1
|
Monchy N, Modolo J, Houvenaghel JF, Voytek B, Duprez J. Changes in electrophysiological aperiodic activity during cognitive control in Parkinson's disease. Brain Commun 2024; 6:fcae306. [PMID: 39301291 PMCID: PMC11411214 DOI: 10.1093/braincomms/fcae306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Cognitive symptoms in Parkinson's disease are common and can significantly affect patients' quality of life. Therefore, there is an urgent clinical need to identify a signature derived from behavioural and/or neuroimaging indicators that could predict which patients are at increased risk for early and rapid cognitive decline. Recently, converging evidence identified that aperiodic activity of the EEG reflects meaningful physiological information associated with age, development, cognitive and perceptual states or pathologies. In this study, we aimed to investigate aperiodic activity in Parkinson's disease during cognitive control and characterize its possible association with behaviour. Here, we recorded high-density EEG in 30 healthy controls and 30 Parkinson's disease patients during a Simon task. We analysed task-related behavioural data in the context of the activation-suppression model and extracted aperiodic parameters (offset, exponent) at both scalp and source levels. Our results showed lower behavioural performances in cognitive control as well as higher offsets in patients in the parieto-occipital areas, suggesting increased excitability in Parkinson's disease. A small congruence effect on aperiodic parameters in pre- and post-central brain areas was also found, possibly associated with task execution. Significant differences in aperiodic parameters between the resting-state, pre- and post-stimulus phases were seen across the whole brain, which confirmed that the observed changes in aperiodic activity are linked to task execution. No correlation was found between aperiodic activity and behaviour or clinical features. Our findings provide evidence that EEG aperiodic activity in Parkinson's disease is characterized by greater offsets, and that aperiodic parameters differ depending on arousal state. However, our results do not support the hypothesis that the behaviour-related differences observed in Parkinson's disease are related to aperiodic changes. Overall, this study highlights the importance of considering aperiodic activity contributions in brain disorders and further investigating the relationship between aperiodic activity and behaviour.
Collapse
Affiliation(s)
- Noémie Monchy
- LTSI-U1099, University of Rennes, Rennes F-35000, France
| | - Julien Modolo
- LTSI-U1099, University of Rennes, Rennes F-35000, France
| | - Jean-François Houvenaghel
- LTSI-U1099, University of Rennes, Rennes F-35000, France
- Department of Neurology, Rennes University Hospital, Rennes 35033, France
| | - Bradley Voytek
- Department of Cognitive Science, Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA
| | - Joan Duprez
- LTSI-U1099, University of Rennes, Rennes F-35000, France
| |
Collapse
|
2
|
Bruce R, Weber MA, Bova A, Volkman R, Jacobs C, Sivakumar K, Kim Y, Curtu R, Narayanan N. Complementary cognitive roles for D2-MSNs and D1-MSNs during interval timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.25.550569. [PMID: 37546735 PMCID: PMC10402049 DOI: 10.1101/2023.07.25.550569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The role of striatal pathways in cognitive processing is unclear. We studied dorsomedial striatal cognitive processing during interval timing, an elementary cognitive task that requires mice to estimate intervals of several seconds and involves working memory for temporal rules as well as attention to the passage of time. We harnessed optogenetic tagging to record from striatal D2-dopamine receptor-expressing medium spiny neurons (D2-MSNs) in the indirect pathway and from D1-dopamine receptor-expressing MSNs (D1-MSNs) in the direct pathway. We found that D2-MSNs and D1-MSNs exhibited distinct dynamics over temporal intervals as quantified by principal component analyses and trial-by-trial generalized linear models. MSN recordings helped construct and constrain a four-parameter drift-diffusion computational model. This model predicted that disrupting either D2-MSNs or D1-MSNs would increase interval timing response times and alter MSN firing. In line with this prediction, we found that optogenetic inhibition or pharmacological disruption of either D2-MSNs or D1-MSNs increased interval timing response times. Pharmacologically disrupting D2-MSNs or D1-MSNs also changed MSN dynamics and degraded trial-by-trial temporal decoding. Together, our findings demonstrate that D2-MSNs and D1-MSNs make complementary contributions to interval timing despite opposing dynamics, implying that striatal direct and indirect pathways work together to shape temporal control of action. These data provide novel insight into basal ganglia cognitive operations beyond movement and have implications for human striatal diseases and therapies targeting striatal pathways.
Collapse
|
3
|
Gladhill K, Kock RD, Zhou W, Joiner W, Wiener M. Mechanically Induced Motor Tremors Disrupt the Perception of Time. eNeuro 2024; 11:ENEURO.0013-24.2024. [PMID: 39227153 PMCID: PMC11412164 DOI: 10.1523/eneuro.0013-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024] Open
Abstract
Contemporary research has begun to show a strong relationship between movements and the perception of time. More specifically, concurrent movements serve to both bias and enhance time estimates. To explain these effects, we recently proposed a mechanism by which movements provide a secondary channel for estimating duration that is combined optimally with sensory estimates. However, a critical test of this framework is that by introducing "noise" into movements, sensory estimates of time should similarly become noisier. To accomplish this, we had human participants move a robotic arm while estimating intervals of time in either auditory or visual modalities (n = 24, ea.). Crucially, we introduced an artificial "tremor" in the arm while subjects were moving, that varied across three levels of amplitude (1-3 N) or frequency (4-12 Hz). The results of both experiments revealed that increasing the frequency of the tremor led to noisier estimates of duration. Further, the effect of noise varied with the base precision of the interval, such that a naturally less precise timing (i.e., visual) was more influenced by the tremor than a naturally more precise modality (i.e., auditory). To explain these findings, we fit the data with a recently developed drift-diffusion model of perceptual decision-making, in which the momentary, within-trial variance was allowed to vary across conditions. Here, we found that the model could recapitulate the observed findings, further supporting the theory that movements influence perception directly. Overall, our findings support the proposed framework, and demonstrate the utility of inducing motor noise via artificial tremors.
Collapse
Affiliation(s)
| | - Rose De Kock
- University of California, Davis, Davis, California 95616
| | - Weiwei Zhou
- University of California, Davis, Davis, California 95616
| | - Wilsaan Joiner
- University of California, Davis, Davis, California 95616
| | | |
Collapse
|
4
|
da Silva Castanheira J, Wiesman AI, Hansen JY, Misic B, Baillet S. The neurophysiological brain-fingerprint of Parkinson's disease. EBioMedicine 2024; 105:105201. [PMID: 38908100 PMCID: PMC11253223 DOI: 10.1016/j.ebiom.2024.105201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Research in healthy young adults shows that characteristic patterns of brain activity define individual "brain-fingerprints" that are unique to each person. However, variability in these brain-fingerprints increases in individuals with neurological conditions, challenging the clinical relevance and potential impact of the approach. Our study shows that brain-fingerprints derived from neurophysiological brain activity are associated with pathophysiological and clinical traits of individual patients with Parkinson's disease (PD). METHODS We created brain-fingerprints from task-free brain activity recorded through magnetoencephalography in 79 PD patients and compared them with those from two independent samples of age-matched healthy controls (N = 424 total). We decomposed brain activity into arrhythmic and rhythmic components, defining distinct brain-fingerprints for each type from recording durations of up to 4 min and as short as 30 s. FINDINGS The arrhythmic spectral components of cortical activity in patients with Parkinson's disease are more variable over short periods, challenging the definition of a reliable brain-fingerprint. However, by isolating the rhythmic components of cortical activity, we derived brain-fingerprints that distinguished between patients and healthy controls with about 90% accuracy. The most prominent cortical features of the resulting Parkinson's brain-fingerprint are mapped to polyrhythmic activity in unimodal sensorimotor regions. Leveraging these features, we also demonstrate that Parkinson's symptom laterality can be decoded directly from cortical neurophysiological activity. Furthermore, our study reveals that the cortical topography of the Parkinson's brain-fingerprint aligns with that of neurotransmitter systems affected by the disease's pathophysiology. INTERPRETATION The increased moment-to-moment variability of arrhythmic brain-fingerprints challenges patient differentiation and explains previously published results. We outline patient-specific rhythmic brain signaling features that provide insights into both the neurophysiological signature and symptom laterality of Parkinson's disease. Thus, the proposed definition of a rhythmic brain-fingerprint of Parkinson's disease may contribute to novel, refined approaches to patient stratification. Symmetrically, we discuss how rhythmic brain-fingerprints may contribute to the improved identification and testing of therapeutic neurostimulation targets. FUNDING Data collection and sharing for this project was provided by the Quebec Parkinson Network (QPN), the Pre-symptomatic Evaluation of Novel or Experimental Treatments for Alzheimer's Disease (PREVENT-AD; release 6.0) program, the Cambridge Centre for Aging Neuroscience (Cam-CAN), and the Open MEG Archives (OMEGA). The QPN is funded by a grant from Fonds de Recherche du Québec - Santé (FRQS). PREVENT-AD was launched in 2011 as a $13.5 million, 7-year public-private partnership using funds provided by McGill University, the FRQS, an unrestricted research grant from Pfizer Canada, the Levesque Foundation, the Douglas Hospital Research Centre and Foundation, the Government of Canada, and the Canada Fund for Innovation. The Brainstorm project is supported by funding to SB from the NIH (R01-EB026299-05). Further funding to SB for this study included a Discovery grant from the Natural Sciences and Engineering Research Council of Canada of Canada (436355-13), and the CIHR Canada research Chair in Neural Dynamics of Brain Systems (CRC-2017-00311).
