1
|
Messedi M, Makni-Ayadi F. 24S-Hydroxycholesterol in Neuropsychiatric Diseases: Schizophrenia, Autism Spectrum Disorder, and Bipolar Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:293-304. [PMID: 38036886 DOI: 10.1007/978-3-031-43883-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Neuropsychiatric diseases (NPDs) are severe, debilitating psychiatric conditions that affect the nervous system. These are among the most challenging disorders in medicine. Some examples include Alzheimer's, anxiety disorders, autism spectrum disorder, bipolar disorder, and schizophrenia. NPDs represent an ever-increasing burden on public health and are prevalent throughout the world. For most of these diseases, the particular etiopathogeneses are still enigmatic. NPDs are also associated with structural and functional changes in the brain, along with altered neurotransmitter and neuroendocrine systems.Approximately 25% of the total human body cholesterol is located in the brain. Its involvement in neuronal functions starts in the early growth stages and remains important throughout adulthood. It is also an integral part of the neuronal membrane, ensuring membrane lipid organization and regulating membrane fluidity. The main mechanism for removing cholesterol from the brain is cholesterol 24-hydroxylation by cytochrome P450 46A1 (CYP46A1), an enzyme specifically found in the central nervous system. Although research on 24S-OHC and its role in neuropsychiatric diseases is still in its early stages, this oxidized cholesterol metabolite is thought to play a crucial role in the etiology of NPDs. 24S-OHC can affect neurons, astrocytes, oligodendrocytes, and vascular cells. In addition to regulating the homeostasis of cholesterol in the brain, this oxysterol is involved in neurotransmission, oxidative stress, and inflammation. The role of 24S-OHC in NPDs has been found to be controversial in terms of the findings so far. There are several intriguing discrepancies in the data gathered so far regarding 24S-OHC and NPDs. In fact, 24S-OHC levels were reported to have decreased in a number of NPDs and increased in others.Hence, in this chapter, we first summarize the available data regarding 24S-OHC as a biomarker in NPDs, including schizophrenia, autism spectrum disorder, and bipolar disorder. Then, we present a brief synopsis of the pharmacological targeting of 24S-OHC levels through the modulation of CYP46A1 activity.
Collapse
Affiliation(s)
- Meriam Messedi
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Sfax, Tunisia
| | - Fatma Makni-Ayadi
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Sfax, Tunisia
- Department of Clinical biochemistry, Habib Bourguiba Hospital, Sfax, Tunisia
| |
Collapse
|
2
|
Guidara W, Messedi M, Naifar M, Maalej M, Khrouf W, Grayaa S, Maalej M, Bonnefont-Rousselot D, Lamari F, Ayadi F. Plasma oxysterols in drug-free patients with schizophrenia. J Steroid Biochem Mol Biol 2022; 221:106123. [PMID: 35550868 DOI: 10.1016/j.jsbmb.2022.106123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/15/2022]
Abstract
Evidence from clinical, genetic, and medical studies has shown the neuronal developmental disorder aspect of schizophrenia (SZ). Whereas oxysterols are vital factors in neurodevelopment, it is still unknown whether they are involved in the pathophysiology of SZ. The current study aims to explore the profile of oxysterols in plasma, ratio to total cholesterol (Tchol) and the association with clinical factors in patients with SZ. Forty men diagnosed with SZ and forty healthy controls matched for age and sex were included in the study. The ratios of cholestane-3β,5α,6β-triol, 27-hydroxycholesterol (27-OHC) and Cholestanol to Tchol increased in the schizophrenic group compared to controls. However, levels of 24S-hydroxycholesterol (24-OHC) were not significantly different between patients and controls. For the SZ patients, the plasma 24-OHC levels were positively correlated with the positive and negative syndrome total scores (PANSS) but negatively correlated with the Montreal Cognitive Assessment scores (MOCA). Moreover, the ratio Cholestanol to Tchol was negatively correlated with MOCA scores and positively correlated with PANSS general. The binary logistic regression analysis revealed that the ratio Cholestane-3β,5α,6β-triol/TChol could be considered as an independent risk factor for SZ. On the other hand, the receiver's operating characteristics analysis corresponding to potential biomarkers on SZ showed Areas Under the Curve (AUCs) of 82.1%; 69.7% and 77.6% for the ratio of Cholestane-3β,5α,6β-triol/TChol, 27-OHC/TChol and Cholestanol/TChol respectively. The relevance of Cholestane-3β,5α,6β-triol, 27-OHC and Cholestanol assays as biomarkers of this disease deserves further investigation.
