1
|
Yao L, Yang Y, Yang X, Rezaei MJ. The Interaction Between Nutraceuticals and Gut Microbiota: a Novel Therapeutic Approach to Prevent and Treatment Parkinson's Disease. Mol Neurobiol 2024; 61:9078-9109. [PMID: 38587699 DOI: 10.1007/s12035-024-04151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons, leading to motor and non-motor symptoms. Emerging research has shed light on the role of gut microbiota in the pathogenesis and progression of PD. Nutraceuticals such as curcumin, berberine, phytoestrogens, polyphenols (e.g., resveratrol, EGCG, and fisetin), dietary fibers have been shown to influence gut microbiota composition and function, restoring microbial balance and enhancing the gut-brain axis. The mechanisms underlying these benefits involve microbial metabolite production, restoration of gut barrier integrity, and modulation of neuroinflammatory pathways. Additionally, probiotics and prebiotics have shown potential in promoting gut health, influencing the gut microbiome, and alleviating PD symptoms. They can enhance the gut's antioxidant capacity of the gut, reduce inflammation, and maintain immune homeostasis, contributing to a neuroprotective environment. This paper provides an overview of the current state of knowledge regarding the potential of nutraceuticals and gut microbiota modulation in the prevention and management of Parkinson's disease, emphasizing the need for further research and clinical trials to validate their effectiveness and safety. The findings suggest that a multifaceted approach involving nutraceuticals and gut microbiota may open new avenues for addressing the challenges of PD and improving the quality of life for affected individuals.
Collapse
Affiliation(s)
- Liyan Yao
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yong Yang
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xiaowei Yang
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China.
| | - Mohammad J Rezaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Sobek J, Li J, Combes BF, Gerez JA, Henrich MT, Geibl FF, Nilsson PR, Shi K, Rominger A, Oertel WH, Nitsch RM, Nordberg A, Ågren H, Ni R. Efficient characterization of multiple binding sites of small molecule imaging ligands on amyloid-beta, tau and alpha-synuclein. Eur J Nucl Med Mol Imaging 2024; 51:3960-3977. [PMID: 38953933 DOI: 10.1007/s00259-024-06806-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE There is an unmet need for compounds to detect fibrillar forms of alpha-synuclein (αSyn) and 4-repeat tau, which are critical in many neurodegenerative diseases. Here, we aim to develop an efficient surface plasmon resonance (SPR)-based assay to facilitate the characterization of small molecules that can bind these fibrils. METHODS SPR measurements were conducted to characterize the binding properties of fluorescent ligands/compounds toward recombinant amyloid-beta (Aβ)42, K18-tau, full-length 2N4R-tau and αSyn fibrils. In silico modeling was performed to examine the binding pockets of ligands on αSyn fibrils. Immunofluorescence staining of postmortem brain tissue slices from Parkinson's disease patients and mouse models was performed with fluorescence ligands and specific antibodies. RESULTS We optimized the protocol for the immobilization of Aβ42, K18-tau, full-length 2N4R-tau and αSyn fibrils in a controlled aggregation state on SPR-sensor chips and for assessing their binding to ligands. The SPR results from the analysis of binding kinetics suggested the presence of at least two binding sites for all fibrils, including luminescent conjugated oligothiophenes, benzothiazole derivatives, nonfluorescent methylene blue and lansoprazole. In silico modeling studies for αSyn (6H6B) revealed four binding sites with a preference for one site on the surface. Immunofluorescence staining validated the detection of pS129-αSyn positivity in the brains of Parkinson's disease patients and αSyn preformed-fibril injected mice, 6E10-positive Aβ in arcAβ mice, and AT-8/AT-100-positivity in pR5 mice. CONCLUSION SPR measurements of small molecules binding to Aβ42, K18/full-length 2N4R-tau and αSyn fibrils suggested the existence of multiple binding sites. This approach may provide efficient characterization of compounds for neurodegenerative disease-relevant proteinopathies.
Collapse
Affiliation(s)
- Jens Sobek
- Functional Genomics Center, University of Zurich & ETH Zurich, Zürich, Switzerland
| | - Junhao Li
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Benjamin F Combes
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Zürich, Switzerland
| | - Juan A Gerez
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zürich, Switzerland
| | - Martin T Henrich
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Fanni F Geibl
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Peter R Nilsson
- Divison of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Wolfgang H Oertel
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Zürich, Switzerland
| | - Agneta Nordberg
- Divison of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Zürich, Switzerland.
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zürich, Switzerland.