Collapse
Affiliation(s)
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Justine Y Hansen
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Anjum MF, Espinoza AI, Cole RC, Singh A, May P, Uc EY, Dasgupta S, Narayanan NS. Resting-state EEG measures cognitive impairment in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:6. [PMID: 38172519 PMCID: PMC10764756 DOI: 10.1038/s41531-023-00602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Cognitive dysfunction is common in Parkinson's disease (PD). We developed and evaluated an EEG-based biomarker to index cognitive functions in PD from a few minutes of resting-state EEG. We hypothesized that synchronous changes in EEG across the power spectrum can measure cognition. We optimized a data-driven algorithm to efficiently capture these changes and index cognitive function in 100 PD and 49 control participants. We compared our EEG-based cognitive index with the Montreal cognitive assessment (MoCA) and cognitive tests across different domains from National Institutes of Health (NIH) Toolbox using cross-validations, regression models, and randomization tests. Finally, we externally validated our approach on 32 PD participants. We observed cognition-related changes in EEG over multiple spectral rhythms. Utilizing only 8 best-performing electrodes, our proposed index strongly correlated with cognition (MoCA: rho = 0.68, p value < 0.001; NIH-Toolbox cognitive tests: rho ≥ 0.56, p value < 0.001) outperforming traditional spectral markers (rho = -0.30-0.37). The index showed a strong fit in regression models (R2 = 0.46) with MoCA, yielded 80% accuracy in detecting cognitive impairment, and was effective in both PD and control participants. Notably, our approach was equally effective (rho = 0.68, p value < 0.001; MoCA) in out-of-sample testing. In summary, we introduced a computationally efficient data-driven approach for cross-domain cognition indexing using fewer than 10 EEG electrodes, potentially compatible with dynamic therapies like closed-loop neurostimulation. These results will inform next-generation neurophysiological biomarkers for monitoring cognition in PD and other neurological diseases.
Collapse
Affiliation(s)
- Md Fahim Anjum
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Arturo I Espinoza
- Department of Neurology, The University of Iowa, Iowa city, IA, 52240, USA
| | - Rachel C Cole
- Department of Neurology, The University of Iowa, Iowa city, IA, 52240, USA
| | - Arun Singh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, South Dakota, SD, 57069, USA
| | - Patrick May
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa city, IA, 52240, USA
| | - Ergun Y Uc
- Department of Neurology, The University of Iowa, Iowa city, IA, 52240, USA
- Neurology Service, Iowa City VA Medical Center, Iowa city, IA, 52240, USA
| | - Soura Dasgupta
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa city, IA, 52240, USA
| | | |
Collapse
|
6
|
da Silva Castanheira J, Wiesman AI, Hansen JY, Misic B, Baillet S. The neurophysiological brain-fingerprint of Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.03.23285441. [PMID: 36798232 PMCID: PMC9934726 DOI: 10.1101/2023.02.03.23285441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
In this study, we investigate the clinical potential of brain-fingerprints derived from electrophysiological brain activity for diagnostics and progression monitoring of Parkinson's disease (PD). We obtained brain-fingerprints from PD patients and age-matched healthy controls using short, task-free magnetoencephalographic recordings. The rhythmic components of the individual brain-fingerprint distinguished between patients and healthy participants with approximately 90% accuracy. The most prominent cortical features of the Parkinson's brain-fingerprint mapped to polyrhythmic activity in unimodal sensorimotor regions. Leveraging these features, we also show that Parkinson's disease stages can be decoded directly from cortical neurophysiological activity. Additionally, our study reveals that the cortical topography of the Parkinson's brain-fingerprint aligns with that of neurotransmitter systems affected by the disease's pathophysiology. We further demonstrate that the arrhythmic components of cortical activity are more variable over short periods of time in patients with Parkinson's disease than in healthy controls, making individual differentiation between patients based on these features more challenging and explaining previous negative published results. Overall, we outline patient-specific rhythmic brain signaling features that provide insights into both the neurophysiological signature and clinical staging of Parkinson's disease. For this reason, the proposed definition of a rhythmic brain-fingerprint of Parkinson's disease may contribute to novel, refined approaches to patient stratification and to the improved identification and testing of therapeutic neurostimulation targets.
Collapse
Affiliation(s)
| | - Alex I. Wiesman
- Montreal Neurological Institute, McGill University, Montreal QC, Canada
| | - Justine Y. Hansen
- Montreal Neurological Institute, McGill University, Montreal QC, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal QC, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal QC, Canada
| | | | | |
Collapse
|
7
|
Mustile M, Kourtis D, Edwards MG, Ladouce S, Volpe D, Pilleri M, Pelosin E, Learmonth G, Donaldson DI, Ietswaart M. Characterizing neurocognitive impairments in Parkinson's disease with mobile EEG when walking and stepping over obstacles. Brain Commun 2023; 5:fcad326. [PMID: 38107501 PMCID: PMC10724048 DOI: 10.1093/braincomms/fcad326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 10/03/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023] Open
Abstract
The neural correlates that help us understand the challenges that Parkinson's patients face when negotiating their environment remain under-researched. This deficit in knowledge reflects the methodological constraints of traditional neuroimaging techniques, which include the need to remain still. As a result, much of our understanding of motor disorders is still based on animal models. Daily life challenges such as tripping and falling over obstacles represent one of the main causes of hospitalization for individuals with Parkinson's disease. Here, we report the neural correlates of naturalistic ambulatory obstacle avoidance in Parkinson's disease patients using mobile EEG. We examined 14 medicated patients with Parkinson's disease and 17 neurotypical control participants. Brain activity was recorded while participants walked freely, and while they walked and adjusted their gait to step over expected obstacles (preset adjustment) or unexpected obstacles (online adjustment) displayed on the floor. EEG analysis revealed attenuated cortical activity in Parkinson's patients compared to neurotypical participants in theta (4-7 Hz) and beta (13-35 Hz) frequency bands. The theta power increase when planning an online adjustment to step over unexpected obstacles was reduced in Parkinson's patients compared to neurotypical participants, indicating impaired proactive cognitive control of walking that updates the online action plan when unexpected changes occur in the environment. Impaired action planning processes were further evident in Parkinson's disease patients' diminished beta power suppression when preparing motor adaptation to step over obstacles, regardless of the expectation manipulation, compared to when walking freely. In addition, deficits in reactive control mechanisms in Parkinson's disease compared to neurotypical participants were evident from an attenuated beta rebound signal after crossing an obstacle. Reduced modulation in the theta frequency band in the resetting phase across conditions also suggests a deficit in the evaluation of action outcomes in Parkinson's disease. Taken together, the neural markers of cognitive control of walking observed in Parkinson's disease reveal a pervasive deficit of motor-cognitive control, involving impairments in the proactive and reactive strategies used to avoid obstacles while walking. As such, this study identified neural markers of the motor deficits in Parkinson's disease and revealed patients' difficulties in adapting movements both before and after avoiding obstacles in their path.
