study discovered that FA could activate autophagy in C. elegans, while the knockdown of 3 key autophagy-related genes significantly revoked the neuroprotective effects of FA in α-synuclein- and 6-OHDA-induced C. elegans models of PD, demonstrating that FA exerts an anti-PD effect via autophagy induction in C. elegans. Furthermore, we found that FA could reduce 6-OHDA- or H2O2-induced cell death and apoptosis in PC-12 cells. Moreover, FA was able to induce autophagy in stable GFP-RFP-LC3 U87 cells and PC-12 cells, while bafilomycin A1 (Baf, an autophagy inhibitor) partly eliminated the protective effects of FA against 6-OHDA- and H2O2-induced cell death and ROS production in PC-12 cells, further confirming that FA exerts an anti-PD effect via autophagy induction in vitro. Collectively, our study provides novel insights for FA as a potent autophagy enhancer to effectively prevent neurodegenerative diseases such as PD in the future.
Collapse
|
36
|
Mining imaging and clinical data with machine learning approaches for the diagnosis and early detection of Parkinson's disease. NPJ Parkinsons Dis 2022; 8:13. [PMID: 35064123 PMCID: PMC8783003 DOI: 10.1038/s41531-021-00266-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is a common, progressive, and currently incurable neurodegenerative movement disorder. The diagnosis of PD is challenging, especially in the differential diagnosis of parkinsonism and in early PD detection. Due to the advantages of machine learning such as learning complex data patterns and making inferences for individuals, machine-learning techniques have been increasingly applied to the diagnosis of PD, and have shown some promising results. Machine-learning-based imaging applications have made it possible to help differentiate parkinsonism and detect PD at early stages automatically in a number of neuroimaging studies. Comparative studies have shown that machine-learning-based SPECT image analysis applications in PD have outperformed conventional semi-quantitative analysis in detecting PD-associated dopaminergic degeneration, performed comparably well as experts’ visual inspection, and helped improve PD diagnostic accuracy of radiologists. Using combined multi-modal (imaging and clinical) data in these applications may further enhance PD diagnosis and early detection. To integrate machine-learning-based diagnostic applications into clinical systems, further validation and optimization of these applications are needed to make them accurate and reliable. It is anticipated that machine-learning techniques will further help improve differential diagnosis of parkinsonism and early detection of PD, which may reduce the error rate of PD diagnosis and help detect PD at pre-motor stage to make it possible for early treatments (e.g., neuroprotective treatment) to slow down PD progression, prevent severe motor symptoms from emerging, and relieve patients from suffering.
Collapse
|
37
|
Chmiela T, Węgrzynek J, Kasprzyk A, Waksmundzki D, Wilczek D, Gorzkowska A. If Not Insulin Resistance so What? - Comparison of Fasting Glycemia in Idiopathic Parkinson's Disease and Atypical Parkinsonism. Diabetes Metab Syndr Obes 2022; 15:1451-1460. [PMID: 35586204 PMCID: PMC9109887 DOI: 10.2147/dmso.s359856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a synucleinopathy, which presents dysautonomia, as its common non-motor symptom. Some research suggests the existing interplay between the autonomic nervous system dysfunction and glucose metabolism dysregulation in PD. OBJECTIVE To determine the prevalence of metabolic disorders with particular emphasis on glucose metabolism in patients with PD and atypical parkinsonism (AP). PATIENTS AND METHODS A retrospective study was performed by analyzing 461 clinical data of consecutive patients diagnosed with PD, multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) hospitalized from 2019 to 2021 in the authors' institution. The study group included 350 patients (303 PD, 14 MSA, 33 PSP), aged 65.8 ± 9.7 years (42% were female). Laboratory results (fasting glycemia, lipid parameters, TSH, homocysteine and vitamin D3 levels) were collected. The patient's clinical condition was assessed in III part of Unified Parkinson's Disease Rating Scale (UPDRS p. III), Hoehn-Yahr scale, Mini Mental State Examination (MMSE) and Beck Depression Inventory (BDI). RESULTS Impaired fasting glycemia (IGF) was more prevalent in PD than in the PSP (43.43% vs 18.18%; p = 0.043). Similarly, PD presented a higher level of fasting glycemia (102.4 ± 16.7 mg/dl vs 92.2 ± 16.1mg/dl; p = 0.042). According to lipid parameters, patients with PD showed lower LDL cholesterol (92.3 ± 44.3mg/dl vs 119 ± 61.0mg/dl; p = 0.016) and lower BMI compared to patients with PSP (26.1 ± 4.0kg/m2 vs 29.3 ± 4.4 kg/m2; p = 0.024), but there were no statistically significant differences in triglycerides (TG) and HDL cholesterol levels. Males with PD presented greater frequency of IFG (35.05% vs 50.6%; p = 0.042), higher fasting glycemia (99.1 ± 14.3mg/dl vs 103.7 ± 14.7mg/dl; p = 0.006), lower total cholesterol, HDL cholesterol, and BMI compared to women with PD. CONCLUSION Our investigation supports an association between synucleinopathies and glucose metabolism dysregulation.