| |
Collapse
|
3
|
Combes BF, Kalva SK, Benveniste PL, Tournant A, Law MH, Newton J, Krüger M, Weber RZ, Dias I, Noain D, Dean-Ben XL, Konietzko U, Baumann CR, Gillberg PG, Hock C, Nitsch RM, Cohen-Adad J, Razansky D, Ni R. Spiral volumetric optoacoustic tomography of reduced oxygen saturation in the spinal cord of M83 mouse model of Parkinson's disease. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06938-w. [PMID: 39382580 DOI: 10.1007/s00259-024-06938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
PURPOSE Metabolism and bioenergetics in the central nervous system play important roles in the pathophysiology of Parkinson's disease (PD). Here, we employed a multimodal imaging approach to assess oxygenation changes in the spinal cord of the transgenic M83 murine model of PD overexpressing the mutated A53T alpha-synuclein form in comparison with non-transgenic littermates. METHODS In vivo spiral volumetric optoacoustic tomography (SVOT) was performed to assess oxygen saturation (sO2) in the spinal cords of M83 mice and non-transgenic littermates. Ex vivo high-field T1-weighted (T1w) magnetic resonance imaging (MRI) at 9.4T was used to assess volumetric alterations in the spinal cord. 3D SVOT analysis and deep learning-based automatic segmentation of T1w MRI data for the mouse spinal cord were developed for quantification. Immunostaining for phosphorylated alpha-synuclein (pS129 α-syn), as well as vascular organization (CD31 and GLUT1), was performed after MRI scan. RESULTS In vivo SVOT imaging revealed a lower sO2SVOT in the spinal cord of M83 mice compared to non-transgenic littermates at sub-100 μm spatial resolution. Ex vivo MRI-assisted by in-house developed deep learning-based automatic segmentation (validated by manual analysis) revealed no volumetric atrophy in the spinal cord of M83 mice compared to non-transgenic littermates at 50 μm spatial resolution. The vascular network was not impaired in the spinal cord of M83 mice in the presence of pS129 α-syn accumulation. CONCLUSION We developed tools for deep-learning-based analysis for the segmentation of mouse spinal cord structural MRI data, and volumetric analysis of sO2SVOT data. We demonstrated non-invasive high-resolution imaging of reduced sO2SVOT in the absence of volumetric structural changes in the spinal cord of PD M83 mouse model.
Collapse
Affiliation(s)
- Benjamin F Combes
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Sandeep Kumar Kalva
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Pierre-Louis Benveniste
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
| | - Agathe Tournant
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Man Hoi Law
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Joshua Newton
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Maik Krüger
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Rebecca Z Weber
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Inês Dias
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Daniela Noain
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
- Center of Competence Sleep and Health Zurich, University of Zurich, Zurich, Switzerland
| | - Xose Luis Dean-Ben
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Uwe Konietzko
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Christian R Baumann
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
- Center of Competence Sleep and Health Zurich, University of Zurich, Zurich, Switzerland
| | - Per-Göran Gillberg
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Christoph Hock
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Neurimmune, Schlieren, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Neurimmune, Schlieren, Switzerland
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
| | - Daniel Razansky
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland.
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland.
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
4
|
Sun X, Badachhape A, Bhandari P, Chin J, Annapragada A, Tanifum E. A dual target molecular magnetic resonance imaging probe for noninvasive profiling of pathologic alpha-synuclein and microgliosis in a mouse model of Parkinson's disease. Front Neurosci 2024; 18:1428736. [PMID: 39114484 PMCID: PMC11303179 DOI: 10.3389/fnins.2024.1428736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
The pathogenesis of Parkinson's disease (PD) is characterized by progressive deposition of alpha-synuclein (α-syn) aggregates in dopaminergic neurons and neuroinflammation. Noninvasive in vivo imaging of α-syn aggregate accumulation and neuroinflammation can elicit the underlying mechanisms involved in disease progression and facilitate the development of effective treatment as well as disease diagnosis and prognosis. Here we present a novel approach to simultaneously profile α-syn aggregation and reactive microgliosis in vivo, by targeting oligomeric α-syn in cerebrospinal fluid with nanoparticle bearing a magnetic resonance imaging (MRI), contrast payload. In this proof-of-concept report we demonstrate, in vitro, that microglia and neuroblastoma cell lines internalize agglomerates formed by cross-linking the nanoparticles with oligomeric α-syn. Delayed in vivo MRI scans following intravenous administration of the nanoparticles in the M83 α-syn transgenic mouse line show statistically significant MR signal enhancement in test mice versus controls. The in vivo data were validated by ex-vivo immunohistochemical analysis which show strong correlation between in vivo MRI signal enhancement, Lewy pathology distribution, and microglia activity in the treated brain tissue. Furthermore, neuronal and microglial cells in brain tissue from treated mice display strong cytosolic signal originating from the nanoparticles, attributed to in vivo cell uptake of nanoparticle/oligomeric α-syn agglomerates.