Collapse
Affiliation(s)
- Magda Mustile
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
- The Psychological Sciences Research Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Dimitrios Kourtis
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Martin G Edwards
- The Psychological Sciences Research Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Simon Ladouce
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Daniele Volpe
- Fresco Parkinson Center, Villa Margherita, S. Stefano Riabilitazione, 36100 Vicenza, Italy
| | - Manuela Pilleri
- Fresco Parkinson Center, Villa Margherita, S. Stefano Riabilitazione, 36100 Vicenza, Italy
| | - Elisa Pelosin
- Ospedale Policlinico San Martino, IRCCS, 16132 Genova, Italy
| | - Gemma Learmonth
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, G12 8QQ, UK
| | - David I Donaldson
- School of Psychology and Neuroscience, University of St Andrews, St. Andrews, KY16 9AJ, UK
| | - Magdalena Ietswaart
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
8
|
Singh A, Cole RC, Espinoza AI, Wessel JR, Cavanagh JF, Narayanan NS. Evoked mid-frontal activity predicts cognitive dysfunction in Parkinson's disease. J Neurol Neurosurg Psychiatry 2023; 94:945-953. [PMID: 37263767 PMCID: PMC10592174 DOI: 10.1136/jnnp-2022-330154] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 05/11/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Cognitive dysfunction is a major feature of Parkinson's disease (PD), but the pathophysiology remains unknown. One potential mechanism is abnormal low-frequency cortical rhythms which engage cognitive functions and are deficient in PD. We tested the hypothesis that mid-frontal delta/theta rhythms predict cognitive dysfunction in PD. METHOD We recruited 100 patients with PD and 49 demographically similar control participants who completed a series of cognitive control tasks, including the Simon, oddball and interval-timing tasks. We focused on cue-evoked delta (1-4 Hz) and theta (4-7 Hz) rhythms from a single mid-frontal EEG electrode (cranial vertex (Cz)) in patients with PD who were either cognitively normal, with mild-cognitive impairments (Parkinson's disease with mild-cognitive impairment) or had dementia (Parkinson's disease dementia). RESULTS We found that PD-related cognitive dysfunction was associated with increased response latencies and decreased mid-frontal delta power across all tasks. Within patients with PD, the first principal component of evoked electroencephalography features from a single electrode (Cz) strongly correlated with clinical metrics such as the Montreal Cognitive Assessment score (r=0.34) and with National Institutes of Health Toolbox Executive Function score (r=0.46). CONCLUSIONS These data demonstrate that cue-evoked mid-frontal delta/theta rhythms directly relate to cognition in PD. Our results provide insight into the nature of low-frequency frontal rhythms and suggest that PD-related cognitive dysfunction results from decreased delta/theta activity. These findings could facilitate the development of new biomarkers and targeted therapies for cognitive symptoms of PD.
Collapse
Affiliation(s)
- Arun Singh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota
| | | | | | | | | | | |
Collapse
|
9
|
Yeager BE, Twedt HP, Bruss J, Schultz J, Narayanan NS. Salience network and cognitive impairment in Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.13.23296825. [PMID: 37873396 PMCID: PMC10593050 DOI: 10.1101/2023.10.13.23296825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with cognitive as well as motor impairments. While much is known about the brain networks leading to motor impairments in PD, less is known about the brain networks contributing to cognitive impairments. Here, we leveraged resting-state functional magnetic resonance imaging (rs-fMRI) data from the Parkinson's Progression Marker Initiative (PPMI) to examine network dysfunction in PD patients with cognitive impairment. We tested the hypothesis that cognitive impairments in PD involve altered connectivity of the salience network (SN), a key cortical network that detects and integrates responses to salient stimuli. We used the Montreal Cognitive Assessment (MoCA) as a continuous index of coarse cognitive function in PD. We report two major results. First, in 82 PD patients we found significant relationships between lower intra-network connectivity of the frontoparietal network (FPN; comprising the dorsolateral prefrontal and posterior parietal cortices bilaterally) with lower MoCA scores. Second, we found significant relationships between lower inter-network connectivity between the SN and the basal ganglia network (BGN) and the default mode network (DMN) with lower MoCA scores. These data support our hypothesis about the SN and provide new insights into the brain networks contributing to cognitive impairments in PD.
Collapse
Affiliation(s)
- Brooke E Yeager
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, 52242, USA
| | - Hunter P Twedt
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, 52242, USA
| | - Joel Bruss
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, 52242, USA
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, 52242, USA
| | - Jordan Schultz
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, 52242, USA
| | - Nandakumar S Narayanan
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, 52242, USA
| |
Collapse
|
10
|
Pourmohammadi A, Sanayei M. Context-specific and context-invariant computations of interval timing. Front Neurosci 2023; 17:1249502. [PMID: 37799342 PMCID: PMC10547875 DOI: 10.3389/fnins.2023.1249502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction An accurate sense of time is crucial in flexible sensorimotor control and other cognitive functions. However, it remains unknown how multiple timing computations in different contexts interact to shape our behavior. Methods We asked 41 healthy human subjects to perform timing tasks that differed in the sensorimotor domain (sensory timing vs. motor timing) and effector (hand vs. saccadic eye movement). To understand how these different behavioral contexts contribute to timing behavior, we applied a three-stage Bayesian model to behavioral data. Results Our results demonstrate that the Bayesian model for each effector could not describe bias in the other effector. Similarly, in each task the model-predicted data could not describe bias in the other task. These findings suggest that the measurement stage of interval timing is context-specific in the sensorimotor and effector domains. We also showed that temporal precision is context-invariant in the effector domain, unlike temporal accuracy. Discussion This combination of context-specific and context-invariant computations across sensorimotor and effector domains suggests overlapping and distributed computations as the underlying mechanism of timing in different contexts.
Collapse
Affiliation(s)
- Ahmad Pourmohammadi
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Mehdi Sanayei
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Center for Translational Neuroscience (CTN), Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Lin LC, Cole RC, Greenlee JDW, Narayanan NS. A Pilot Study of Ex Vivo Human Prefrontal RNA Transcriptomics in Parkinson's Disease. Cell Mol Neurobiol 2023; 43:3037-3046. [PMID: 36952070 PMCID: PMC10566549 DOI: 10.1007/s10571-023-01334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/02/2023] [Indexed: 03/24/2023]
Abstract
Parkinson's disease (PD) can dramatically change cortical neurophysiology. The molecular basis for PD-related cortical changes is unclear because gene expression data are usually derived from postmortem tissue collected at the end of a complex disease and they profoundly change in the minutes after death. Here, we studied cortical changes in tissue from the prefrontal cortex of living PD patients undergoing deep-brain stimulation implantation surgery. We examined 780 genes using the NanoString nCounter platform and found that 40 genes were differentially expressed between PD (n = 12) and essential tremor (ET; n = 9) patients. One of these 40 genes, STAT1, correlated with intraoperative 4-Hz rhythms and intraoperative performance of an oddball reaction-time task. Using a pre-designed custom panel of 780 targets, we compared these intraoperative data with those from a separate cohort of fresh-frozen tissue from the same frontal region in postmortem human PD donors (n = 6) and age-matched neurotypical controls (n = 6). This cohort revealed 279 differentially expressed genes. Fifteen of the 40 intraoperative PD-specific genes overlapped with postmortem PD-specific genes, including CALB2 and FOXP2. Transcriptomic analyses identified pathway changes in PD that had not been previously observed in postmortem cases. These molecular signatures of cortical function and dysfunction may help us better understand cognitive and neuropsychiatric aspects of PD.
Collapse
Affiliation(s)
- Li-Chun Lin
- Iowa Neuroscience Institute, Iowa City, IA, 52242, USA
- Department of Neuroscience and Pharmacology, Iowa City, IA, 52242, USA
- Department of Neurology, Iowa City, IA, 52242, USA
| | | | - Jeremy D W Greenlee
- Iowa Neuroscience Institute, Iowa City, IA, 52242, USA
- Department of Neurosurgery, Iowa City, IA, 52242, USA
| | - Nandakumar S Narayanan
- Iowa Neuroscience Institute, Iowa City, IA, 52242, USA.
- Department of Neurology, Iowa City, IA, 52242, USA.
| |
Collapse
|
12
|
Weber MA, Kerr G, Thangavel R, Conlon MM, Abdelmotilib HA, Halhouli O, Zhang Q, Geerling JC, Narayanan NS, Aldridge GM. Alpha-synuclein pre-formed fibrils injected into prefrontal cortex primarily spread to cortical and subcortical structures and lead to isolated behavioral symptoms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526365. [PMID: 36778400 PMCID: PMC9915664 DOI: 10.1101/2023.01.31.526365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) are characterized by diffuse spread of alpha-synuclein (α-syn) throughout the brain. Patients with PDD and DLB have a neuropsychological pattern of deficits that include executive dysfunction, such as abnormalities in planning, timing, working memory, and behavioral flexibility. The prefrontal cortex (PFC) plays a major role in normal executive function and often develops α-syn aggregates in DLB and PDD. To investigate the consequences of α-syn pathology in the cortex, we injected human α-syn pre-formed fibrils into the PFC of wildtype mice. We report that PFC PFFs: 1) induced α-syn aggregation in multiple cortical and subcortical regions with sparse aggregation in midbrain and brainstem nuclei; 2) did not affect interval timing or spatial learning acquisition but did mildly alter behavioral flexibility as measured by intraday reversal learning; 3) increased open field exploration; and 4) did not affect susceptibility to an inflammatory challenge. This model of cortical-dominant pathology aids in our understanding of how local α-syn aggregation might impact some symptoms in PDD and DLB.
