1
|
Stein F, Gruber M, Mauritz M, Brosch K, Pfarr JK, Ringwald KG, Thomas-Odenthal F, Wroblewski A, Evermann U, Steinsträter O, Grumbach P, Thiel K, Winter A, Bonnekoh LM, Flinkenflügel K, Goltermann J, Meinert S, Grotegerd D, Bauer J, Opel N, Hahn T, Leehr EJ, Jansen A, de Lange SC, van den Heuvel MP, Nenadić I, Krug A, Dannlowski U, Repple J, Kircher T. Brain Structural Network Connectivity of Formal Thought Disorder Dimensions in Affective and Psychotic Disorders. Biol Psychiatry 2024; 95:629-638. [PMID: 37207935 DOI: 10.1016/j.biopsych.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND The psychopathological syndrome of formal thought disorder (FTD) is not only present in schizophrenia (SZ), but also highly prevalent in major depressive disorder and bipolar disorder. It remains unknown how alterations in the structural white matter connectome of the brain correlate with psychopathological FTD dimensions across affective and psychotic disorders. METHODS Using FTD items of the Scale for the Assessment of Positive Symptoms and Scale for the Assessment of Negative Symptoms, we performed exploratory and confirmatory factor analyses in 864 patients with major depressive disorder (n= 689), bipolar disorder (n = 108), or SZ (n = 67) to identify psychopathological FTD dimensions. We used T1- and diffusion-weighted magnetic resonance imaging to reconstruct the structural connectome of the brain. To investigate the association of FTD subdimensions and global structural connectome measures, we employed linear regression models. We used network-based statistic to identify subnetworks of white matter fiber tracts associated with FTD symptomatology. RESULTS Three psychopathological FTD dimensions were delineated, i.e., disorganization, emptiness, and incoherence. Disorganization and incoherence were associated with global dysconnectivity. Network-based statistics identified subnetworks associated with the FTD dimensions disorganization and emptiness but not with the FTD dimension incoherence. Post hoc analyses on subnetworks did not reveal diagnosis × FTD dimension interaction effects. Results remained stable after correcting for medication and disease severity. Confirmatory analyses showed a substantial overlap of nodes from both subnetworks with cortical brain regions previously associated with FTD in SZ. CONCLUSIONS We demonstrated white matter subnetwork dysconnectivity in major depressive disorder, bipolar disorder, and SZ associated with FTD dimensions that predominantly comprise brain regions implicated in speech. Results open an avenue for transdiagnostic, psychopathology-informed, dimensional studies in pathogenetic research.
Collapse
Affiliation(s)
- Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany.
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Marco Mauritz
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Kai G Ringwald
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Adrian Wroblewski
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Ulrika Evermann
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Olaf Steinsträter
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Pascal Grumbach
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Linda M Bonnekoh
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Kira Flinkenflügel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jochen Bauer
- Department of Radiology, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry, Jena University Hospital/Friedrich Schiller University Jena, Jena, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Siemon C de Lange
- Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands; Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Martijn P van den Heuvel
- Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands; Department of Child and Adolescent Psychiatry and Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam UMC, Amsterdam, the Netherlands
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| |
Collapse
|
2
|
Mota NB, Weissheimer J, Finger I, Ribeiro M, Malcorra B, Hübner L. Speech as a Graph: Developmental Perspectives on the Organization of Spoken Language. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:985-993. [PMID: 37085138 DOI: 10.1016/j.bpsc.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 04/02/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
Language has been used as a privileged window to investigate mental processes. More recently, descriptions of psychopathological symptoms have been analyzed with the help of natural language processing tools. An example is the study of speech organization using graph theoretical approaches that began approximately 10 years ago. After its application in different areas, there is a need to better characterize what aspects can be associated with typical and atypical behavior throughout the lifespan, given the variables related to aging as well as biological and social contexts. The precise quantification of mental processes assessed through language may allow us to disentangle biological/social markers by looking at naturalistic protocols in different contexts. In this review, we discuss 10 years of studies in which word recurrence graphs were adopted to characterize the chain of thoughts expressed by individuals while producing discourse. Initially developed to understand formal thought disorder in the context of psychotic syndromes, this line of research has been expanded to understand the atypical development in different stages of psychosis and differential diagnosis (such as dementia) as well as the typical development of thought organization in school-age children/teenagers in naturalistic and school-based protocols. We comment on the effects of environmental factors, such as education and reading habits (in monolingual and bilingual contexts), in clinical and nonclinical populations at different developmental stages (from childhood to older adulthood, considering aging effects on cognition). Looking toward the future, there is an opportunity to use word recurrence graphs to address complex questions that consider biological/social factors within a developmental perspective in typical and atypical contexts.