Collapse
Affiliation(s)
- Wassim Guidara
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Tunisia.
| | - Meriam Messedi
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Tunisia
| | - Manel Naifar
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Tunisia; Biochemistry Laboratory, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Manel Maalej
- Psychiatry C-department, Hédi Chaker Hospital, Sfax, Tunisia
| | - Walid Khrouf
- Service de Biochimie Métabolique, AP-HP.Sorbonne Université, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, DMU BioGeM, F-75013 Paris, France
| | - Sahar Grayaa
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Tunisia
| | - Mohamed Maalej
- Psychiatry C-department, Hédi Chaker Hospital, Sfax, Tunisia
| | - Dominique Bonnefont-Rousselot
- Service de Biochimie Métabolique, AP-HP.Sorbonne Université, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, DMU BioGeM, F-75013 Paris, France; Université de Paris, CNRS, Inserm, UTCBS, F-75006 Paris, France
| | - Foudil Lamari
- Service de Biochimie Métabolique, AP-HP.Sorbonne Université, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, DMU BioGeM, F-75013 Paris, France
| | - Fatma Ayadi
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Tunisia; Biochemistry Laboratory, Habib Bourguiba Hospital, Sfax, Tunisia
| |
Collapse
|
3
|
Dias IH, Shokr H, Shephard F, Chakrabarti L. Oxysterols and Oxysterol Sulfates in Alzheimer’s Disease Brain and Cerebrospinal Fluid. J Alzheimers Dis 2022; 87:1527-1536. [PMID: 35491790 PMCID: PMC9277668 DOI: 10.3233/jad-220083] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background: Brain cholesterol levels are tightly regulated but increasing evidence indicates that cholesterol metabolism may drive Alzheimer’s disease (AD)-associated pathological changes. Recent advances in understanding of mitochondrial dysfunction in AD brain have presented a vital role played by mitochondria in oxysterol biosynthesis and their involvement in pathophysiology. Oxysterol accumulation in brain is controlled by various enzymatic pathways including sulfation. While research into oxysterol is under the areas of active investigation, there is less evidence for oxysterol sulfate levels in human brain. Objective: This study investigates the hypothesis that AD brain oxysterol detoxification via sulfation is impaired in later stages of disease resulting in oxysterol accumulation. Methods: Lipids were extracted from postmortem frozen brain tissue and cerebrospinal (CSF) from late- (Braak stage III-IV) and early- (Braak stage I-II) stage AD patients. Samples were spiked with internal standards prior to lipid extraction. Oxysterols were enriched with a two-step solid phase extraction using a polymeric SPE column and further separation was achieved by LC-MS/MS. Results: Oxysterols, 26-hydroxycholesterol (26-OHC), 25-hydroxycholesterol (25-OHC), and 7-oxycholesterol levels were higher in brain tissue and mitochondria extracted from late-stage AD brain tissue except for 24S-hydroxycholesterol, which was decreased in late AD. However, oxysterol sulfates are significantly lower in the AD frontal cortex. Oxysterols, 25-OHC, and 7-oxocholesterol was higher is CSF but 26-OHC and oxysterol sulfate levels were not changed. Conclusion: Our results show oxysterol metabolism is altered in AD brain mitochondria, favoring synthesis of 26-OHC, 25-OHC, and 7-oxocholesterol, and this may influence brain mitochondrial function and acceleration of the disease.