Collapse
Affiliation(s)
- Matthew A. Weber
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City
| | - Gemma Kerr
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City
| | - Ramasamy Thangavel
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City
| | - Mackenzie M. Conlon
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City
| | | | - Oday Halhouli
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City
| | - Qiang Zhang
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City
| | - Joel C. Geerling
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City
| | | | - Georgina M. Aldridge
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City
| |
Collapse
|
13
|
Espinoza AI, Scholl JL, Singh A. TMS Bursts Can Modulate Local and Networks Oscillations During Lower-Limb Movement. J Clin Neurophysiol 2023; 40:371-377. [PMID: 34560704 DOI: 10.1097/wnp.0000000000000896] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Lower-limb motor functions involve processing information via both motor and cognitive control networks. Measuring oscillations is a key element in communication within and between cortical networks during high-order motor functions. Increased midfrontal theta oscillations are related to improved lower-limb motor performances in patients with movement disorders. Noninvasive neuromodulation approaches have not been explored extensively to understand the oscillatory mechanism of lower-limb motor functions. This study aims to examine the effects of repetitive transcranial magnetic stimulation on local and network EEG oscillations in healthy elderly subjects. METHODS Eleven healthy elderly subjects (67-73 years) were recruited via advertisements, and they underwent both active and sham stimulation procedures in a random, counterbalanced design. Transcranial magnetic stimulation bursts (θ-transcranial magnetic stimulation; 4 pulses/second) were applied over the midfrontal lead (vertex) before a GO-Cue pedaling task, and signals were analyzed using time-frequency methods. RESULTS Transcranial magnetic stimulation bursts increase the theta activity in the local ( p = 0.02) and the associated network during the lower-limb pedaling task ( p = 0.02). Furthermore, after task-related transcranial magnetic stimulation burst sessions, increased resting-state alpha activity was observed in the midfrontal region ( p = 0.01). CONCLUSIONS This study suggests the ability of midfrontal transcranial magnetic stimulation bursts to directly modulate local and network oscillations in a frequency manner during lower-limb motor task. Transcranial magnetic stimulation burst-induced modulation may provide insights into the functional roles of oscillatory activity during lower-limb movement in normal and disease conditions.
Collapse
Affiliation(s)
| | - Jamie L Scholl
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, South Dakota, U.S.A. ; and
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, U.S.A
| | - Arun Singh
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, South Dakota, U.S.A. ; and
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, U.S.A
| |
Collapse
|
14
|
Bosch TJ, Cole RC, Bezchlibnyk Y, Flouty O, Singh A. Effects of Very Low- and High-Frequency Subthalamic Stimulation on Motor Cortical Oscillations During Rhythmic Lower-Limb Movements in Parkinson's Disease Patients. JOURNAL OF PARKINSON'S DISEASE 2023:JPD225113. [PMID: 37092236 DOI: 10.3233/jpd-225113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
BACKGROUND Standard high-frequency deep brain stimulation (HF-DBS) at the subthalamic nucleus (STN) is less effective for lower-limb motor dysfunctions in Parkinson's disease (PD) patients. However, the effects of very low frequency (VLF; 4 Hz)-DBS on lower-limb movement and motor cortical oscillations have not been compared. OBJECTIVE To compare the effects of VLF-DBS and HF-DBS at the STN on a lower-limb pedaling motor task and motor cortical oscillations in patients with PD and with and without freezing of gait (FOG). METHODS Thirteen PD patients with bilateral STN-DBS performed a cue-triggered lower-limb pedaling motor task with electroencephalography (EEG) in OFF-DBS, VLF-DBS (4 Hz), and HF-DBS (120-175 Hz) states. We performed spectral analysis on the preparatory signals and compared GO-cue-triggered theta and movement-related beta oscillations over motor cortical regions across DBS conditions in PD patients and subgroups (PDFOG-and PDFOG+). RESULTS Both VLF-DBS and HF-DBS decreased the linear speed of the pedaling task in PD, and HF-DBS decreased speed in both PDFOG-and PDFOG+. Preparatory theta and beta activities were increased with both stimulation frequencies. Both DBS frequencies increased motor cortical theta activity during pedaling movement in PD patients, but this increase was only observed in PDFOG + group. Beta activity was not significantly different from OFF-DBS at either frequency regardless of FOG status. CONCLUSION Results suggest that VL and HF DBS may induce similar effects on lower-limb kinematics by impairing movement speed and modulating motor cortical oscillations in the lower frequency band.
Collapse
Affiliation(s)
- Taylor J Bosch
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Rachel C Cole
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Yarema Bezchlibnyk
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Oliver Flouty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Arun Singh
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
15
|
Anjum MF, Espinoza A, Cole R, Singh A, May P, Uc E, Dasgupta S, Narayanan N. Resting-state EEG measures cognitive impairment in Parkinson's disease. RESEARCH SQUARE 2023:rs.3.rs-2666578. [PMID: 36993450 PMCID: PMC10055637 DOI: 10.21203/rs.3.rs-2666578/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background Cognitive dysfunction is common in Parkinson's disease (PD) and is diagnosed by complex, time-consuming psychometric tests which are affected by language and education, subject to learning effects, and not suitable for continuous monitoring of cognition. Objectives We developed and evaluated an EEG-based biomarker to index cognitive functions in PD from a few minutes of resting-state EEG. Methods We hypothesized that synchronous changes in EEG across the power spectrum can measure cognition. We optimized a data-driven algorithm to efficiently capture these changes and index cognitive function in 100 PD and 49 control participants. We compared our EEG-based cognitive index with the Montreal cognitive assessment (MoCA) and cognitive tests across different domains from the National Institutes of Health (NIH) Toolbox using cross-validation schemes, regression models, and randomization tests. Results We observed cognition-related changes in EEG activities over multiple spectral rhythms. Utilizing only 8 best-performing EEG electrodes, our proposed index strongly correlated with cognition (rho = 0.68, p value < 0.001 with MoCA; rho ≥ 0.56, p value < 0.001 with cognitive tests from the NIH Toolbox) outperforming traditional spectral markers (rho = -0.30 - 0.37). The index showed a strong fit in regression models (R2 = 0.46) with MoCA, yielded 80% accuracy in detecting cognitive impairment, and was effective in both PD and control participants. Conclusions Our approach is computationally efficient for real-time indexing of cognition across domains, implementable even in hardware with limited computing capabilities, making it potentially compatible with dynamic therapies such as closed-loop neurostimulation, and will inform next-generation neurophysiological biomarkers for monitoring cognition in PD and other neurological diseases.
Collapse
|
16
|
Weber MA, Sivakumar K, Tabakovic EE, Oya M, Aldridge GM, Zhang Q, Simmering JE, Narayanan NS. Glycolysis-enhancing α 1-adrenergic antagonists modify cognitive symptoms related to Parkinson's disease. NPJ Parkinsons Dis 2023; 9:32. [PMID: 36864060 PMCID: PMC9981768 DOI: 10.1038/s41531-023-00477-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Terazosin is an α1-adrenergic receptor antagonist that enhances glycolysis and increases cellular ATP by binding to the enzyme phosphoglycerate kinase 1 (PGK1). Recent work has shown that terazosin is protective against motor dysfunction in rodent models of Parkinson's disease (PD) and is associated with slowed motor symptom progression in PD patients. However, PD is also characterized by profound cognitive symptoms. We tested the hypothesis that terazosin protects against cognitive symptoms associated with PD. We report two main results. First, in rodents with ventral tegmental area (VTA) dopamine depletion modeling aspects of PD-related cognitive dysfunction, we found that terazosin preserved cognitive function. Second, we found that after matching for demographics, comorbidities, and disease duration, PD patients newly started on terazosin, alfuzosin, or doxazosin had a lower hazard of being diagnosed with dementia compared to tamsulosin, an α1-adrenergic receptor antagonist that does not enhance glycolysis. Together, these findings suggest that in addition to slowing motor symptom progression, glycolysis-enhancing drugs protect against cognitive symptoms of PD.
Collapse
Affiliation(s)
- Matthew A Weber
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | - Kartik Sivakumar
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ervina E Tabakovic
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Mayu Oya
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Georgina M Aldridge
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Qiang Zhang
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jacob E Simmering
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nandakumar S Narayanan
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
17
|
De Kock R, Zhou W, Datta P, Mychal Joiner W, Wiener M. The role of consciously timed movements in shaping and improving auditory timing. Proc Biol Sci 2023; 290:20222060. [PMID: 36722075 PMCID: PMC9890119 DOI: 10.1098/rspb.2022.2060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/16/2022] [Indexed: 02/02/2023] Open
Abstract
Our subjective sense of time is intertwined with a plethora of perceptual, cognitive and motor functions, and likewise, the brain is equipped to expertly filter, weight and combine these signals for seamless interactions with a dynamic world. Until relatively recently, the literature on time perception has excluded the influence of simultaneous motor activity, yet it has been found that motor circuits in the brain are at the core of most timing functions. Several studies have now identified that concurrent movements exert robust effects on perceptual timing estimates, but critically have not assessed how humans consciously judge the duration of their own movements. This creates a gap in our understanding of the mechanisms driving movement-related effects on sensory timing. We sought to address this gap by administering a sensorimotor timing task in which we explicitly compared the timing of isolated auditory tones and arm movements, or both simultaneously. We contextualized our findings within a Bayesian cue combination framework, in which separate sources of temporal information are weighted by their reliability and integrated into a unitary time estimate that is more precise than either unisensory estimate. Our results revealed differences in accuracy between auditory, movement and combined trials, and (crucially) that combined trials were the most accurately timed. Under the Bayesian framework, we found that participants' combined estimates were more precise than isolated estimates, yet were sub-optimal when compared with the model's prediction, on average. These findings elucidate previously unknown qualities of conscious motor timing and propose computational mechanisms that can describe how movements combine with perceptual signals to create unified, multimodal experiences of time.