Collapse
Affiliation(s)
- Tomasz Chmiela
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Correspondence: Tomasz Chmiela, Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland, Tel +48 32 789 46 01, Fax +48 32 789 45 55, Email
| | - Julia Węgrzynek
- Students’ Scientific Association, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Amadeusz Kasprzyk
- Students’ Scientific Association, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Damian Waksmundzki
- Students’ Scientific Association, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Dawid Wilczek
- Students’ Scientific Association, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Gorzkowska
- Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
38
|
Park H, Shin S, Youm C, Cheon SM, Lee M, Noh B. Classification of Parkinson's disease with freezing of gait based on 360° turning analysis using 36 kinematic features. J Neuroeng Rehabil 2021; 18:177. [PMID: 34930373 PMCID: PMC8686361 DOI: 10.1186/s12984-021-00975-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Freezing of gait (FOG) is a sensitive problem, which is caused by motor control deficits and requires greater attention during postural transitions such as turning in people with Parkinson's disease (PD). However, the turning characteristics have not yet been extensively investigated to distinguish between people with PD with and without FOG (freezers and non-freezers) based on full-body kinematic analysis during the turning task. The objectives of this study were to identify the machine learning model that best classifies people with PD and freezers and reveal the associations between clinical characteristics and turning features based on feature selection through stepwise regression. METHODS The study recruited 77 people with PD (31 freezers and 46 non-freezers) and 34 age-matched older adults. The 360° turning task was performed at the preferred speed for the inner step of the more affected limb. All experiments on the people with PD were performed in the "Off" state of medication. The full-body kinematic features during the turning task were extracted using the three-dimensional motion capture system. These features were selected via stepwise regression. RESULTS In feature selection through stepwise regression, five and six features were identified to distinguish between people with PD and controls and between freezers and non-freezers (PD and FOG classification problem), respectively. The machine learning model accuracies revealed that the random forest (RF) model had 98.1% accuracy when using all turning features and 98.0% accuracy when using the five features selected for PD classification. In addition, RF and logistic regression showed accuracies of 79.4% when using all turning features and 72.9% when using the six selected features for FOG classification. CONCLUSION We suggest that our study leads to understanding of the turning characteristics of people with PD and freezers during the 360° turning task for the inner step of the more affected limb and may help improve the objective classification and clinical assessment by disease progression using turning features.
Collapse
Affiliation(s)
- Hwayoung Park
- Department of Health Sciences, The Graduate School of Dong-A University, Saha-gu, Busan, Republic of Korea
| | - Sungtae Shin
- Department of Mechanical Engineering, College of Engineering, Dong-A University, Saha-gu, Busan, Republic of Korea
| | - Changhong Youm
- Department of Health Sciences, The Graduate School of Dong-A University, Saha-gu, Busan, Republic of Korea.
- Department of Healthcare and Science, College of Health Sciences, Dong-A University, 37 Nakdong‑Daero, 550 Beon‑gil, Hadan 2-dong, Saha-gu, Busan, 49315, Republic of Korea.
| | - Sang-Myung Cheon
- Department of Neurology, School of Medicine, Dong-A University, 26, Daesingongwon-ro, Seo-gu, Busan, 49201, Republic of Korea.