Collapse
Affiliation(s)
- Natália Bezerra Mota
- Department of Psychiatry and Legal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Research Department, Motrix Laboratory - Motrix, Rio de Janeiro, Brazil.
| | - Janaina Weissheimer
- Department of Modern Foreign Languages, Federal University of Rio Grande do Norte, Natal, Brazil; Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil; National Council for Scientific and Technological Development, Brasília, Brazil
| | - Ingrid Finger
- National Council for Scientific and Technological Development, Brasília, Brazil; Department of Modern Languages, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina Ribeiro
- Research Department, Motrix Laboratory - Motrix, Rio de Janeiro, Brazil; Bioinformatics Multidisciplinary Environment-Federal University of Rio Grande do Norte, Natal, Brazil
| | - Bárbara Malcorra
- Research Department, Motrix Laboratory - Motrix, Rio de Janeiro, Brazil
| | - Lilian Hübner
- National Council for Scientific and Technological Development, Brasília, Brazil; Department of Linguistics-Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
3
|
Tang SX, Cong Y, Nikzad AH, Mehta A, Cho S, Hänsel K, Berretta S, Dhar AA, Kane JM, Malhotra AK. Clinical and computational speech measures are associated with social cognition in schizophrenia spectrum disorders. Schizophr Res 2023; 259:28-37. [PMID: 35835710 DOI: 10.1016/j.schres.2022.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/15/2022]
Abstract
In this study, we compared three domains of social cognition (emotion processing, mentalizing, and attribution bias) to clinical and computational language measures in 63 participants with schizophrenia spectrum disorders. Based on the active inference model for discourse, we hypothesized that emotion processing and mentalizing, but not attribution bias, would be related to language disturbances. Clinical ratings for speech disturbance assessed disorganized and underproductive dimensions. Computational features included speech graph metrics, use of modal verbs, use of first-person pronouns, cosine similarity of adjacent utterances, and measures of sentiment; these were represented by four principal components. We found that higher clinical ratings for disorganized speech were predicted by greater impairments in both emotion processing and mentalizing, and that these relationships remained significant when accounting for demographic variables, overall psychosis symptoms, and verbal ability. Similarly, a computational speech component reflecting insular speech was consistently predicted by impairment in emotion processing. There were notable trends for computational speech components reflecting underproductive speech and decreased content-rich speech predicting mentalizing ability. Exploratory longitudinal analyses in a small subset of participants (n = 17) found that improvements in both emotion processing and mentalizing predicted improvements in disorganized speech. Attribution bias did not demonstrate strong relationships with language measures. Altogether, our findings are consistent with the active inference model of discourse and suggest greater emphasis on treatments that target social cognitive and language systems.