Collapse
Affiliation(s)
- Rose De Kock
- Department of Neurobiology, Physiology and Behaviour, University of California, Davis, CA, USA
| | - Weiwei Zhou
- Department of Neurobiology, Physiology and Behaviour, University of California, Davis, CA, USA
| | - Poorvi Datta
- Department of Neurobiology, Physiology and Behaviour, University of California, Davis, CA, USA
| | - Wilsaan Mychal Joiner
- Department of Neurobiology, Physiology and Behaviour, University of California, Davis, CA, USA
| | - Martin Wiener
- Department of Psychology, George Mason University, Fairfax, VA, USA
| |
Collapse
|
18
|
Cole RC, Espinoza AI, Singh A, Berger JI, Cavanagh JF, Wessel JR, Greenlee JD, Narayanan NS. Novelty-induced frontal-STN networks in Parkinson's disease. Cereb Cortex 2022; 33:469-485. [PMID: 35297483 PMCID: PMC9837604 DOI: 10.1093/cercor/bhac078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 01/19/2023] Open
Abstract
Novelty detection is a primitive subcomponent of cognitive control that can be deficient in Parkinson's disease (PD) patients. Here, we studied the corticostriatal mechanisms underlying novelty-response deficits. In participants with PD, we recorded from cortical circuits with scalp-based electroencephalography (EEG) and from subcortical circuits using intraoperative neurophysiology during surgeries for implantation of deep brain stimulation (DBS) electrodes. We report three major results. First, novel auditory stimuli triggered midfrontal low-frequency rhythms; of these, 1-4 Hz "delta" rhythms were linked to novelty-associated slowing, whereas 4-7 Hz "theta" rhythms were specifically attenuated in PD. Second, 32% of subthalamic nucleus (STN) neurons were response-modulated; nearly all (94%) of these were also modulated by novel stimuli. Third, response-modulated STN neurons were coherent with midfrontal 1-4 Hz activity. These findings link scalp-based measurements of neural activity with neuronal activity in the STN. Our results provide insight into midfrontal cognitive control mechanisms and how purported hyperdirect frontobasal ganglia circuits evaluate new information.
Collapse
Affiliation(s)
- Rachel C Cole
- Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, United States
| | - Arturo I Espinoza
- Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, United States
| | - Arun Singh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St. Vermillion, 57069, SD, United States
| | - Joel I Berger
- Department of Neurosurgery, University of Iowa, 340 Iowa Ave, Iowa City, IA, 52242, United States
| | - James F Cavanagh
- Department of Psychology, University of New Mexico, 2001 Redondo S Dr, Albuquerque, NM 87106, United States
| | - Jan R Wessel
- Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, United States
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, United States
- Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Jeremy D Greenlee
- Department of Neurosurgery, University of Iowa, 340 Iowa Ave, Iowa City, IA, 52242, United States
- Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Nandakumar S Narayanan
- Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, United States
- Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
19
|
Zhu Y, Zeng Y, Ren J, Zhang L, Chen C, Fernandez G, Qin S. Emotional learning retroactively promotes memory integration through rapid neural reactivation and reorganization. eLife 2022; 11:e60190. [PMID: 36476501 PMCID: PMC9815824 DOI: 10.7554/elife.60190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Neutral events preceding emotional experiences can be better remembered, likely by assigning them as significant to guide possible use in future. Yet, the neurobiological mechanisms of how emotional learning enhances memory for past mundane events remain unclear. By two behavioral studies and one functional magnetic resonance imaging study with an adapted sensory preconditioning paradigm, we show rapid neural reactivation and connectivity changes underlying emotion-charged retroactive memory enhancement. Behaviorally, emotional learning retroactively enhanced initial memory for neutral associations across the three studies. Neurally, emotional learning potentiated trial-specific reactivation of overlapping neural traces in the hippocampus and stimulus-relevant neocortex. It further induced rapid hippocampal-neocortical functional reorganization supporting such retroactive memory benefit, as characterized by enhanced hippocampal-neocortical coupling modulated by the amygdala during emotional learning, and a shift of hippocampal connectivity from stimulus-relevant neocortex to distributed transmodal prefrontal-parietal areas at post-learning rests. Together, emotional learning retroactively promotes memory integration for past neutral events through stimulating trial-specific reactivation of overlapping representations and reorganization of associated memories into an integrated network to foster its priority for future use.
Collapse
Affiliation(s)
- Yannan Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenNetherlands
| | - Yimeng Zeng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Jingyuan Ren
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenNetherlands
| | - Lingke Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Changming Chen
- School of Education, Chongqing Normal UniversityChongqingChina
| | - Guillen Fernandez
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenNetherlands
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| |
Collapse
|
20
|
Bosch TJ, Espinoza AI, Mancini M, Horak FB, Singh A. Functional Connectivity in Patients With Parkinson’s Disease and Freezing of Gait Using Resting-State EEG and Graph Theory. Neurorehabil Neural Repair 2022; 36:715-725. [DOI: 10.1177/15459683221129282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Although many studies have shown abnormalities in brain structure and function in people with Parkinson’s disease (PD), we still have a poor understanding of how brain structure and function relates to freezing of gait (FOG). Graph theory analysis of electroencephalography (EEG) can explore the relationship between brain network structure and gait function in PD. Methods Scalp EEG signals of 83 PD (42 PDFOG+ and 41 PDFOG−) and 42 healthy controls were recorded in an eyes-opened resting-state. The phase lag index was calculated for each electrode pair in different frequency bands, but we focused our analysis on the theta-band and performed global analyses along with nodal analyses over a midfrontal channel. The resulting connectivity matrices were converted to weighted graphs, whose structure was characterized using strength and clustering coefficient measurements, our main outcomes. Results We observed increased global strength and increased global clustering coefficient in people with PD compared to healthy controls in the theta-band, though no differences were observed in midfrontal nodal strength and midfrontal clustering coefficient. Furthermore, no differences in global nor midfrontal nodal strength nor global clustering coefficients were observed between PDFOG+ and PDFOG− in the theta-band. However, PDFOG+ exhibited a significantly diminished midfrontal nodal clustering coefficient in the theta-band compared to PDFOG−. Furthermore, FOG scores were negatively correlated with midfrontal nodal clustering coefficient in the theta-band. Conclusion The present findings support the involvement of midfrontal theta oscillations in FOG symptoms in PD and the sensitivity of graph metrics to characterize functional networks in PDFOG+.
Collapse
Affiliation(s)
- Taylor J. Bosch
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | | | - Martina Mancini
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Fay B. Horak
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Arun Singh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
21
|
Espinoza AI, May P, Anjum MF, Singh A, Cole RC, Trapp N, Dasgupta S, Narayanan NS. A pilot study of machine learning of resting-state EEG and depression in Parkinson's disease. Clin Park Relat Disord 2022; 7:100166. [PMID: 36203748 PMCID: PMC9529981 DOI: 10.1016/j.prdoa.2022.100166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/02/2022] [Accepted: 09/21/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Depression is a non-motor symptom of Parkinson's disease (PD). PD-related depression is difficult to diagnose, and the neurophysiological basis is poorly understood. Depression can markedly affect cortical function, which suggests that scalp electroencephalography (EEG) may be able to distinguish depression in PD. We conducted a pilot study of depression and resting-state EEG in PD. Methods We recruited 18 PD patients without depression, 18 PD patients with depression, and 12 demographically similar non-PD patients with clinical depression. All patients were on their usual medications. We collected resting-state EEG in all patients and compared cortical brain signal features between patients with and without depression. We used a machine learning algorithm that harnesses the entire power spectrum (linear predictive coding of EEG Algorithm for PD: LEAPD) to distinguish between groups. Results We found differences between PD patients with and without depression in the alpha band (8-13 Hz) globally and in the beta (13-30 Hz) and gamma (30-50 Hz) bands in the central electrodes. From two minutes of resting-state EEG, we found that LEAPD-based machine learning could robustly distinguish between PD patients with and without depression with 97 % accuracy and between PD patients with depression and non-PD patients with depression with 100 % accuracy. We verified the robustness of our finding by confirming that the classification accuracy gracefully declines as data are randomly truncated. Conclusions Our results suggest that resting-state EEG power spectral analysis has the potential to distinguish depression in PD accurately. We demonstrated the efficacy of the LEAPD algorithm in identifying PD patients with depression from PD patients without depression and controls with depression. Our data provide insight into cortical mechanisms of depression and could lead to novel neurophysiological markers for non-motor symptoms of PD.