| | - Myeounggon Lee
- Department of Health and Human Performance, Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX, USA
| | - Byungjoo Noh
- Department of Kinesiology, Jeju National University, Jeju-si, Jeju-do, Republic of Korea
| |
Collapse
|
39
|
Sato F, Nakamura Y, Ma S, Kochi T, Hisaoka-Nakashima K, Wang D, Liu K, Wake H, Nishibori M, Morioka N. Central high mobility group box-1 induces mechanical hypersensitivity with spinal microglial activation in a mouse model of hemi-Parkinson's disease. Biomed Pharmacother 2021; 145:112479. [PMID: 34915668 DOI: 10.1016/j.biopha.2021.112479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) patients often complain of pain, but this problem has been neglected and is poorly understood. High mobility group box-1 (HMGB1), an alarmin/damage-associated molecular patterns protein, is increased in the cerebrospinal fluid in PD patients. However, little is known of the relationship between HMGB1 and pain associated with PD. Here, we investigated the role of central HMGB1 in the regulation of nociceptive hypersensitivity in a mouse model of PD. Male ddY mice were microinjected unilaterally with 6-hydroxydopamine (6OHDA) into the striatum. These hemi-PD mice were treated with anti-HMGB1 neutralizing antibody (nAb; 10 µg in 10 µL) by intranasal (i.n.) administration. The mechanical hypersensitivity of the hind paws was evaluated with the von Frey test. Spinal microglial activity was analyzed by immunostaining for ionized calcium-binding adapter molecule 1. The 6OHDA-administered mice displayed unilateral loss of dopamine neurons in the substantia nigra and mechanical hypersensitivity in both hind paws. Moreover, spinal microglia were activated in these hemi-PD mice. Twenty-eight days after the 6OHDA injections, repeated i.n., but not systemic, treatment with anti-HMGB1 nAb inhibited the bilateral mechanical hypersensitivity and spinal microglial activation. However, the anti-HMGB1 nAb did not ameliorate the dopamine neuron loss. Moreover, intracerebroventricular injection with recombinant HMGB1 induced mechanical hypersensitivity. These findings indicate that HMGB1 is involved in the maintenance of nociceptive symptoms in hemi-PD mice via spinal microglial activation. Therefore, central HMGB1 may have potential as a therapeutic target for pain associated with PD.
Collapse
Affiliation(s)
- Fumiaki Sato
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan.
| | - Simeng Ma
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Takahiro Kochi
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan; Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Dengli Wang
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Keyue Liu
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Hidenori Wake
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan; Department of Pharmacology, Faculty of Medicine, Kindai University, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan.
| |
Collapse
|
40
|
Elshennawy M, Ouachikh O, Aissouni Y, Youssef S, Zaki SS, Durif F, Hafidi A. Behavioral, Cellular and Molecular Responses to Cold and Mechanical Stimuli in Rats with Bilateral Dopamine Depletion in the Mesencephalic Dopaminergic Neurons. Neuroscience 2021; 479:107-124. [PMID: 34748858 DOI: 10.1016/j.neuroscience.2021.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 01/10/2023]
Abstract
Pain is the major non-motor symptom in Parkinson's disease (PD). Preclinical studies have mostly investigated mechanical pain by considering the decrease in a nociceptive threshold. Only a few studies have focused on thermal pain in animal models of PD. Therefore, the goal of this study was to assess the thermal nociceptive behavior of rats subjected to 6-hydroxydopamine (6-OHDA) administration, which constitutes an animal model of PD. Thermal plate investigation demonstrated significant thermal sensitivity to cold temperatures of 10 °C and 15 °C, and not to higher temperatures, in 6-OHDA-lesioned rats when compared with sham. 6-OHDA-lesioned rats also showed cold allodynia as demonstrated by a significant difference in the number of flinches, latency and reaction time to acetone stimulus. Ropinirole administration, a dopamine receptor 2 (D2R) agonist, blocked the acetone-induced cold allodynia in 6-OHDA-lesioned rats. In addition, mechanical hypersensitivity and static allodynia, as demonstrated by a significant difference in the vocalization threshold and pain score respectively, were noticed in 6-OHDA-lesioned rats. Acetone stimulus induced a significant increase in extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) phosphorylation, a pain process molecular marker, in the spinal dorsal horn (SDH), the insular and cingulate cortices in 6-OHDA-lesioned rats when compared to sham. In 6-OHDA-lesioned rats, there was a significant augmentation in the expression of both protein kinase C gamma (PKCγ) and glutamate decarboxylase 67 (GAD67) in the SDH. This highlighted an increase in excitation and a decrease in inhibition in the SDH. Overall, the present study demonstrated a clear cold thermal hypersensitivity, in addition to a mechanical one, in 6-OHDA-lesioned rats.