Collapse
Affiliation(s)
- Irundika H.K. Dias
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Hala Shokr
- Manchester Pharmacy School, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Freya Shephard
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Lisa Chakrabarti
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
4
|
Maekawa M, Mano N. Searching, Structural Determination, and Diagnostic Performance Evaluation of Biomarker Molecules for Niemann-Pick Disease Type C Using Liquid Chromatography/Tandem Mass Spectrometry. Mass Spectrom (Tokyo) 2022; 11:A0111. [PMID: 36713801 PMCID: PMC9853955 DOI: 10.5702/massspectrometry.a0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive disorder that is characterized by progressive neuronal degeneration. Patients with NPC have a wide age of onset and various clinical symptoms. Therefore, the discovery and diagnosis of NPC are very difficult. Conventional laboratory tests are complicated and time consuming. In this context, biomarker searches have recently been performed. Our research group has previously also investigated NPC biomarkers based on liquid chromatography/tandem mass spectrometry (LC/MS/MS) and related techniques. To identify biomarker candidates, nontargeted analysis with high-resolution MS and MS/MS scanning is commonly used. Structural speculation has been performed using LC/MS/MS fragmentation and chemical derivatization, while identification is performed by matching authentic standards and sample specimens. Diagnostic performance evaluation was performed using the validated LC/MS/MS method and analysis of samples from patients and control subjects. NPC biomarkers, which have been identified and evaluated in terms of performance, are various classes of lipid molecules. Oxysterols, cholenoic acids, and conjugates are cholesterol-derived molecules detected in the blood or urine. Plasma lyso-sphingolipids are biomarkers for both NPC and other lysosomal diseases. N-palmitoyl-O-phosphocholine-serine is a novel class of lipid biomarkers for NPC. This article reviews biomarkers for NPC and the analysis methods employed to that end.
Collapse
Affiliation(s)
- Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan,Correspondence to: Masamitsu Maekawa, Department of Pharmaceutical Sciences, Tohoku University Hospital, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan, e-mail:
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
5
|
Preparation of Oxysterols by C-H Oxidation of Dibromocholestane with Ru(Bpga) Catalyst. Molecules 2021; 27:molecules27010225. [PMID: 35011456 PMCID: PMC8746986 DOI: 10.3390/molecules27010225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 12/02/2022] Open
Abstract
Seven mono- and dihydroxycholesterols were prepared by direct C–H oxidation of the cholestane skeleton with a recently developed Ru(Bpga) catalyst (Ru(Bpga) = [RuCl (bpga) (PPh3)] Cl; bpga = 2-(bis(pyridin-2-ylmethyl)amino)-N-(2,6-dimethylphenyl)acetamide)). Due to the high selectivity of the Ru(Bpga) complex for tertiary C–H, the reaction afforded a mixture of 25-, 20-, 17-, and 14-oxygenated cholesterols that could be easily separated by high-performance liquid chromatography. These results suggest that late-stage C–H oxidation could be a viable strategy for preparing candidate metabolites of biologically important molecules.
Collapse
|
6
|
Lin F, Yao X, Kong C, Liu X, Zhao Z, Rao S, Wang L, Li S, Wang J, Dai Q. 25-Hydroxycholesterol protecting from cerebral ischemia-reperfusion injury through the inhibition of STING activity. Aging (Albany NY) 2021; 13:20149-20163. [PMID: 34406977 PMCID: PMC8436919 DOI: 10.18632/aging.203337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022]
Abstract
Middle cerebral artery occlusion (MCAO) injury refers to impaired blood supply to the brain that is caused by a cerebrovascular disease, resulting in local brain tissue ischemia, hypoxic necrosis, and rapid neurological impairment. Nevertheless, the mechanisms involved are unclear, and pharmacological interventions are lacking. 25-Hydroxycholesterol (25-HC) was reported to be involved in cholesterol and lipid metabolism as an oxysterol molecule. This study aimed to determine whether 25-HC exerts a cerebral protective effect on MCAO injury and investigate its potential mechanism. 25-HC was administered prior to reperfusion in a mouse model of MCAO injury. 25-HC evidently decreased infarct size induced by MCAO and enhanced brain function. It reduced stimulator of interferon gene (STING) activity and regulated mTOR to inhibit autophagy and induce cerebral ischemia tolerance. Thus, 25-HC improved MCAO injury through the STING channel. As indicated in this preliminary study, 25-HC improved MCAO injury by inhibiting STING activity and autophagy as well as by reducing brain nerve cell apoptosis. Thus, it is a potential treatment drug for brain injury.