Collapse
Affiliation(s)
| | - Patrick May
- Department of Electrical and Computer Engineering, University of Iowa, United States
| | - Md Fahim Anjum
- Department of Electrical and Computer Engineering, University of Iowa, United States
| | - Arun Singh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States
| | - Rachel C. Cole
- Department of Neurology, University of Iowa, United States
| | - Nicholas Trapp
- Department of Psychiatry, University of Iowa, United States
| | - Soura Dasgupta
- Department of Electrical and Computer Engineering, University of Iowa, United States
| | - Nandakumar S. Narayanan
- Department of Neurology, University of Iowa, United States,Corresponding author at: 169 Newton Road, Pappajohn Biomedical Discovery Building—5336, University of Iowa, Iowa City 52242, United States.
| |
Collapse
|
22
|
Nwogo RO, Kammermeier S, Singh A. Abnormal neural oscillations during gait and dual-task in Parkinson’s disease. Front Syst Neurosci 2022; 16:995375. [PMID: 36185822 PMCID: PMC9522469 DOI: 10.3389/fnsys.2022.995375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
Gait dysfunctions are debilitating motor symptoms of Parkinson’s disease (PD) and may result in frequent falling with health complications. The contribution of the motor-cognitive network to gait disturbance can be studied more thoroughly by challenging motor-cognitive dual-task gait performances. Gait is a complex motor task that requires an appropriate contribution from motor and cognitive networks, reflected in frequency modulations among several cortical and subcortical networks. Electrophysiological recordings by scalp electroencephalography and implanted deep brain stimulation (DBS) electrodes have unveiled modulations of specific oscillatory patterns in the cortical-subcortical circuits in PD. In this review, we summarize oscillatory contributions of the cortical, basal ganglia, mesencephalic locomotor, and cerebellar regions during gait and dual-task activities in PD. We detail the involvement of the cognitive network in dual-task settings and compare how abnormal oscillations in the specific frequency bands in the cortical and subcortical regions correlate with gait deficits in PD, particularly freezing of gait (FOG). We suggest that altered neural oscillations in different frequencies can cause derangements in broader brain networks, so neuromodulation and pharmacological therapies should be considered to normalize those network oscillations to improve challenged gait and dual-task motor functions in PD. Specifically, the theta and beta bands in premotor cortical areas, subthalamic nucleus, as well as alpha band activity in the brainstem prepontine nucleus, modulate under clinically effective levodopa and DBS therapies, improving gait and dual-task performance in PD with FOG, compared to PD without FOG and age-matched healthy control groups.
Collapse
Affiliation(s)
- Rachel O. Nwogo
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | | | - Arun Singh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
- *Correspondence: Arun Singh,
| |
Collapse
|
23
|
Liang M, Lomayesva S, Isham EA. Dissociable Roles of Theta and Alpha in Sub-Second and Supra-Second Time Reproduction: An Investigation of their Links to Depression and Anxiety. TIMING & TIME PERCEPTION 2022. [DOI: 10.1163/22134468-bja10061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
A growing collection of observations has demonstrated the presence of multiple neural oscillations participating in human temporal cognition and psychiatric pathologies such as depression and anxiety. However, there remains a gap in the literature regarding the specific roles of these neural oscillations during interval timing, and how these oscillatory activities might vary with the different levels of mental health. The current study examined the participation of the frontal midline theta and occipital alpha oscillations, both of which are prevalent cortical oscillatory markers frequently reported in working memory and time perception paradigms. Participants performed a time reproduction task in the sub- (400, 600, 800 ms) and supra-second timescales (1600, 1800, 2000 ms) while undergoing scalp EEG recordings. Anxiety and depression levels were measured via self-report mental health inventories. Time–frequency analysis of scalp EEG revealed that both frontal midline and occipital alpha oscillations were engaged during the encoding of the durations. Furthermore, we observed that the correlational relationship between frontal midline theta power and the reproduction performance in the sub-second range was modulated by state anxiety. In contrast, the correlational relationship between occipital alpha and the reproduction performance of supra-second intervals was modulated by depression and trait anxiety. The results offer insights on how alpha and theta oscillations differentially play a role in interval timing and how mental health further differentially relates these neural oscillations to sub- and supra-second timescales.
Collapse
Affiliation(s)
- Mingli Liang
- Department of Psychology, University of Arizona, 1503 E. University Blvd, Tucson, AZ 85721, USA
| | - Sara Lomayesva
- Department of Psychology, University of Arizona, 1503 E. University Blvd, Tucson, AZ 85721, USA
| | - Eve A. Isham
- Department of Psychology, University of Arizona, 1503 E. University Blvd, Tucson, AZ 85721, USA
| |
Collapse
|
24
|
Miyawaki EK. Review: Subjective Time Perception, Dopamine Signaling, and Parkinsonian Slowness. Front Neurol 2022; 13:927160. [PMID: 35899266 PMCID: PMC9311331 DOI: 10.3389/fneur.2022.927160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
The association between idiopathic Parkinson's disease, a paradigmatic dopamine-deficiency syndrome, and problems in the estimation of time has been studied experimentally for decades. I review that literature, which raises a question about whether and if dopamine deficiency relates not only to the motor slowness that is an objective and cardinal parkinsonian sign, but also to a compromised neural substrate for time perception. Why does a clinically (motorically) significant deficiency in dopamine play a role in the subjective perception of time's passage? After a discussion of a classical conception of basal ganglionic control of movement under the influence of dopamine, I describe recent work in healthy mice using optogenetics; the methodology visualizes dopaminergic neuronal firing in very short time intervals, then allows for correlation with motor behaviors in trained tasks. Moment-to-moment neuronal activity is both highly dynamic and variable, as assessed by photometry of genetically defined dopaminergic neurons. I use those animal data as context to review a large experimental experience in humans, spanning decades, that has examined subjective time perception mainly in Parkinson's disease, but also in other movement disorders. Although the human data are mixed in their findings, I argue that loss of dynamic variability in dopaminergic neuronal activity over very short intervals may be a fundamental sensory aspect in the pathophysiology of parkinsonism. An important implication is that therapeutic response in Parkinson's disease needs to be understood in terms of short-term alterations in dynamic neuronal firing, as has already been examined in novel ways—for example, in the study of real-time changes in neuronal network oscillations across very short time intervals. A finer analysis of a treatment's network effects might aid in any effort to augment clinical response to either medications or functional neurosurgical interventions in Parkinson's disease.
Collapse
Affiliation(s)
- Edison K. Miyawaki
- Department of Neurology, Mass General Brigham, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Edison K. Miyawaki
| |
Collapse
|
25
|
Cools R, Tichelaar JG, Helmich RCG, Bloem BR, Esselink RAJ, Smulders K, Timmer MHM. Role of dopamine and clinical heterogeneity in cognitive dysfunction in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:309-343. [PMID: 35248200 DOI: 10.1016/bs.pbr.2022.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is commonly treated with dopaminergic medication, which enhances some, while impairing other cognitive functions. It can even contribute to impulse control disorder and addiction. We describe the history of research supporting the dopamine overdose hypothesis, which accounts for the large within-patient variability in dopaminergic medication effects across different tasks by referring to the spatially non-uniform pattern of dopamine depletion in dorsal versus ventral striatum. However, there is tremendous variability in dopaminergic medication effects not just within patients across distinct tasks, but also across different patients. In the second part of this chapter we review recent studies addressing the large individual variability in the negative side effects of dopaminergic medication on functions that implicate dopamine, such as value-based learning and choice. These studies begin to unravel the mechanisms of dopamine overdosing, thus revising the strict version of the overdose hypothesis. For example, the work shows that the canonical boosting of reward-versus punishment-based choice by medication is greater in patients with depression and a non-tremor phenotype, which both implicate, among other pathology, more rather than less severe dysregulation of the mesolimbic dopamine system. Future longitudinal cohort studies are needed to identify how to optimally combine different clinical, personality, cognitive, neural, genetic and molecular predictors of detrimental medication effects in order to account for as much of the relevant variability as possible. This will provide a useful tool for precision neurology, allowing individual and contextual tailoring of (the dose of) dopaminergic medication in order to maximize its cognitive benefits, yet minimize its side effects.