Collapse
Affiliation(s)
- Mennatallah Elshennawy
- Anatomy and Embryology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Université Clermont Auvergne, CHU, CNRS, Clermont Auvergne INP, Institut Pascal, 63000 Clermont-Ferrand, France.
| | - Omar Ouachikh
- Université Clermont Auvergne, CHU, CNRS, Clermont Auvergne INP, Institut Pascal, 63000 Clermont-Ferrand, France.
| | - Youssef Aissouni
- Université Clermont Auvergne, INSERM, NeuroDol U1107, 63000 Clermont-Ferrand, France.
| | - Shahira Youssef
- Anatomy and Embryology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Shahira S Zaki
- Anatomy and Embryology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Franck Durif
- Université Clermont Auvergne, CHU, CNRS, Clermont Auvergne INP, Institut Pascal, 63000 Clermont-Ferrand, France.
| | - Aziz Hafidi
- Université Clermont Auvergne, CHU, CNRS, Clermont Auvergne INP, Institut Pascal, 63000 Clermont-Ferrand, France.
| |
Collapse
|
41
|
Raval NR, Gudmundsen F, Juhl M, Andersen IV, Speth N, Videbæk A, Petersen IN, Mikkelsen JD, Fisher PM, Herth MM, Plavén-Sigray P, Knudsen GM, Palner M. Synaptic Density and Neuronal Metabolic Function Measured by Positron Emission Tomography in the Unilateral 6-OHDA Rat Model of Parkinson's Disease. Front Synaptic Neurosci 2021; 13:715811. [PMID: 34867258 PMCID: PMC8636601 DOI: 10.3389/fnsyn.2021.715811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022] Open
Abstract
Parkinson’s disease (PD) is caused by progressive neurodegeneration and characterised by motor dysfunction. Neurodegeneration of dopaminergic neurons also causes aberrations within the cortico-striato-thalamo-cortical (CSTC) circuit, which has been hypothesised to lead to non-motor symptoms such as depression. Individuals with PD have both lower synaptic density and changes in neuronal metabolic function in the basal ganglia, as measured using [11C]UCB-J and [18F]FDG positron emission tomography (PET), respectively. However, the two radioligands have not been directly compared in the same PD subject or in neurodegeneration animal models. Here, we investigate [11C]UCB-J binding and [18F]FDG uptake in the CSTC circuit following a unilateral dopaminergic lesion in rats and compare it to sham lesioned rats. Rats received either a unilateral injection of 6-hydroxydopamine (6-OHDA) or saline in the medial forebrain bundle and rostral substantia nigra (n = 4/group). After 3 weeks, all rats underwent two PET scans using [18F]FDG, followed by [11C]UCB-J on a separate day. [18F]FDG uptake and [11C]UCB-J binding were both lower in the ipsilateral striatal regions compared to the contralateral regions. Using [11C]UCB-J, we could detect an 8.7% decrease in the ipsilateral ventral midbrain, compared to a 2.9% decrease in ventral midbrain using [18F]FDG. Differential changes between hemispheres for [11C]UCB-J and [18F]FDG outcomes were also evident in the CSTC circuit’s cortical regions, especially in the orbitofrontal cortex and medial prefrontal cortex where higher synaptic density yet lower neuronal metabolic function was observed, following lesioning. In conclusion, [11C]UCB-J and [18F]FDG PET can detect divergent changes following a dopaminergic lesion in rats, especially in cortical regions that are not directly affected by the neurotoxin. These results suggest that combined [11C]UCB-J and [18F]FDG scans could yield a better picture of the heterogeneous cerebral changes in neurodegenerative disorders.
Collapse
Affiliation(s)
- Nakul Ravi Raval
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Gudmundsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Morten Juhl
- Cardiology Stem Cell Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ida Vang Andersen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj Speth
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Annesofie Videbæk
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ida Nymann Petersen
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens D Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | | | - Matthias Manfred Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Pontus Plavén-Sigray
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Palner
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| |
Collapse
|
42
|
Lama J, Buhidma Y, Fletcher E, Duty S. Animal models of Parkinson's disease: a guide to selecting the optimal model for your research. Neuronal Signal 2021; 5:NS20210026. [PMID: 34956652 PMCID: PMC8661507 DOI: 10.1042/ns20210026] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is a complex, multisystem disorder characterised by α-synuclein (SNCA) pathology, degeneration of nigrostriatal dopaminergic neurons, multifactorial pathogenetic mechanisms and expression of a plethora of motor and non-motor symptoms. Animal models of PD have already been instructive in helping us unravel some of these aspects. However, much remains to be discovered, requiring continued interrogation by the research community. In contrast with the situation for many neurological disorders, PD benefits from of a wide range of available animal models (pharmacological, toxin, genetic and α-synuclein) but this makes selection of the optimal one for a given study difficult. This is especially so when a study demands a model that displays a specific combination of features. While many excellent reviews of animal models already exist, this review takes a different approach with the intention of more readily informing this decision-making process. We have considered each feature of PD in turn - aetiology, pathology, pathogenesis, motor dysfunctions and non-motor symptoms (NMS) - highlighting those animal models that replicate each. By compiling easily accessible tables and a summary figure, we aim to provide the reader with a simple, go-to resource for selecting the optimal animal model of PD to suit their research needs.