Collapse
Affiliation(s)
- Xianwei Sun
- Department of Radiology, Baylor College of Medicine, Houston, TX, United States
| | - Andrew Badachhape
- Department of Radiology, Baylor College of Medicine, Houston, TX, United States
| | - Prajwal Bhandari
- Department of Radiology, Baylor College of Medicine, Houston, TX, United States
| | - Jeannie Chin
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Ananth Annapragada
- Department of Radiology, Baylor College of Medicine, Houston, TX, United States
- Department of Radiology, Texas Children’s Hospital, Houston, TX, United States
| | - Eric Tanifum
- Department of Radiology, Baylor College of Medicine, Houston, TX, United States
- Department of Radiology, Texas Children’s Hospital, Houston, TX, United States
| |
Collapse
|
5
|
Mao H, Kuang Y, Feng D, Chen X, Lu L, Xia W, Gan T, Huang W, Guo W, Yi H, Yang Y, Wu Z, Dai W, Sun H, Wu J, Zhang R, Zhang S, Lin X, Yong Y, Yang X, Li H, Wu W, Huang X, Bian Z, Wong HLX, Wang XL, Poppell M, Ren Y, Liu C, Zou WQ, Chen S, Xu PY. Ultrasensitive detection of aggregated α-synuclein using quiescent seed amplification assay for the diagnosis of Parkinson's disease. Transl Neurodegener 2024; 13:35. [PMID: 39049095 PMCID: PMC11267792 DOI: 10.1186/s40035-024-00426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Seed amplification assays (SAA) enable the amplification of pathological misfolded proteins, including α-synuclein (αSyn), in both tissue homogenates and body fluids of Parkinson's disease (PD) patients. SAA involves repeated cycles of shaking or sonication coupled with incubation periods. However, this amplification scheme has limitations in tracking protein propagation due to repeated fragmentation. METHODS We introduced a modified form of SAA, known as Quiescent SAA (QSAA), and evaluated biopsy and autopsy samples from individuals clinically diagnosed with PD and those without synucleinopathies (control group). Brain biopsy samples were obtained from 14 PD patients and 6 controls without synucleinopathies. Additionally, skin samples were collected from 214 PD patients and 208 control subjects. Data were analyzed from April 2019 to May 2023. RESULTS QSAA successfully amplified αSyn aggregates in brain tissue sections from mice inoculated with pre-formed fibrils. In the skin samples from 214 PD cases and 208 non-PD cases, QSAA demonstrated high sensitivity (90.2%) and specificity (91.4%) in differentiating between PD and non-PD cases. Notably, more αSyn aggregates were detected by QSAA compared to immunofluorescence with the pS129-αSyn antibody in consecutive slices of both brain and skin samples. CONCLUSION We introduced the new QSAA method tailored for in situ amplification of αSyn aggregates in brain and skin samples while maintaining tissue integrity, providing a streamlined approach to diagnosing PD with individual variability. The integration of seeding activities with the location of deposition of αSyn seeds advances our understanding of the mechanism underlying αSyn misfolding in PD.
Collapse
Affiliation(s)
- Hengxu Mao
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yaoyun Kuang
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Du Feng
- School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiang Chen
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Lin Lu
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Tingting Gan
- Deptartment of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Weimeng Huang
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Wenyuan Guo
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hancun Yi
- Institute of Neurology, Jiangxi Academy of Medical Clinical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yirong Yang
- Institute of Neurology, Jiangxi Academy of Medical Clinical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Zhuohua Wu
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Wei Dai
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hui Sun
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jieyuan Wu
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Rui Zhang
- Deptartment of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Shenqing Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiuli Lin
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yuxuan Yong
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Xinling Yang
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Hongyan Li
- Department of Neurology, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, 830054, China
| | - Wenjun Wu
- Department of Neurology, Zhongshan City People's Hospital, Zhongshan, 528400, China
| | - Xiaoyun Huang
- Dongguan Songshan Lake Central Hospital, Dongguan, 523000, China
| | - Zhaoxiang Bian
- Jockey Club School of Chinese Medicine, Baptist University Road, Hong Kong, 999077, China
| | - Hoi Leong Xavier Wong
- Jockey Club School of Chinese Medicine, Baptist University Road, Hong Kong, 999077, China
| | - Xin-Lu Wang
- Department of Nuclear Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Michael Poppell
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, 32306, USA
| | - Yi Ren
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, 32306, USA
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wen-Quan Zou
- Institute of Neurology, Jiangxi Academy of Medical Clinical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Shengdi Chen
- Department of Neurology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ping-Yi Xu
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
6
|
Schreiber CS, Wiesweg I, Stanelle-Bertram S, Beck S, Kouassi NM, Schaumburg B, Gabriel G, Richter F, Käufer C. Sex-specific biphasic alpha-synuclein response and alterations of interneurons in a COVID-19 hamster model. EBioMedicine 2024; 105:105191. [PMID: 38865747 PMCID: PMC11293593 DOI: 10.1016/j.ebiom.2024.105191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/02/2024] [Accepted: 05/25/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) frequently leads to neurological complications after recovery from acute infection, with higher prevalence in women. However, mechanisms by which SARS-CoV-2 disrupts brain function remain unclear and treatment strategies are lacking. We previously demonstrated neuroinflammation in the olfactory bulb of intranasally infected hamsters, followed by alpha-synuclein and tau accumulation in cortex, thus mirroring pathogenesis of neurodegenerative diseases such as Parkinson's or Alzheimer's disease. METHODS To uncover the sex-specific spatiotemporal profiles of neuroinflammation and neuronal dysfunction following intranasal SARS-CoV-2 infection, we quantified microglia cell density, alpha-synuclein immunoreactivity and inhibitory interneurons in cortical regions, limbic system and basal ganglia at acute and late post-recovery time points. FINDINGS Unexpectedly, microglia cell density and alpha-synuclein immunoreactivity decreased at 6 days post-infection, then rebounded to overt accumulation at 21 days post-infection. This biphasic response was most pronounced in amygdala and striatum, regions affected early in Parkinson's disease. Several brain regions showed altered densities of parvalbumin and calretinin interneurons which are involved in cognition and motor control. Of note, females appeared more affected. INTERPRETATION Our results demonstrate that SARS-CoV-2 profoundly disrupts brain homeostasis without neuroinvasion, via neuroinflammatory and protein regulation mechanisms that persist beyond viral clearance. The regional patterns and sex differences are in line with neurological deficits observed after SARS-CoV-2 infection. FUNDING Federal Ministry of Health, Germany (BMG; ZMV I 1-2520COR501 to G.G.), Federal Ministry of Education and Research, Germany (BMBF; 03COV06B to G.G.), Ministry of Science and Culture of Lower Saxony in Germany (14-76403-184, to G.G. and F.R.).