Collapse
Affiliation(s)
- Roshan Cools
- Radboud university medical center, Department of Psychiatry, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - Jorryt G Tichelaar
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Rick C G Helmich
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Rianne A J Esselink
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Katrijn Smulders
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Monique H M Timmer
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Montaser-Kouhsari L, Young CB, Poston KL. Neuroimaging approaches to cognition in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:257-286. [PMID: 35248197 DOI: 10.1016/bs.pbr.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While direct visualization of Lewy body accumulation within the brain is not yet possible in living Parkinson's disease patients, brain imaging studies offer insights into how the buildup of Lewy body pathology impacts different regions of the brain. Unlike biological biomarkers and purely behavioral research, these brain imaging studies therefore offer a unique opportunity to relate brain localization to cognitive function and dysfunction in living patients. Magnetic resonance imaging studies can reveal physical changes in brain structure as they relate to different cognitive domains and task specific impairments. Functional imaging studies use a combination of task and resting state magnetic resonance imaging, as well as positron emission tomography and single photon emission computed tomography, and can be used to determine changes in blood flow, neuronal activation and neurochemical changes in the brain associated with PD cognition and cognitive impairments. Other unique advantages to brain imaging studies are the ability to monitor changes in brain structure and function longitudinally as patients progress and the ability to study changes in brain function when patients are exposed to different pharmacological manipulations. This is particularly true when assessing the effects of dopaminergic replacement therapy on cognitive function in Parkinson's disease patients. Together, this chapter will describe imaging studies that have helped identify structural and functional brain changes associated with cognition, cognitive impairment, and dementia in Parkinson's disease.
Collapse
Affiliation(s)
- Leila Montaser-Kouhsari
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Christina B Young
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States; Department of Neurosurgery, Stanford University, Stanford, CA, United States.
| |
Collapse
|
27
|
Cole RC, Okine DN, Yeager BE, Narayanan NS. Neuromodulation of cognition in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:435-455. [PMID: 35248205 DOI: 10.1016/bs.pbr.2022.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Neuromodulation is a widely used treatment for motor symptoms of Parkinson's disease (PD). It can be a highly effective treatment as a result of knowledge of circuit dysfunction associated with motor symptoms in PD. However, the mechanisms underlying cognitive symptoms of PD are less well-known, and the effects of neuromodulation on these symptoms are less consistent. Nonetheless, neuromodulation provides a unique opportunity to modulate motor and cognitive circuits while minimizing off-target side effects. We review the modalities of neuromodulation used in PD and the potential implications for cognitive symptoms. There have been some encouraging findings with both invasive and noninvasive modalities of neuromodulation, and there are promising advances being made in the field of therapeutic neuromodulation. Substantial work is needed to determine which modulation targets are most effective for the different types of cognitive deficits of PD.
Collapse
Affiliation(s)
- Rachel C Cole
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - Derrick N Okine
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - Brooke E Yeager
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | | |
Collapse
|
28
|
Rohl A, Gutierrez S, Johari K, Greenlee J, Tjaden K, Roberts A. Speech dysfunction, cognition, and Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:153-173. [PMID: 35248193 PMCID: PMC11321444 DOI: 10.1016/bs.pbr.2022.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Communication difficulties are a ubiquitous symptom of Parkinson's disease and include changes to both motor speech and language systems. Communication challenges are a significant driver of lower quality of life. They are associated with decreased communication participation, social withdrawal, and increased risks for social isolation and stigmatization in persons with Parkinson's disease. Recent theoretical advances and experimental evidence underscore the intersection of cognition and motor processes in speech production and their impact on spoken language. This chapter overviews a growing evidence base demonstrating that cognitive impairments interact with motor changes in Parkinson's disease to negatively affect communication abilities in myriad ways, at all stages of the disease, both in the absence and presence of dementia. The chapter highlights common PD interventions (pharmacological, surgical, and non-pharmacological) and how cognitive influences on speech production outcomes are considered in each.
Collapse
Affiliation(s)
- Andrea Rohl
- Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
| | - Stephanie Gutierrez
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Karim Johari
- Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
| | - Jeremy Greenlee
- Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
| | - Kris Tjaden
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, United States
| | - Angela Roberts
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States; Department of Computer Science, Western University, London, ON, Canada.
| |
Collapse
|
29
|
Lee SB, Kim YJ, Hwang S, Son H, Lee SK, Park KI, Kim YG. Predicting Parkinson's disease using gradient boosting decision tree models with electroencephalography signals. Parkinsonism Relat Disord 2022; 95:77-85. [PMID: 35051896 DOI: 10.1016/j.parkreldis.2022.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Parkinson's disease (PD) is a neurodegenerative disorder with only symptomatic treatments currently available. Although correct, early diagnoses of PD are important, the existing diagnostic method based on pathologic examinations only has an accuracy of approximately 80.6%. Although electroencephalography (EEG)-based assistive technology has been introduced, it has been difficult to implement in practice due to the high computational complexity and low accuracy of the analysis methods. This study proposed a fast, accurate PD prediction method using the Hjorth parameter and the gradient boosting decision tree (GBDT) algorithm. METHOD We used an open EEG dataset with 41 PD patients and 41 healthy controls (HCs); EEG signals were recorded from participants at the University of New Mexico (PD: 27 vs. HC: 27) and University of Iowa (PD: 14 vs. HC: 14). We explored the analytic time segment and frequency range in which the Hjorth parameter best represents the EEG characteristics of PD patients. RESULTS Our best model (CatBoost-based) distinguished PD patients from controls with an accuracy of 89.3%, an area under the receiver operating characteristics curve (AUC) of 0.912, an F-score of 0.903, and an odds ratio of 115.5. These results showed that our models outperformed those of all other previous works and were even superior to previously known pathologic examination-based diagnoses with long-term follow-up (accuracy = 83.9%). CONCLUSION The proposed methods are expected to be utilized as an effective method for improving the diagnosis of PD.
Collapse
Affiliation(s)
- Seung-Bo Lee
- Office of Hospital Information, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Yong-Jeong Kim
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Sungeun Hwang
- Department of Neurology, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea.
| | - Hyoshin Son
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Sang Kun Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Kyung-Il Park
- Department of Neurology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea; Department of Neurology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Young-Gon Kim
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, Republic of Korea; AI Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Bosch TJ, Kammermeier S, Groth C, Leedom M, Hanson EK, Berg-Poppe P, Singh A. Cortical and Cerebellar Oscillatory Responses to Postural Instability in Parkinson's Disease. Front Neurol 2021; 12:752271. [PMID: 34803888 PMCID: PMC8599431 DOI: 10.3389/fneur.2021.752271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Posture and balance dysfunctions critically impair activities of daily living of patients with progressing Parkinson's disease (PD). However, the neural mechanisms underlying postural instability in PD are poorly understood, and specific therapies are lacking. Previous electrophysiological studies have shown distinct cortical oscillations with a significant contribution of the cerebellum during postural control tasks in healthy individuals. Methods: We investigated cortical and mid-cerebellar oscillatory activity via electroencephalography (EEG) during a postural control task in 10 PD patients with postural instability (PDPI+), 11 PD patients without postural instability (PDPI–), and 15 age-matched healthy control participants. Relative spectral power was analyzed in the theta (4–7 Hz) and beta (13–30 Hz) frequency bands. Results: Time-dependent postural measurements computed by accelerometer signals showed poor performance in PDPI+ participants. EEG results revealed that theta power was profoundly lower in mid-frontal and mid-cerebellar regions during the postural control task in PDPI+, compared to PDPI– and control participants. In addition, theta power was correlated with postural control performance in PD subjects. No significant changes in beta power were observed. Additionally, oscillatory changes during the postural control task differed from the resting state. Conclusion: This study underlines the involvement of mid-frontal and mid-cerebellar regions in postural stability during a balance task and emphasizes the important role of theta oscillations therein for postural control in PD.
Collapse
Affiliation(s)
- Taylor J Bosch
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.,Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, United States
| | | | - Christopher Groth
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - Matt Leedom
- Avera Therapy, Sioux Falls, SD, United States
| | - Elizabeth K Hanson
- Department of Communication Sciences and Disorders, University of South Dakota, Vermillion, SD, United States
| | - Patti Berg-Poppe
- Department of Physical Therapy, University of South Dakota, Vermillion, SD, United States
| | - Arun Singh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.,Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
31
|
Zhang Q, Abdelmotilib H, Larson T, Keomanivong C, Conlon M, Aldridge GM, Narayanan NS. Cortical alpha-synuclein preformed fibrils do not affect interval timing in mice. Neurosci Lett 2021; 765:136273. [PMID: 34601038 DOI: 10.1016/j.neulet.2021.136273] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
One hallmark feature of Parkinson's disease (PD) is Lewy body pathology associated with misfolded alpha-synuclein. Previous studies have shown that striatal injection of alpha-synuclein preformed fibrils (PFF) can induce misfolding and aggregation of native alpha-synuclein in a prion-like manner, leading to cell death and motor dysfunction in mouse models. Here, we tested whether alpha-synuclein PFFs injected into the medial prefrontal cortex results in deficits in interval timing, a cognitive task which is disrupted in human PD patients and in rodent models of PD. We injected PFF or monomers of human alpha-synuclein into the medial prefrontal cortex of mice pre-injected with adeno-associated virus (AAV) coding for overexpression of human alpha-synuclein or control protein. Despite notable medial prefrontal cortical synucleinopathy, we did not observe consistent deficits in fixed-interval timing. These results suggest that cortical alpha-synuclein does not reliably disrupt fixed-interval timing.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States.