Collapse
Affiliation(s)
- Joana Lama
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age Related Diseases, Wolfson Wing, Hodgkin Building, Guy’s Campus, London SE1 1UL, U.K
| | - Yazead Buhidma
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age Related Diseases, Wolfson Wing, Hodgkin Building, Guy’s Campus, London SE1 1UL, U.K
| | - Edward J.R. Fletcher
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age Related Diseases, Wolfson Wing, Hodgkin Building, Guy’s Campus, London SE1 1UL, U.K
| | - Susan Duty
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age Related Diseases, Wolfson Wing, Hodgkin Building, Guy’s Campus, London SE1 1UL, U.K
| |
Collapse
|
43
|
Zhou Z, Ye P, Li XH, Zhang Y, Li M, Chen QY, Lu JS, Xue M, Li Y, Liu W, Lu L, Shi W, Xu PY, Zhuo M. Synaptic potentiation of anterior cingulate cortex contributes to chronic pain of Parkinson's disease. Mol Brain 2021; 14:161. [PMID: 34742316 PMCID: PMC8572509 DOI: 10.1186/s13041-021-00870-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022] Open
Abstract
Parkinson’s disease (PD) is a multi-system neurodegenerative disorder. Patients with PD often suffer chronic pain. In the present study, we investigated motor, sensory and emotional changes in three different PD mice models. We found that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treatment caused significant changes in all measurements. Mechanical hypersensitivity of PD model induced by MPTP peaked at 3 days and persisted for at least 14 days. Using Fos transgenic mice, we found that neurons in the anterior cingulate cortex (ACC) were activated after MPTP treatment. Inhibiting ACC by bilateral microinjection of muscimol significantly reduced mechanical hypersensitivity and anxiety-like responses. By contrast, MPTP induced motor deficit was not affected, indicating ACC activity is mostly responsible for sensory and emotional changes. We also investigated excitatory synaptic transmission and plasticity using brain slices of MPTP treated animals. While L-LTP was blocked or significantly reduced. E-LTP was not significantly affected in slices of MPTP treated animals. LTD induced by repetitive stimulation was not affected. Furthermore, we found that paired-pulse facilitation and spontaneous release of glutamate were also altered in MPTP treated animals, suggesting presynaptic enhancement of excitatory transmission in PD. Our results suggest that ACC synaptic transmission is enhanced in the animal model of PD, and cortical excitation may play important roles in PD related pain and anxiety.
Collapse
Affiliation(s)
- Zhaoxiang Zhou
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Penghai Ye
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Yuxiang Zhang
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Muhang Li
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Qi-Yu Chen
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Jing-Shan Lu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Man Xue
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanan Li
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Weiqi Liu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lin Lu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wantong Shi
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ping-Yi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China. .,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China. .,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
44
|
Mendes-Pinheiro B, Soares-Cunha C, Marote A, Loureiro-Campos E, Campos J, Barata-Antunes S, Monteiro-Fernandes D, Santos D, Duarte-Silva S, Pinto L, José Salgado A. Unilateral Intrastriatal 6-Hydroxydopamine Lesion in Mice: A Closer Look into Non-Motor Phenotype and Glial Response. Int J Mol Sci 2021; 22:ijms222111530. [PMID: 34768962 PMCID: PMC8584172 DOI: 10.3390/ijms222111530] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a prevalent movement disorder characterized by the progressive loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). The 6-hydroxydopamine (6-OHDA) lesion is still one of the most widely used techniques for modeling Parkinson’s disease (PD) in rodents. Despite commonly used in rats, it can be challenging to reproduce a similar lesion in mice. Moreover, there is a lack of characterization of the extent of behavioral deficits and of the neuronal loss/neurotransmitter system in unilateral lesion mouse models. In this study, we present an extensive behavioral and histological characterization of a unilateral intrastriatal 6-OHDA mouse model. Our results indicate significant alterations in balance and fine motor coordination, voluntary locomotion, and in the asymmetry’s degree of forelimb use in 6-OHDA lesioned animals, accompanied by a decrease in self-care and motivational behavior, common features of depressive-like symptomatology. These results were accompanied by a decrease in tyrosine hydroxylase (TH)-labelling and dopamine levels within the nigrostriatal pathway. Additionally, we also identify a marked astrocytic reaction, as well as proliferative and reactive microglia in lesioned areas. These results confirm the use of unilateral intrastriatal 6-OHDA mice for the generation of a mild model of nigrostriatal degeneration and further evidences the recapitulation of key aspects of PD, thereby being suitable for future studies beholding new therapeutical interventions for this disease.