Collapse
Affiliation(s)
- Sunny X Tang
- Zucker Hillside Hospital, Department of Psychiatry, Feinstein Institutes for Medical Research, 75-59 263rd St., Glen Oaks, NY 11004, United States of America.
| | - Yan Cong
- Zucker Hillside Hospital, Department of Psychiatry, Feinstein Institutes for Medical Research, 75-59 263rd St., Glen Oaks, NY 11004, United States of America.
| | - Amir H Nikzad
- Zucker Hillside Hospital, Department of Psychiatry, Feinstein Institutes for Medical Research, 75-59 263rd St., Glen Oaks, NY 11004, United States of America.
| | - Aarush Mehta
- Zucker Hillside Hospital, Department of Psychiatry, Feinstein Institutes for Medical Research, 75-59 263rd St., Glen Oaks, NY 11004, United States of America.
| | - Sunghye Cho
- University of Pennsylvania, Linguistic Data Consortium, 3600 Market St., Suite 810, Philadelphia, PA 19104, United States of America.
| | - Katrin Hänsel
- Yale University, Department of Laboratory Medicine, 195 Church Street, New Haven, CT 06510, United States of America.
| | - Sarah Berretta
- Zucker Hillside Hospital, Department of Psychiatry, Feinstein Institutes for Medical Research, 75-59 263rd St., Glen Oaks, NY 11004, United States of America.
| | - Aamina A Dhar
- Zucker Hillside Hospital, Department of Psychiatry, Feinstein Institutes for Medical Research, 75-59 263rd St., Glen Oaks, NY 11004, United States of America
| | - John M Kane
- Zucker Hillside Hospital, Department of Psychiatry, Feinstein Institutes for Medical Research, 75-59 263rd St., Glen Oaks, NY 11004, United States of America.
| | - Anil K Malhotra
- Zucker Hillside Hospital, Department of Psychiatry, Feinstein Institutes for Medical Research, 75-59 263rd St., Glen Oaks, NY 11004, United States of America.
| |
Collapse
|
4
|
Saga T, Tanaka H, Matsuda Y, Morimoto T, Uratani M, Okazaki K, Fujimoto Y, Nakamura S. Automatic evaluation-feedback system for automated social skills training. Sci Rep 2023; 13:6856. [PMID: 37100886 PMCID: PMC10133273 DOI: 10.1038/s41598-023-33703-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
Social skills training (SST), which is a rehabilitation program for improving daily interpersonal communication, has been used for more than 40 years. Although such training's demand is increasing, its accessibility is limited due to the lack of experienced trainers. To tackle this issue, automated SST systems have been studied for years. An evaluation-feedback pipeline of social skills is a crucial component of an SST system. Unfortunately, research that considers both the evaluation and feedback parts of automation remains insufficient. In this paper, we collected and analyzed the characteristics of a human-human SST dataset that consisted of 19 healthy controls, 15 schizophreniacs, 16 autism spectrum disorder (ASD) participants, and 276 sessions with score labels of six clinical measures. From our analysis of this dataset, we developed an automated SST evaluation-feedback system under the supervision of professional, experienced SST trainers. We identified their preferred or most acceptable feedback methods by running a user-study on the following conditions: with/without recorded video of the role-plays of users and different amounts of positive and corrective feedback. We confirmed a reasonable performance of our social-skill-score estimation models as our system's evaluation part with a maximum Spearman's correlation coefficient of 0.68. For the feedback part, our user-study concluded that people understood more about what aspects they need to improve by watching recorded videos of their own performance. In terms of the amount of feedback, participants most preferred a 2-positive/1-corrective format. Since the average amount of feedback preferred by the participants nearly equaled that from experienced trainers in human-human SSTs, our result suggests the practical future possibilities of an automated evaluation-feedback system that complements SSTs done by professional trainers.