Collapse
Affiliation(s)
- Feihong Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyu Yao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chang Kong
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xia Liu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhangfan Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Suhuan Rao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shan Li
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junlu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qinxue Dai
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Pikuleva IA, Cartier N. Cholesterol Hydroxylating Cytochrome P450 46A1: From Mechanisms of Action to Clinical Applications. Front Aging Neurosci 2021; 13:696778. [PMID: 34305573 PMCID: PMC8297829 DOI: 10.3389/fnagi.2021.696778] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/15/2021] [Indexed: 11/24/2022] Open
Abstract
Cholesterol, an essential component of the brain, and its local metabolism are involved in many neurodegenerative diseases. The blood-brain barrier is impermeable to cholesterol; hence, cholesterol homeostasis in the central nervous system represents a balance between in situ biosynthesis and elimination. Cytochrome P450 46A1 (CYP46A1), a central nervous system-specific enzyme, converts cholesterol to 24-hydroxycholesterol, which can freely cross the blood-brain barrier and be degraded in the liver. By the dual action of initiating cholesterol efflux and activating the cholesterol synthesis pathway, CYP46A1 is the key enzyme that ensures brain cholesterol turnover. In humans and mouse models, CYP46A1 activity is altered in Alzheimer’s and Huntington’s diseases, spinocerebellar ataxias, glioblastoma, and autism spectrum disorders. In mouse models, modulations of CYP46A1 activity mitigate the manifestations of Alzheimer’s, Huntington’s, Nieman-Pick type C, and Machao-Joseph (spinocerebellar ataxia type 3) diseases as well as amyotrophic lateral sclerosis, epilepsy, glioblastoma, and prion infection. Animal studies revealed that the CYP46A1 activity effects are not limited to cholesterol maintenance but also involve critical cellular pathways, like gene transcription, endocytosis, misfolded protein clearance, vesicular transport, and synaptic transmission. How CYP46A1 can exert central control of such essential brain functions is a pressing question under investigation. The potential therapeutic role of CYP46A1, demonstrated in numerous models of brain disorders, is currently being evaluated in early clinical trials. This review summarizes the past 70 years of research that has led to the identification of CYP46A1 and brain cholesterol homeostasis as powerful therapeutic targets for severe pathologies of the CNS.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Nathalie Cartier
- NeuroGenCell, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| |
Collapse
|
8
|
Sun Z, Zhao L, Bo Q, Mao Z, He Y, Jiang T, Li Y, Wang C, Li R. Brain-Specific Oxysterols and Risk of Schizophrenia in Clinical High-Risk Subjects and Patients With Schizophrenia. Front Psychiatry 2021; 12:711734. [PMID: 34408685 PMCID: PMC8367079 DOI: 10.3389/fpsyt.2021.711734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 01/19/2023] Open
Abstract
Accumulating evidence from clinical, genetic, and epidemiologic studies suggest that schizophrenia might be a neuronal development disorder. While oxysterols are important factors in neurodevelopment, it is unknown whether oxysterols might be involved in development of schizophrenia. The present study investigated the relationship between tissue-specifically originated oxysterols and risk of schizophrenia. A total of 216 individuals were recruited in this study, including 76 schizophrenia patients, 39 clinical high-risk (CHR) subjects, and 101 healthy controls (HC). We investigated the circulating levels of brain-specific oxysterol 24(S)-hydroxycholesterol (24OHC) and peripheral oxysterol 27-hydroxycholesterol (27OHC) in all participants and analyzed the potential links between the oxysterols and specific clinical symptoms in schizophrenic patients and CHR. Our data showed an elevation of 24OHC in both schizophrenia patients and CHR than that in HC, while a lower level of 27OHC in the schizophrenia group only. The ratio of 24OHC to 27OHC was only increased in the schizophrenic group compared with CHR and HC. For the schizophrenic patients, the circulating 24OHC levels are significantly associated with disease duration, positively correlated with the positive and negative syndrome total scores, while the 27OHC levels were inversely correlated with the positive symptom scores. Together, our data demonstrated the disruption of tissue-specifically originated cholesterol metabolism in schizophrenia and CHR, suggesting the circulating 24OHC or 24OHC/27OHC ratio might not only be a potential indicator for risk for schizophrenia but also be biomarkers for functional abnormalities in neuropathology of schizophrenia.
Collapse
Affiliation(s)
- Zuoli Sun
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Lei Zhao
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Qijing Bo
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zhen Mao
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yi He
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yuhong Li
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Rena Li
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|