Collapse
Affiliation(s)
- Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Eduardo Loureiro-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sandra Barata-Antunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Daniela Monteiro-Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Diogo Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Correspondence: ; Tel.: +351-253-60-49-47
| |
Collapse
|
45
|
Ferreira AFF, Binda KH, Real CC. The effects of treadmill exercise in animal models of Parkinson's disease: A systematic review. Neurosci Biobehav Rev 2021; 131:1056-1075. [PMID: 34688727 DOI: 10.1016/j.neubiorev.2021.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is a progressive disabling brain disorder. Physical exercise has been shown to alleviate the symptoms of PD and, consequently, improve patient quality of life. Exercise mechanisms involved in beneficial effects on PD have been widely investigated. This study aims to systematically review the literature on the use of treadmill exercise in PD animal models. The study was conducted according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). Searches were conducted in MEDLINE, EMBASE, and ISI databases. In total, 78 studies were included. The dopaminergic system, behavior, neuroplasticity, neuroinflammation, mitochondria, and musculoskeletal systems were some of the outcomes evaluated by the selected studies. Based on the systematic review center for laboratory animal experimentation (SYRCLE) RoB tool, the methodologies revealed a high risk of bias and lack of information about study design, which needs attention for data reproducibility. This review can guide future studies that aim to fill existing gaps regarding the effects of treadmill exercise in PD animal models.
Collapse
Affiliation(s)
- Ana Flávia F Ferreira
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Karina Henrique Binda
- Laboratory of Functional Neuroanatomy of Pain, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil; Translational Neuropsychiatry Unit (TNU), Aarhus University, Aarhus, Denmark
| | - Caroline Cristiano Real
- Translational Neuropsychiatry Unit (TNU), Aarhus University, Aarhus, Denmark; Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
46
|
Nigrostriatal dopamine depletion promoted an increase in inhibitory markers (parvalbumin, GAD67, VGAT) and cold allodynia. Neurosci Lett 2021; 762:136135. [PMID: 34311052 DOI: 10.1016/j.neulet.2021.136135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 01/13/2023]
Abstract
Pain constitutes the major non-motor symptom in Parkinson's disease (PD). Its mechanism is still poorly understood although an increase in excitation or a decrease in inhibition have been reported in preclinical studies. The aim of this study was to investigate gamma aminobutyric acid (GABA) inhibition in the 6-hydroxydopamine (6-OHDA) PD rat model. Therefore, the expression of three inhibitory markers parvalbumin, glutamate decarboxylase 67 (GAD67) and vesicular GABA transporter (VGAT) was evaluated, besides cold allodynia, in bilateral 6-OHDA lesioned rat. There was a significant increase in the expression of the three markers labeling within the spinal dorsal horn (SDH) of 6-OHDA lesioned rats. In parallel, there was also an increase of the excitatory marker protein kinase C gamma (PKCγ) . PKCγ cells have a crucial role in pain chronicity and are regulated by GABAergic influences. Central dopamine depletion induced an increase in excitation as reveled by an increase in cFOS expression upon acetone stimulus and the presence of cold allodynia. In addition, dopamine depletion induced increased expression in inhibitory markers, which may reflect a disinhibition or a decreased inhibition in 6-OHDA lesioned rats.