Collapse
Affiliation(s)
- Cara Sophie Schreiber
- Department of Pharmacology, Toxicology, and Pharmacy; University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience Hannover (ZSN), Germany
| | - Ivo Wiesweg
- Department of Pharmacology, Toxicology, and Pharmacy; University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Sebastian Beck
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Nancy Mounogou Kouassi
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Berfin Schaumburg
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Gülsah Gabriel
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, Hamburg, Germany; Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology, and Pharmacy; University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience Hannover (ZSN), Germany.
| | - Christopher Käufer
- Department of Pharmacology, Toxicology, and Pharmacy; University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience Hannover (ZSN), Germany.
| |
Collapse
|
7
|
Ramalingam N, Haass C, Dettmer U. Physiological roles of α-synuclein serine-129 phosphorylation - not an oxymoron. Trends Neurosci 2024; 47:480-490. [PMID: 38862330 DOI: 10.1016/j.tins.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024]
Abstract
α-Synuclein (αS) is an abundant presynaptic protein that regulates neurotransmission. It is also a key protein implicated in a broad class of neurodegenerative disorders termed synucleinopathies, including Parkinson's disease (PD) and Lewy body dementia (LBD). Pathological αS deposits in these diseases, Lewy bodies (LBs)/neurites (LNs), contain about 90% of αS in its phospho-serine129 (pS129) form. Therefore, pS129 is widely used as a surrogate marker of pathology. However, recent findings demonstrate that pS129 is also physiologically triggered by neuronal activity to positively regulate synaptic transmission. In this opinion article, we contrast the literature on pathological and physiological pS129, with a special focus on the latter. We emphasize that pS129 is ambiguous and knowledge about the context is necessary to correctly interpret changes in pS129.
Collapse
Affiliation(s)
- Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany; Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Choi SG, Tittle T, Garcia-Prada D, Kordower JH, Melki R, Killinger BA. Alpha-synuclein aggregates are phosphatase resistant. Acta Neuropathol Commun 2024; 12:84. [PMID: 38822421 PMCID: PMC11141014 DOI: 10.1186/s40478-024-01785-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 06/03/2024] Open
Abstract
Alpha-synuclein (αsyn) is an intrinsically disordered protein that aggregates in the brain in several neurodegenerative diseases collectively called synucleinopathies. Phosphorylation of αsyn at serine 129 (PSER129) was considered rare in the healthy human brain but is enriched in pathological αsyn aggregates and is used as a specific marker for disease inclusions. However, recent observations challenge this assumption by demonstrating that PSER129 results from neuronal activity and can be readily detected in the non-diseased mammalian brain. Here, we investigated experimental conditions under which two distinct PSER129 pools, namely endogenous-PSER129 and aggregated-PSER129, could be detected and differentiated in the mammalian brain. Results showed that in the wild-type (WT) mouse brain, perfusion fixation conditions greatly influenced the detection of endogenous-PSER129, with endogenous-PSER129 being nearly undetectable after delayed perfusion fixation (30-min and 1-h postmortem interval). Exposure to anesthetics (e.g., Ketamine or xylazine) before perfusion did not significantly influence endogenous-PSER129 detection or levels. In situ, non-specific phosphatase calf alkaline phosphatase (CIAP) selectively dephosphorylated endogenous-PSER129 while αsyn preformed fibril (PFF)-seeded aggregates and genuine disease aggregates (Lewy pathology and Papp-Lantos bodies in Parkinson's disease and multiple systems atrophy brain, respectively) were resistant to CIAP-mediated dephosphorylation. The phosphatase resistance of aggregates was abolished by sample denaturation, and CIAP-resistant PSER129 was closely associated with proteinase K (PK)-resistant αsyn (i.e., a marker of aggregation). CIAP pretreatment allowed for highly specific detection of seeded αsyn aggregates in a mouse model that accumulates non-aggregated-PSER129. We conclude that αsyn aggregates are impervious to phosphatases, and CIAP pretreatment increases detection specificity for aggregated-PSER129, particularly in well-preserved biological samples (e.g., perfusion fixed or flash-frozen mammalian tissues) where there is a high probability of interference from endogenous-PSER129. Our findings have important implications for the mechanism of PSER129-accumulation in the synucleinopathy brain and provide a simple experimental method to differentiate endogenous-from aggregated PSER129.