Collapse
Affiliation(s)
- Takeshi Saga
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan.
| | - Hiroki Tanaka
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan.
| | - Yasuhiro Matsuda
- Osaka Psychiatric Medical Center, Hirakata, 573-0022, Japan
- Department of Psychiatry, Nara Medical University, Kashihara, 634-8521, Japan
| | - Tsubasa Morimoto
- Department of Psychiatry, Nara Medical University, Kashihara, 634-8521, Japan
| | - Mitsuhiro Uratani
- Department of Psychiatry, Nara Medical University, Kashihara, 634-8521, Japan
| | - Kosuke Okazaki
- Department of Psychiatry, Nara Medical University, Kashihara, 634-8521, Japan
| | - Yuichiro Fujimoto
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Satoshi Nakamura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| |
Collapse
|
5
|
Tang SX, Hänsel K, Cong Y, Nikzad AH, Mehta A, Cho S, Berretta S, Behbehani L, Pradhan S, John M, Liberman MY. Latent Factors of Language Disturbance and Relationships to Quantitative Speech Features. Schizophr Bull 2023; 49:S93-S103. [PMID: 36946530 PMCID: PMC10031730 DOI: 10.1093/schbul/sbac145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
BACKGROUND AND HYPOTHESIS Quantitative acoustic and textual measures derived from speech ("speech features") may provide valuable biomarkers for psychiatric disorders, particularly schizophrenia spectrum disorders (SSD). We sought to identify cross-diagnostic latent factors for speech disturbance with relevance for SSD and computational modeling. STUDY DESIGN Clinical ratings for speech disturbance were generated across 14 items for a cross-diagnostic sample (N = 334), including SSD (n = 90). Speech features were quantified using an automated pipeline for brief recorded samples of free speech. Factor models for the clinical ratings were generated using exploratory factor analysis, then tested with confirmatory factor analysis in the cross-diagnostic and SSD groups. The relationships between factor scores and computational speech features were examined for 202 of the participants. STUDY RESULTS We found a 3-factor model with a good fit in the cross-diagnostic group and an acceptable fit for the SSD subsample. The model identifies an impaired expressivity factor and 2 interrelated disorganized factors for inefficient and incoherent speech. Incoherent speech was specific to psychosis groups, while inefficient speech and impaired expressivity showed intermediate effects in people with nonpsychotic disorders. Each of the 3 factors had significant and distinct relationships with speech features, which differed for the cross-diagnostic vs SSD groups. CONCLUSIONS We report a cross-diagnostic 3-factor model for speech disturbance which is supported by good statistical measures, intuitive, applicable to SSD, and relatable to linguistic theories. It provides a valuable framework for understanding speech disturbance and appropriate targets for modeling with quantitative speech features.
Collapse
Affiliation(s)
- Sunny X Tang
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Glen Oaks, USA
| | - Katrin Hänsel
- Department of Laboratory Medicine, Yale University, New Haven, USA
| | - Yan Cong
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Glen Oaks, USA
| | - Amir H Nikzad
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Glen Oaks, USA
| | - Aarush Mehta
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Glen Oaks, USA
| | - Sunghye Cho
- Linguistic Data Consortium, University of Pennsylvania, Philadelphia, USA
| | - Sarah Berretta
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Glen Oaks, USA
| | - Leily Behbehani
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Glen Oaks, USA
| | - Sameer Pradhan
- Linguistic Data Consortium, University of Pennsylvania, Philadelphia, USA
| | - Majnu John
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Glen Oaks, USA
| | - Mark Y Liberman
- Linguistic Data Consortium, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
6
|
Mota NB. How can computational tools help to understand language patterns in mental suffering considering social diversity. Psychiatry Res 2023; 319:114995. [PMID: 36495617 DOI: 10.1016/j.psychres.2022.114995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/20/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
The complex interaction between biological and social factors challenges measuring human behavior. Language has been a crucial source of information that mirrors inner processes like thoughts. The development of a novel computational strategy that helps to understand language needs to consider social factors that could also impact human behavior. Ten years ago, I developed a computational approach based on graph theory to measure structural aspects of the narrative's mental organization expressed in spontaneous oral reports. It was possible to measure the decrease in narrative graph connectedness associated with the schizophrenia diagnosis and negative symptoms severity. However, I was worried that the psychiatric field neglected factors from diverse social realities (such as poor access to education). Formal education impacts language by mastering grammar and syntax. Changes in language structure could be related to symptoms and lack of exposure to formal education. Indeed, the same connectedness markers increase according to typical cognitive and academic development. In this paper, I describe the reasons and methods for investigating both factors (psychiatric symptoms and formal education) on language patterns. Further, I evaluate concerns and future challenges of using computational strategies that include social diversity in mental health conditions.