Collapse
|
47
|
Moudgal R, Schultz AW, Shah ED. Systemic Disease Associations with Disorders of Gut-Brain Interaction and Gastrointestinal Transit: A Review. Clin Exp Gastroenterol 2021; 14:249-257. [PMID: 34135613 PMCID: PMC8197439 DOI: 10.2147/ceg.s283685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Functional gastrointestinal disorders (FGID) are now classified within the Rome IV framework as disorders of gut-brain interaction (DGBI). Disorders of gastrointestinal transit (as defined by abnormalities on contemporary gastrointestinal motility testing) frequently are associated with symptoms that are also characteristic of DGBIs. In this narrative review, we outline a non-inclusive set of systemic diseases or risk factors that have been classically associated with DGBIs and disorders of gastrointestinal transit; these include diabetes mellitus, paraneoplastic syndromes, surgery, Parkinson's disease, systemic sclerosis, endocrinopathies, polypharmacy, and post-infectious syndromes.
Collapse
Affiliation(s)
- Rohitha Moudgal
- Department of Internal Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Andrew W Schultz
- Department of Internal Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Eric D Shah
- Section of Gastroenterology and Hepatology, Dartmouth-HitchcockHealth,One Medical Center Drive, Lebanon, NH, USA
| |
Collapse
|
48
|
Masini D, Plewnia C, Bertho M, Scalbert N, Caggiano V, Fisone G. A Guide to the Generation of a 6-Hydroxydopamine Mouse Model of Parkinson's Disease for the Study of Non-Motor Symptoms. Biomedicines 2021; 9:biomedicines9060598. [PMID: 34070345 PMCID: PMC8227396 DOI: 10.3390/biomedicines9060598] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
In Parkinson’s disease (PD), a large number of symptoms affecting the peripheral and central nervous system precede, develop in parallel to, the cardinal motor symptoms of the disease. The study of these conditions, which are often refractory to and may even be exacerbated by standard dopamine replacement therapies, relies on the availability of appropriate animal models. Previous work in rodents showed that injection of the neurotoxin 6-hydroxydopamine (6-OHDA) in discrete brain regions reproduces several non-motor comorbidities commonly associated with PD, including cognitive deficits, depression, anxiety, as well as disruption of olfactory discrimination and circadian rhythm. However, the use of 6-OHDA is frequently associated with significant post-surgical mortality. Here, we describe the generation of a mouse model of PD based on bilateral injection of 6-OHDA in the dorsal striatum. We show that the survival rates of males and females subjected to this lesion differ significantly, with a much higher mortality among males, and provide a protocol of enhanced pre- and post-operative care, which nearly eliminates animal loss. We also briefly discuss the utility of this model for the study of non-motor comorbidities of PD.
Collapse
Affiliation(s)
- Débora Masini
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (D.M.); (C.P.); (M.B.); (N.S.); (V.C.)
- Department of Neuroscience Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej, 3B, 2200 Copenhagen, Denmark
| | - Carina Plewnia
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (D.M.); (C.P.); (M.B.); (N.S.); (V.C.)
| | - Maëlle Bertho
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (D.M.); (C.P.); (M.B.); (N.S.); (V.C.)
- Department of Neuroscience Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej, 3B, 2200 Copenhagen, Denmark
| | - Nicolas Scalbert
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (D.M.); (C.P.); (M.B.); (N.S.); (V.C.)
| | - Vittorio Caggiano
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (D.M.); (C.P.); (M.B.); (N.S.); (V.C.)
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (D.M.); (C.P.); (M.B.); (N.S.); (V.C.)
- Correspondence:
| |
Collapse
|
49
|
Mostofi A, Morgante F, Edwards MJ, Brown P, Pereira EAC. Pain in Parkinson's disease and the role of the subthalamic nucleus. Brain 2021; 144:1342-1350. [PMID: 34037696 DOI: 10.1093/brain/awab001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/07/2020] [Accepted: 10/22/2020] [Indexed: 11/14/2022] Open
Abstract
Pain is a frequent and poorly treated symptom of Parkinson's disease, mainly due to scarce knowledge of its basic mechanisms. In Parkinson's disease, deep brain stimulation of the subthalamic nucleus is a successful treatment of motor symptoms, but also might be effective in treating pain. However, it has been unclear which type of pain may benefit and how neurostimulation of the subthalamic nucleus might interfere with pain processing in Parkinson's disease. We hypothesized that the subthalamic nucleus may be an effective access point for modulation of neural systems subserving pain perception and processing in Parkinson's disease. To explore this, we discuss data from human neurophysiological and psychophysical investigations. We review studies demonstrating the clinical efficacy of deep brain stimulation of the subthalamic nucleus for pain relief in Parkinson's disease. Finally, we present some of the key insights from investigations in animal models, healthy humans and Parkinson's disease patients into the aberrant neurobiology of pain processing and consider their implications for the pain-relieving effects of subthalamic nucleus neuromodulation. The evidence from clinical and experimental studies supports the hypothesis that altered central processing is critical for pain generation in Parkinson's disease and that the subthalamic nucleus is a key structure in pain perception and modulation. Future preclinical and clinical research should consider the subthalamic nucleus as an entry point to modulate different types of pain, not only in Parkinson's disease but also in other neurological conditions associated with abnormal pain processing.