Collapse
Affiliation(s)
- S G Choi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - T Tittle
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - D Garcia-Prada
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - J H Kordower
- ASU-Banner Neurodegenerative Disease Research Center and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - R Melki
- Institut François Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases (CNRS), Fontenay-Aux-Roses, France
| | - B A Killinger
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
9
|
Choi SG, Tittle T, Garcia-Prada D, Kordower JH, Melki R, Killinger BA. Alpha-synuclein aggregates are phosphatase resistant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.20.567854. [PMID: 38645137 PMCID: PMC11030248 DOI: 10.1101/2023.11.20.567854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Alpha-synuclein (αsyn) is an intrinsically disordered protein that aggregates in the brain in several neurodegenerative diseases collectively called synucleinopathies. Phosphorylation of αsyn at serine 129 (PSER129) was considered rare in the healthy human brain but is enriched in pathological αsyn aggregates and is used as a specific marker for disease inclusions. However, recent observations challenge this assumption by demonstrating that PSER129 results from neuronal activity and can be readily detected in the non-diseased mammalian brain. Here, we investigated experimental conditions under which two distinct PSER129 pools, namely endogenous-PSER129 and aggregated-PSER129, could be detected and differentiated in the mammalian brain. Results showed that in the wild-type (WT) mouse brain, perfusion fixation conditions greatly influenced the detection of endogenous-PSER129, with endogenous-PSER129 being nearly undetectable after delayed perfusion fixation (30-minute and 1-hour postmortem interval). Exposure to anesthetics (e.g., Ketamine or xylazine) before perfusion did not significantly influence endogenous-PSER129 detection or levels. In situ, non-specific phosphatase calf alkaline phosphatase (CIAP) selectively dephosphorylated endogenous-PSER129 while αsyn preformed fibril (PFF)-seeded aggregates and genuine disease aggregates (Lewy pathology and Papp-Lantos bodies in Parkinson's disease and multiple systems atrophy brain, respectively) were resistant to CIAP-mediated dephosphorylation. The phosphatase resistance of aggregates was abolished by sample denaturation, and CIAP-resistant PSER129 was closely associated with proteinase K (PK)-resistant αsyn (i.e., a marker of aggregation). CIAP pretreatment allowed for highly specific detection of seeded αsyn aggregates in a mouse model that accumulates non-aggregated-PSER129. We conclude that αsyn aggregates are impervious to phosphatases, and CIAP pretreatment increases detection specificity for aggregated-PSER129, particularly in well-preserved biological samples (e.g., perfusion fixed or flash-frozen mammalian tissues) where there is a high probability of interference from endogenous-PSER129. Our findings have important implications for the mechanism of PSER129-accumulation in the synucleinopathy brain and provide a simple experimental method to differentiate endogenous-from aggregated PSER129.
Collapse
Affiliation(s)
- S G Choi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - T Tittle
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - D Garcia-Prada
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - J H Kordower
- ASU-Banner Neurodegenerative Disease Research Center and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - R Melki
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-Aux-Roses Cedex, France
| | - B A Killinger
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
10
|
Cao C, Magalhães P, Krapp LF, Bada Juarez JF, Mayer SF, Rukes V, Chiki A, Lashuel HA, Dal Peraro M. Deep Learning-Assisted Single-Molecule Detection of Protein Post-translational Modifications with a Biological Nanopore. ACS NANO 2024; 18:1504-1515. [PMID: 38112538 PMCID: PMC10795472 DOI: 10.1021/acsnano.3c08623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Protein post-translational modifications (PTMs) play a crucial role in countless biological processes, profoundly modulating protein properties on both spatial and temporal scales. Protein PTMs have also emerged as reliable biomarkers for several diseases. However, only a handful of techniques are available to accurately measure their levels, capture their complexity at a single molecule level, and characterize their multifaceted roles in health and disease. Nanopore sensing provides high sensitivity for the detection of low-abundance proteins, holding the potential to impact single-molecule proteomics and PTM detection, in particular. Here, we demonstrate the ability of a biological nanopore, the pore-forming toxin aerolysin, to detect and distinguish α-synuclein-derived peptides bearing single or multiple PTMs, namely, phosphorylation, nitration, and oxidation occurring at different positions and in various combinations. The characteristic current signatures of the α-synuclein peptide and its PTM variants could be confidently identified by using a deep learning model for signal processing. We further demonstrate that this framework can quantify α-synuclein peptides at picomolar concentrations and detect the C-terminal peptides generated by digestion of full-length α-synuclein. Collectively, our work highlights the advantage of using nanopores as a tool for simultaneous detection of multiple PTMs and facilitates their use in biomarker discovery and diagnostics.
Collapse
Affiliation(s)
- Chan Cao
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
- Department
of Inorganic and Analytical Chemistry, Chemistry and Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Pedro Magalhães
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Brain Mind
Institute, School of Life Sciences, Ecole
Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Lucien F. Krapp
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Juan F. Bada Juarez
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Simon Finn Mayer
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Verena Rukes
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Anass Chiki
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Brain Mind
Institute, School of Life Sciences, Ecole
Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Hilal A. Lashuel
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Brain Mind
Institute, School of Life Sciences, Ecole
Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Matteo Dal Peraro
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| |
Collapse
|
11
|
Wiseman JA, Murray HC, Faull RLMF, Dragunow M, Turner CP, Dieriks BV, Curtis MA. Aggregate-prone brain regions in Parkinson's disease are rich in unique N-terminus α-synuclein conformers with high proteolysis susceptibility. NPJ Parkinsons Dis 2024; 10:1. [PMID: 38167744 PMCID: PMC10762179 DOI: 10.1038/s41531-023-00614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
In Parkinson's disease (PD), and other α-synucleinopathies, α-synuclein (α-Syn) aggregates form a myriad of conformational and truncational variants. Most antibodies used to detect and quantify α-Syn in the human brain target epitopes within the C-terminus (residues 96-140) of the 140 amino acid protein and may fail to capture the diversity of α-Syn variants present in PD. We sought to investigate the heterogeneity of α-Syn conformations and aggregation states in the PD human brain by labelling with multiple antibodies that detect epitopes along the entire length of α-Syn. We used multiplex immunohistochemistry to simultaneously immunolabel tissue sections with antibodies mapping the three structural domains of α-Syn. Discrete epitope-specific immunoreactivities were visualised and quantified in the olfactory bulb, medulla, substantia nigra, hippocampus, entorhinal cortex, middle temporal gyrus, and middle frontal gyrus of ten PD cases, and the middle temporal gyrus of 23 PD, and 24 neurologically normal cases. Distinct Lewy neurite and Lewy body aggregate morphologies were detected across all interrogated regions/cases. Lewy neurites were the most prominent in the olfactory bulb and hippocampus, while the substantia nigra, medulla and cortical regions showed a mixture of Lewy neurites and Lewy bodies. Importantly, unique N-terminus immunoreactivity revealed previously uncharacterised populations of (1) perinuclear, (2) glial (microglial and astrocytic), and (3) neuronal lysosomal α-Syn aggregates. These epitope-specific N-terminus immunoreactive aggregate populations were susceptible to proteolysis via time-dependent proteinase K digestion, suggesting a less stable oligomeric aggregation state. Our identification of unique N-terminus immunoreactive α-Syn aggregates adds to the emerging paradigm that α-Syn pathology is more abundant and complex in human brains with PD than previously realised. Our findings highlight that labelling multiple regions of the α-Syn protein is necessary to investigate the full spectrum of α-Syn pathology and prompt further investigation into the functional role of these N-terminus polymorphs.