Collapse
Affiliation(s)
- Natália Bezerra Mota
- Institute of Psychiatry at Federal University of Rio de Janeiro - IPUB/UFRJ, Rio de Janeiro, Brazil; Research department at Motrix Lab - Motrix, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Kishimoto T, Nakamura H, Kano Y, Eguchi Y, Kitazawa M, Liang KC, Kudo K, Sento A, Takamiya A, Horigome T, Yamasaki T, Sunami Y, Kikuchi T, Nakajima K, Tomita M, Bun S, Momota Y, Sawada K, Murakami J, Takahashi H, Mimura M. Understanding psychiatric illness through natural language processing (UNDERPIN): Rationale, design, and methodology. Front Psychiatry 2022; 13:954703. [PMID: 36532181 PMCID: PMC9752868 DOI: 10.3389/fpsyt.2022.954703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Psychiatric disorders are diagnosed through observations of psychiatrists according to diagnostic criteria such as the DSM-5. Such observations, however, are mainly based on each psychiatrist's level of experience and often lack objectivity, potentially leading to disagreements among psychiatrists. In contrast, specific linguistic features can be observed in some psychiatric disorders, such as a loosening of associations in schizophrenia. Some studies explored biomarkers, but biomarkers have yet to be used in clinical practice. Aim The purposes of this study are to create a large dataset of Japanese speech data labeled with detailed information on psychiatric disorders and neurocognitive disorders to quantify the linguistic features of those disorders using natural language processing and, finally, to develop objective and easy-to-use biomarkers for diagnosing and assessing the severity of them. Methods This study will have a multi-center prospective design. The DSM-5 or ICD-11 criteria for major depressive disorder, bipolar disorder, schizophrenia, and anxiety disorder and for major and minor neurocognitive disorders will be regarded as the inclusion criteria for the psychiatric disorder samples. For the healthy subjects, the absence of a history of psychiatric disorders will be confirmed using the Mini-International Neuropsychiatric Interview (M.I.N.I.). The absence of current cognitive decline will be confirmed using the Mini-Mental State Examination (MMSE). A psychiatrist or psychologist will conduct 30-to-60-min interviews with each participant; these interviews will include free conversation, picture-description task, and story-telling task, all of which will be recorded using a microphone headset. In addition, the severity of disorders will be assessed using clinical rating scales. Data will be collected from each participant at least twice during the study period and up to a maximum of five times at an interval of at least one month. Discussion This study is unique in its large sample size and the novelty of its method, and has potential for applications in many fields. We have some challenges regarding inter-rater reliability and the linguistic peculiarities of Japanese. As of September 2022, we have collected a total of >1000 records from >400 participants. To the best of our knowledge, this data sample is one of the largest in this field. Clinical Trial Registration Identifier: UMIN000032141.
Collapse
Affiliation(s)
- Taishiro Kishimoto
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Tokyo, Japan
| | - Hironobu Nakamura
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshinobu Kano
- Faculty of Informatics, Shizuoka University, Shizuoka, Japan
| | - Yoko Eguchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Momoko Kitazawa
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kuo-ching Liang
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Koki Kudo
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Department of Neuropsychiatry, St. Marianna University School of Medicine Hospital, Kawasaki, Japan
| | - Ayako Sento
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Akihiro Takamiya
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Toshiro Horigome
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Toshihiko Yamasaki
- Computer Vision and Media Lab (Yamasaki Lab), Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yuki Sunami
- Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Kikuchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kazuki Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | | | - Shogyoku Bun
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Department of Psychiatry, Koutokukai Sato Hospital, Yamagata, Japan
| | - Yuki Momota
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kyosuke Sawada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | | | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|