Collapse
Affiliation(s)
- Abteen Mostofi
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, SW17 0RE, London, UK
| | - Francesca Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, SW17 0RE, London, UK
- Department of Experimental and Clinical Medicine, University of Messina, 98125, Messina, Italy
| | - Mark J Edwards
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, SW17 0RE, London, UK
| | - Peter Brown
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, OX1 3TH, Oxford, UK
| | - Erlick A C Pereira
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, SW17 0RE, London, UK
| |
Collapse
|
50
|
Binda KH, Lillethorup TP, Real CC, Bærentzen SL, Nielsen MN, Orlowski D, Brooks DJ, Chacur M, Landau AM. Exercise protects synaptic density in a rat model of Parkinson's disease. Exp Neurol 2021; 342:113741. [PMID: 33965411 DOI: 10.1016/j.expneurol.2021.113741] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/04/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by Lewy body and neurite pathology associated with dopamine terminal dysfunction. Clinically, it is associated with motor slowing, rigidity, and tremor. Postural instability and pain are also features. Physical exercise benefits PD patients - possibly by promoting neuroplasticity including synaptic regeneration. OBJECTIVES In a parkinsonian rat model, we test the hypotheses that exercise: (a) increases synaptic density and reduces neuroinflammation and (b) lowers the nociceptive threshold by increasing μ-opioid receptor expression. METHODS Brain autoradiography was performed on rats unilaterally injected with either 6-hydroxydopamine (6-OHDA) or saline and subjected to treadmill exercise over 5 weeks. [3H]UCB-J was used to measure synaptic vesicle glycoprotein 2A (SV2A) density. Dopamine D2/3 receptor and μ-opioid receptor availability were assessed with [3H]Raclopride and [3H]DAMGO, respectively, while neuroinflammation was detected with the 18kDA translocator protein (TSPO) marker [3H]PK11195. The nociceptive threshold was determined prior to and throughout the exercise protocol. RESULTS We confirmed a dopaminegic deficit with increased striatal [3H]Raclopride D2/3 receptor availability and reduced nigral tyrosine hydroxylase immunoreactivity in the ipsilateral hemisphere of all 6-OHDA-injected rats. Sedentary rats lesioned with 6-OHDA showed significant reduction of ipsilateral striatal and substantia nigra [3H]UCB-J binding while [3H]PK11195 showed increased ipsilateral striatal neuroinflammation. Lesioned rats who exercised had higher levels of ipsilateral striatal [3H]UCB-J binding and lower levels of neuroinflammation compared to sedentary lesioned rats. Striatal 6-OHDA injections reduced thalamic μ-opioid receptor availability but subsequent exercise restored binding. Exercise also raised thalamic and hippocampal SV2A synaptic density in 6-OHDA lesioned rats, accompanied by a rise in nociceptive threshold. CONCLUSION These data suggest that treadmill exercise protects nigral and striatal synaptic integrity in a rat lesion model of PD - possibly by promoting compensatory mechanisms. Exercise was also associated with reduced neuroinflammation post lesioning and altered opioid transmission resulting in an increased nociceptive threshold.
Collapse
Affiliation(s)
- K H Binda
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark; Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark; Laboratory of Functional Neuroanatomy of Pain, Departamento de Anatomia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - T P Lillethorup
- Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark.
| | - C C Real
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark; Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark; Laboratory of Nuclear Medicine (LIM 43), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - S L Bærentzen
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark; Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark.
| | - M N Nielsen
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark.
| | - D Orlowski
- Center for Experimental Neuroscience (CENSE), Department of Clinical Medicine, Aarhus University and Department of Neurosurgery, Aarhus University Hospital, Aarhus N, 8200, Denmark.
| | - D J Brooks
- Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark; Institute for Translational and Clinical Research, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| | - M Chacur
- Laboratory of Functional Neuroanatomy of Pain, Departamento de Anatomia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - A M Landau
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark; Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark.
| |
Collapse
|