Collapse
Affiliation(s)
- James A Wiseman
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand.
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand.
| | - Helen C Murray
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand
| | - Richard L M F Faull
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand
| | - Michael Dragunow
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand
- Department of Pharmacology, University of Auckland, Auckland, 1023, New Zealand
| | - Clinton P Turner
- LabPlus, Department of Anatomical Pathology, Te Whatu Ora, Auckland, New Zealand
| | - Birger Victor Dieriks
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand.
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand.
| |
Collapse
|
12
|
Altay MF, Kumar ST, Burtscher J, Jagannath S, Strand C, Miki Y, Parkkinen L, Holton JL, Lashuel HA. Development and validation of an expanded antibody toolset that captures alpha-synuclein pathological diversity in Lewy body diseases. NPJ Parkinsons Dis 2023; 9:161. [PMID: 38062007 PMCID: PMC10703845 DOI: 10.1038/s41531-023-00604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/14/2023] [Indexed: 01/13/2024] Open
Abstract
The abnormal aggregation and accumulation of alpha-synuclein (aSyn) in the brain is a defining hallmark of synucleinopathies. Various aSyn conformations and post-translationally modified forms accumulate in pathological inclusions and vary in abundance among these disorders. Relying on antibodies that have not been assessed for their ability to detect the diverse forms of aSyn may lead to inaccurate estimations of aSyn pathology in human brains or disease models. To address this challenge, we developed and characterized an expanded antibody panel that targets different sequences and post-translational modifications along the length of aSyn, and that recognizes all monomeric, oligomeric, and fibrillar aSyn conformations. Next, we profiled aSyn pathology across sporadic and familial Lewy body diseases (LBDs) and reveal heterogeneous forms of aSyn pathology, rich in Serine 129 phosphorylation, Tyrosine 39 nitration and N- and C-terminal tyrosine phosphorylations, scattered both to neurons and glia. In addition, we show that aSyn can become hyperphosphorylated during processes of aggregation and inclusion maturation in neuronal and animal models of aSyn seeding and spreading. The validation pipeline we describe for these antibodies paves the way for systematic investigations into aSyn pathological diversity in the human brain, peripheral tissues, as well as in cellular and animal models of synucleinopathies.
Collapse
Affiliation(s)
- Melek Firat Altay
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Senthil T Kumar
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Johannes Burtscher
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Somanath Jagannath
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Catherine Strand
- Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, London, England
| | - Yasuo Miki
- Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, London, England
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Laura Parkkinen
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, London, England
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland.
| |
Collapse
|
13
|
Taha HB. Rethinking the reliability and accuracy of biomarkers in CNS-originating EVs for Parkinson's disease and multiple system atrophy. Front Neurol 2023; 14:1192115. [PMID: 37731853 PMCID: PMC10507694 DOI: 10.3389/fneur.2023.1192115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/02/2023] [Indexed: 09/22/2023] Open
Affiliation(s)
- Hash Brown Taha
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
14
|
Bhatia TN, Jamenis AS, Abbas M, Clark RN, Miner KM, Chandwani MN, Kim RE, Hilinski W, O'Donnell LA, Luk KC, Shi Y, Hu X, Chen J, Brodsky JL, Leak RK. A 14-day pulse of PLX5622 modifies α-synucleinopathy in preformed fibril-infused aged mice of both sexes. Neurobiol Dis 2023; 184:106196. [PMID: 37315905 PMCID: PMC10528721 DOI: 10.1016/j.nbd.2023.106196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/16/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023] Open
Abstract
Reactive microglia are observed with aging and in Lewy body disorders, including within the olfactory bulb of men with Parkinson's disease. However, the functional impact of microglia in these disorders is still debated. Resetting these reactive cells by a brief dietary pulse of the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 may hold therapeutic potential against Lewy-related pathologies. To our knowledge, withdrawal of PLX5622 after short-term exposure has not been tested in the preformed α-synuclein fibril (PFF) model, including in aged mice of both sexes. Compared to aged female mice, we report that aged males on the control diet showed higher numbers of phosphorylated α-synuclein+ inclusions in the limbic rhinencephalon after PFFs were injected in the posterior olfactory bulb. However, aged females displayed larger inclusion sizes compared to males. Short-term (14-day) dietary exposure to PLX5622 followed by control chow reduced inclusion numbers and levels of insoluble α-synuclein in aged males-but not females-and unexpectedly raised inclusion sizes in both sexes. Transient delivery of PLX5622 also improved spatial reference memory in PFF-infused aged mice, as evidenced by an increase in novel arm entries in a Y-maze. Superior memory was positively correlated with inclusion sizes but negatively correlated with inclusion numbers. Although we caution that PLX5622 delivery must be tested further in models of α-synucleinopathy, our data suggest that larger-sized-but fewer-α-synucleinopathic structures are associated with better neurological outcomes in PFF-infused aged mice.