| | - Hisham Abdelmotilib
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Travis Larson
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Cameron Keomanivong
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Mackenzie Conlon
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Georgina M Aldridge
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | | |
Collapse
|
32
|
Scholl JL, Espinoza AI, Rai W, Leedom M, Baugh LA, Berg-Poppe P, Singh A. Relationships between Freezing of Gait Severity and Cognitive Deficits in Parkinson's Disease. Brain Sci 2021; 11:brainsci11111496. [PMID: 34827496 PMCID: PMC8615553 DOI: 10.3390/brainsci11111496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022] Open
Abstract
Freezing of gait (FOG) is one of the most debilitating motor symptoms experienced by patients with Parkinson’s disease (PD), as it can lead to falls and a reduced quality of life. Evidence supports an association between FOG severity and cognitive functioning; however, results remain debatable. PD patients with (PDFOG+, n = 41) and without FOG (PDFOG–, n = 39) and control healthy subjects (n = 41) participated in this study. The NIH toolbox cognition battery, the Montreal Cognitive Assessment (MoCA), and the interval timing task were used to test cognitive domains. Measurements were compared between groups using multivariable models and adjusting for covariates. Correlation analyses, linear regression, and mediation models were applied to examine relationships among disease duration and severity, FOG severity, and cognitive functioning. Significant differences were observed between controls and PD patients for all cognitive domains. PDFOG+ and PDFOG– exhibited differences in Dimensional Change Card Sort (DCCS) test, interval timing task, and MoCA scores. After adjusting for covariates in two different models, PDFOG+ and PDFOG– differed in both MoCA and DCCS scores. In addition, significant relationships between FOG severity and cognitive function (MoCA, DCCS, and interval timing) were also found. Regression models suggest that FOG severity may be a predictor of cognitive impairment, and mediation models show the effects of cognitive impairment on the relationship between disease severity and FOG severity. Overall, this study provides insight into the relationship between cognitive and FOG severity in patients with PD, which could aid in the development of therapeutic interventions to manage both.
Collapse
Affiliation(s)
- Jamie L. Scholl
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (J.L.S.); (L.A.B.)
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD 57069, USA;
| | | | - Wijdan Rai
- Department of Neurosciences, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA;
| | | | - Lee A. Baugh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (J.L.S.); (L.A.B.)
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD 57069, USA;
| | - Patti Berg-Poppe
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD 57069, USA;
- Department of Physical Therapy, University of South Dakota, Vermillion, SD 57069, USA
| | - Arun Singh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (J.L.S.); (L.A.B.)
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD 57069, USA;
- Correspondence:
| |
Collapse
|
33
|
De Kock R, Gladhill KA, Ali MN, Joiner WM, Wiener M. How movements shape the perception of time. Trends Cogn Sci 2021; 25:950-963. [PMID: 34531138 PMCID: PMC9991018 DOI: 10.1016/j.tics.2021.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
In order to keep up with a changing environment, mobile organisms must be capable of deciding both where and when to move. This precision necessitates a strong sense of time, as otherwise we would fail in many of our movement goals. Yet, despite this intrinsic link, only recently have researchers begun to understand how these two features interact. Primarily, two effects have been observed: movements can bias time estimates, but they can also make them more precise. Here we review this literature and propose that both effects can be explained by a Bayesian cue combination framework, in which movement itself affords the most precise representation of time, which can influence perception in either feedforward or active sensing modes.
Collapse
|
34
|
Altered Cerebellar Oscillations in Parkinson's Disease Patients during Cognitive and Motor Tasks. Neuroscience 2021; 475:185-196. [PMID: 34455014 DOI: 10.1016/j.neuroscience.2021.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/04/2021] [Accepted: 08/21/2021] [Indexed: 11/21/2022]
Abstract
Structural and functional abnormalities in the cerebellar region have been shown in patients with Parkinson's disease (PD). Since the cerebellar region has been associated with cognitive and lower-limb motor functions, it is imperative to study cerebellar oscillations in PD. Here, we evaluated cerebellar electroencephalography (EEG) during cognitive processing and lower-limb motor performances in PD. Cortical and cerebellar EEG were collected from 74 PD patients and 37 healthy control subjects during a 7-second interval timing task, 26 PD patients and 13 controls during a lower-limb pedaling task, and 23 PD patients during eyes-open/closed resting conditions. Analyses were focused on the mid-cerebellar Cbz electrode and further compared to the mid-occipital Oz and mid-frontal Cz electrodes. Increased alpha-band power was observed during the eyes-closed resting-state condition over Oz, but no change in alpha power was observed over Cbz. PD patients showed higher dispersion when performing the 7-second interval timing cognitive task and executed the pedaling motor task with reduced speed compared to controls. PD patients exhibited attenuated cue-triggered theta-band power over Cbz during both the interval timing and pedaling motor tasks. Connectivity measures between Cbz and Cz showed theta-band differences, but only during the pedaling motor task. Cbz oscillatory activity also differed from Oz across multiple frequency bands in both groups during both tasks. Our cerebellar EEG data along with previous magnetoencephalography and animal model studies clearly show alterations in cerebellar oscillations during cognitive and motor processing in PD.
Collapse
|
35
|
Interval timing and midfrontal delta oscillations are impaired in Parkinson's disease patients with freezing of gait. J Neurol 2021; 269:2599-2609. [PMID: 34674006 DOI: 10.1007/s00415-021-10843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
Gait abnormalities and cognitive dysfunction are common in patients with Parkinson's disease (PD) and get worse with disease progression. Recent evidence has suggested a strong relationship between gait abnormalities and cognitive dysfunction in PD patients and impaired cognitive control could be one of the causes for abnormal gait patterns. However, the pathophysiological mechanisms of cognitive dysfunction in PD patients with gait problems are unclear. Here, we collected scalp electroencephalography (EEG) signals during a 7-s interval timing task to investigate the cortical mechanisms of cognitive dysfunction in PD patients with (PDFOG +, n = 34) and without (PDFOG-, n = 37) freezing of gait, as well as control subjects (n = 37). Results showed that the PDFOG + group exhibited the lowest maximum response density at around 7 s compared to PDFOG- and control groups, and this response density peak correlated with gait abnormalities as measured by FOG scores. EEG data demonstrated that PDFOG + had decreased midfrontal delta-band power at the onset of the target cue, which was also correlated with maximum response density and FOG scores. In addition, our classifier performed better at discriminating PDFOG + from PDFOG- and controls with an area under the curve of 0.93 when midfrontal delta power was chosen as a feature. These findings suggest that abnormal midfrontal activity in PDFOG + is related to cognitive dysfunction and describe the mechanistic relationship between cognitive and gait functions in PDFOG + . Overall, these results could advance the development of novel biosignatures and brain stimulation approaches for PDFOG + .
Collapse
|
36
|
Bruce RA, Weber MA, Volkman RA, Oya M, Emmons EB, Kim Y, Narayanan NS. Experience-related enhancements in striatal temporal encoding. Eur J Neurosci 2021; 54:5063-5074. [PMID: 34097793 PMCID: PMC8511940 DOI: 10.1111/ejn.15344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
Temporal control of action is key for a broad range of behaviors and is disrupted in human diseases such as Parkinson's disease and schizophrenia. A brain structure that is critical for temporal control is the dorsal striatum. Experience and learning can influence dorsal striatal neuronal activity, but it is unknown how these neurons change with experience in contexts which require precise temporal control of movement. We investigated this question by recording from medium spiny neurons (MSNs) via dorsal striatal microelectrode arrays in mice as they gained experience controlling their actions in time. We leveraged an interval timing task optimized for mice which required them to "switch" response ports after enough time had passed without receiving a reward. We report three main results. First, we found that time-related ramping activity and response-related activity increased with task experience. Second, temporal decoding by MSN ensembles improved with experience and was predominantly driven by time-related ramping activity. Finally, we found that a subset of MSNs had differential modulation on error trials. These findings enhance our understanding of dorsal striatal temporal processing by demonstrating how MSN ensembles can evolve with experience. Our results can be linked to temporal habituation and illuminate striatal flexibility during interval timing, which may be relevant for human disease.
Collapse
Affiliation(s)
- R. Austin. Bruce
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, 52242
- Department of Neurology, University of Iowa, Iowa City, IA 52242
| | - Matthew A. Weber
- Department of Neurology, University of Iowa, Iowa City, IA 52242
| | | | - Mayu Oya
- Department of Neurology, University of Iowa, Iowa City, IA 52242
| | - Eric B. Emmons
- Department of Biology, Wartburg College, Waverly, IA, 50677
| | - Youngcho Kim
- Department of Neurology, University of Iowa, Iowa City, IA 52242
| | | |
Collapse
|