Collapse
Affiliation(s)
- Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Anuj S Jamenis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Muslim Abbas
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Kristin M Miner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Manisha N Chandwani
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Roxanne E Kim
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | | | - Lauren A O'Donnell
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Kelvin C Luk
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yejie Shi
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA; Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA; Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jun Chen
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA; Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Dept. of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Lloyd GM, Long B, Quintin S, Sorrentino ZA, Gorion KMM, Bell BM, Carrillo D, Sullivan P, Borchelt D, Giasson BI. Carboxyl truncation of α-synuclein occurs early and is influenced by human APOE genotype in transgenic mouse models of α-synuclein pathogenesis. Acta Neuropathol Commun 2023; 11:119. [PMID: 37482615 PMCID: PMC10363304 DOI: 10.1186/s40478-023-01623-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023] Open
Abstract
Post-translational modifications to the carboxyl (C) terminus domain of α-synuclein can play an important role in promoting the pathologic aggregation of α-synuclein. Various cleavages that diminish this highly charged, proline-rich region can result in exposure of hydrophobic, aggregation-prone regions, thereby accelerating the aggregation kinetics of α-synuclein into misfolded, pathologic forms. C-terminally truncated forms of α-synuclein are abundant in human diseased brains compared to controls, suggesting a role in disease pathogenesis. Factors that alter the homeostatic proteolytic processing of α-synuclein may ultimately tip the balance towards a progressive disease state. Apolipoprotein E (APOE) has been implicated in the acceleration of cognitive impairment in patients with Lewy body diseases. The APOE4 isoform has been found to cause dysregulation in the endosomal-lysosomal pathway, which could result in altered α-synuclein degradation as a potential mechanism for promoting its pathologic misfolding. Herein, we investigate the spatiotemporal accumulation of C-terminally truncated α-synuclein in a seeded and progressive mouse model of synucleinopathy. Furthermore, we study how this process is influenced in the context of mice that are altered to express either the human APOE3 or APOE4 isoforms. We found that specific C-terminal truncation of α-synuclein occurs at early stages of pathogenesis. We also found that proteolytic processing of this domain differs across various brain regions and is influenced by the presence of different human APOE isoforms. Our data demonstrate an early pathogenic role for C-terminally truncated α-synuclein, and highlight the influence of APOE isoforms in modulating its impact.
Collapse
Affiliation(s)
- Grace M Lloyd
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Brooke Long
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Stephan Quintin
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Zachary A Sorrentino
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Kimberly-Marie M Gorion
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Brach M Bell
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Denise Carrillo
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Patrick Sullivan
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - David Borchelt
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
16
|
Killinger BA, Mercado G, Choi S, Tittle T, Chu Y, Brundin P, Kordower JH. Distribution of phosphorylated alpha-synuclein in non-diseased brain implicates olfactory bulb mitral cells in synucleinopathy pathogenesis. NPJ Parkinsons Dis 2023; 9:43. [PMID: 36966145 PMCID: PMC10039879 DOI: 10.1038/s41531-023-00491-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/10/2023] [Indexed: 03/27/2023] Open
Abstract
Synucleinopathies are neurodegenerative diseases characterized by pathological inclusions called "Lewy pathology" (LP) that consist of aggregated alpha-synuclein predominantly phosphorylated at serine 129 (PSER129). Despite the importance for understanding disease, little is known about the endogenous function of PSER129 or why it accumulates in the diseased brain. Here we conducted several observational studies using a sensitive tyramide signal amplification (TSA) technique to determine PSER129 distribution and function in the non-diseased mammalian brain. In wild-type non-diseased mice, PSER129 was detected in the olfactory bulb (OB) and several brain regions across the neuroaxis (i.e., OB to brainstem). In contrast, PSER129 immunoreactivity was not observed in any brain region of alpha-synuclein knockout mice. We found evidence of PSER129 positive structures in OB mitral cells of non-diseased mice, rats, non-human primates, and healthy humans. Using TSA multiplex fluorescent labeling, we showed that PSER129 positive punctate structures occur within inactive (i.e., c-fos negative) T-box transcription factor 21 (TBX21) positive mitral cells and PSER129 within these cells was spatially associated with PK-resistant alpha-synuclein. Ubiquitin was found in PSER129 mitral cells but was not closely associated with PSER129. Biotinylation by antibody recognition (BAR) identified 125 PSER129-interacting proteins in the OB of healthy mice, which were significantly enriched for presynaptic vesicle trafficking/recycling, SNARE, fatty acid oxidation, oxidative phosphorylation, and RNA binding. TSA multiplex labeling confirmed the physical association of BAR-identified protein Ywhag with PSER129 in the OB and in other regions across the neuroaxis. We conclude that PSER129 accumulates in the mitral cells of the healthy OB as part of alpha-synuclein normal cellular functions. Incidental LP has been reported in the OB, and therefore we speculate that for synucleinopathies, either the disease processes begin locally in OB mitral cells or a systemic disease process is most apparent in the OB because of the natural tendency to accumulate PSER129.
Collapse
Affiliation(s)
- Bryan A Killinger
- Graduate College, Rush University Medical Center, Chicago, IL, 60612, USA.
| | - Gabriela Mercado
- Parkinson's disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Solji Choi
- Graduate College, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Tyler Tittle
- Graduate College, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Yaping Chu
- ASU-Banner Neurodegenerative Disease Research Center (NDRC), Arizona State University, Tempe, AZ, 85287, USA
| | - Patrik Brundin
- Parkinson's disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Pharma Research and Early Development (pRED), F Hoffman-La Roche, New York, NY, USA
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center (NDRC), Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
17
|
Dutta S, Hornung S, Taha HB, Biggs K, Siddique I, Chamoun LM, Shahpasand-Kroner H, Lantz C, Herrera-Vaquero M, Stefanova N, Loo JA, Bitan G. Development of a Novel Electrochemiluminescence ELISA for Quantification of α-Synuclein Phosphorylated at Ser 129 in Biological Samples. ACS Chem Neurosci 2023; 14:1238-1248. [PMID: 36920792 PMCID: PMC10080651 DOI: 10.1021/acschemneuro.2c00676] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Synucleinopathies are a group of neurodegenerative diseases including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). These diseases are characterized by the aggregation and deposition of α-synuclein (α-syn) in Lewy bodies (LBs) in PD and DLB or as glial cytoplasmic inclusions in MSA. In healthy brains, only ∼4% of α-syn is phosphorylated at Ser129 (pS129-α-syn), whereas >90% pS129-α-syn may be found in LBs, suggesting that pS129-α-syn could be a useful biomarker for synucleinopathies. However, a widely available, robust, sensitive, and reproducible method for measuring pS129-α-syn in biological fluids is currently missing. We used Meso Scale Discovery (MSD)'s electrochemiluminescence platform to create a new assay for sensitive detection of pS129-α-syn. We evaluated several combinations of capture and detection antibodies and used semisynthetic pS129-α-syn as a standard for the assay at a concentration range from 0.5 to 6.6 × 104 pg/mL. Using the antibody EP1536Y for capture and an anti-human α-syn antibody (MSD) for detection was the best combination in terms of assay sensitivity, specificity, and reproducibility. We tested the utility of the assay for the detection and quantification of pS129-α-syn in human cerebrospinal fluid, serum, plasma, saliva, and CNS-originating small extracellular vesicles, as well as in mouse brain lysates. Our data suggest that the assay can become a widely used method for detecting pS129-α-syn in biomedical studies including when only a limited volume of sample is available and high sensitivity is required, offering new opportunities for diagnostic biomarkers, monitoring disease progression, and quantifying outcome measures in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marcos Herrera-Vaquero
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | | |
Collapse
|
18
|
Arlinghaus R, Iba M, Masliah E, Cookson MR, Landeck N. Specific Detection of Physiological S129 Phosphorylated α-Synuclein in Tissue Using Proximity Ligation Assay. JOURNAL OF PARKINSON'S DISEASE 2023; 13:255-270. [PMID: 36847016 PMCID: PMC10041430 DOI: 10.3233/jpd-213085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Synucleinopathies are a group of neurodegenerative disorders that are pathologically characterized by intracellular aggregates called Lewy bodies. Lewy bodies are primarily composed of α-synuclein (asyn) protein, which is mostly phosphorylated at serine 129 (pS129) when aggregated and therefore used as a marker for pathology. Currently commercial antibodies against pS129 asyn stain aggregates well but in healthy brains cross react with other proteins, thus making it difficult to specifically detect physiological pS129 asyn. OBJECTIVE To develop a staining procedure that detects endogenous and physiological relevant pS129 asyn with high specificity and low background. METHODS We used the fluorescent and brightfield in situ proximity ligation assay (PLA) to specifically detect pS129 asyn in cell culture, mouse, and human brain sections. RESULTS The pS129 asyn PLA specifically stained physiological and soluble pS129 asyn in cell culture, mouse brain sections, and human brain tissue without significant cross-reactivity or background signal. However, this technique was not successful in detecting Lewy bodies in human brain tissue. CONCLUSION We successfully developed a novel PLA method that can, in the future, be used on in vitro and in vivo samples as a tool to explore and better understand the cellular localization and function of pS129 asyn in health and disease.
Collapse
Affiliation(s)
- Ryan Arlinghaus
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, USA
| | - Michiyo Iba
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institutes on Aging, NIH, Bethesda, MD, USA
| | - Eliezer Masliah
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institutes on Aging, NIH, Bethesda, MD, USA
- Division of Neuroscience, National Institute on Aging, NIH, Bethesda, MD, USA
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, USA
| | - Natalie Landeck
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, USA
| |
Collapse
|