1
|
McMillan CL, Corner AV, Wijesundara DK, Choo JJ, Pittayakhajonwut D, Poredi I, Parry RH, Bindra GK, Bruce KL, Khromykh AA, Fernando GJ, Dapremont L, Young PR, Muller DA. Skin patch delivery of a SARS-CoV-2 spike DNA vaccine produces broad neutralising antibody responses. Heliyon 2025; 11:e42533. [PMID: 40034315 PMCID: PMC11872540 DOI: 10.1016/j.heliyon.2025.e42533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 01/09/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
The ongoing SARS-CoV-2 pandemic continues to be a major health burden globally, especially in resource-limited areas. Continued research into more effective and accessible vaccines is required to reduce the burden of disease. Here, we use an emerging vaccine delivery system, the high-density microarray patch (HD-MAP) to deliver a plasmid DNA vaccine (Delta 6P) encoding for the SARS-CoV-2 spike protein. HD-MAP delivery of this vaccine resulted in robust IgG responses in mice against multiple domains of the spike protein. The cellular response to vaccination was also measured, and comparative analysis showed that relative to intramuscular vaccination, HD-MAP vaccination elicited spike-specific CD4+ T and CD8+ T cell responses that were largely comparable, but the number of polyfunctional CD4+ T cells was higher in the HD-MAP group. Collectively, this work suggests that HD-MAP delivery of the Delta 6P vaccine is effective against SARS-CoV-2, warranting further investigation.
Collapse
Affiliation(s)
- Christopher L.D. McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, 4072, Australia
| | - Andrea V. Corner
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Jovin J.Y. Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Indrajeet Poredi
- BioNet-Asia, Hi-Tech Industrial Estate, 81 Moo 1, Baan-Lane, Bang Pa-In, Ayutthaya, 13160, Thailand
| | - Rhys H. Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guneet K. Bindra
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kimberley L. Bruce
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, 4072, Australia
| | - Germain J.P. Fernando
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Vaxxas Biomedical Facility, Brisbane, QLD, 4007, Australia
| | | | - Paul R. Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, 4072, Australia
| | - David A. Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, 4072, Australia
| |
Collapse
|
2
|
Dul M, Alali M, Ameri M, Burke MD, Creelman BP, Dick L, Donnelly RF, Eakins MN, Frivold C, Forster AH, Gilbert PA, Henke S, Henry S, Hunt D, Lewis H, Mistilis JJ, Park JH, Prausnitz MR, Robinson DK, Hernandez CAR, Shin J, Speaker TJ, Strasinger C, Taylor KMG, Zehrung D, Birchall JC, Jarrahian C, Coulman SA. White paper: Understanding, informing and defining the regulatory science of microneedle-based dosage forms that are applied to the skin. J Control Release 2025; 378:402-415. [PMID: 39603537 DOI: 10.1016/j.jconrel.2024.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
The COVID-19 pandemic has accelerated pre-clinical and clinical development of microneedle-based drug delivery technology. However the regulatory science of this emerging dosage form is immature and explicit regulatory guidance is limited. A group of international stakeholders has formed to identify and address key issues for the regulatory science of future products that combine a microneedle device and active pharmaceutical ingredient (in solid or semi-solid state) in a single entity that is designed for application to the skin. Guided by the principles of Quality by Design (QbD) and informed by consultation with wider stakeholders, this 'White Paper' describes fundamental elements of the work in an effort to harmonise understanding, stimulate discussion and guide innovation. The paper discusses classification of the dosage form (combination/medicinal product), the regulatory nomenclature that is likely to be adopted and the technical vocabulary that best describes its form and function. More than twenty potential critical quality attributes (CQAs) are identified for the dosage form, and a prioritisation exercise identifies those CQAs that are most pertinent to the dosage form and that will likely require bespoke test methods (delivered dose, puncture performance) or major adaptions to established compendial test methods (dissolution). Hopefully the work will provide a platform for the development of dosage form specific guidance (from regulatory authorities and/or international pharmacopoeias), that expedites clinical translation of safe and effective microneedle-based products.
Collapse
Affiliation(s)
- Maria Dul
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | - Mahmoud Ameri
- Americeutics Consulting, USA; previously Zosano Pharma, USA
| | - Matthew Douglas Burke
- Stemline Therapeutics Inc, a Menarini Group Company, USA; previously Radius Health, Inc., USA
| | | | - Lisa Dick
- Previously Kindeva Drug Delivery, USA
| | | | | | | | | | | | - Stefan Henke
- Bioaxxent - Drug Delivery, Germany; previously LTS Lohmann Therapie-Systeme AG, Germany
| | | | | | | | | | - Jung-Hwan Park
- Department of Bionano Technology, Gachon University, Seongnam, Republic of Korea
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | | - Caroline Strasinger
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), USA
| | - Kevin M G Taylor
- University College London School of Pharmacy, UK; previously British Pharmacopoeia Commission, UK
| | | | - James C Birchall
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | - Sion A Coulman
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
3
|
Tian T, Zhu Y, Shi J, Shang K, Yin Z, Shi H, He Y, Ding J, Zhang F. The development of a human Brucella mucosal vaccine: What should be considered? Life Sci 2024; 355:122986. [PMID: 39151885 DOI: 10.1016/j.lfs.2024.122986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Brucellosis is a chronic infectious disease that is zoonotic in nature. Brucella can infect humans through interactions with livestock, primarily via the digestive tract, respiratory tract, and oral cavity. This bacterium has the potential to be utilized as a biological weapon and is classified as a Category B pathogen by the Centers for Disease Control and Prevention. Currently, there is no approved vaccine for humans against Brucella, highlighting an urgent need for the development of a vaccine to mitigate the risks posed by this pathogen. Brucella primarily infects its host by adhering to and penetrating mucosal surfaces. Mucosal immunity plays a vital role in preventing local infections, clearing microorganisms from mucosal surfaces, and inhibiting the spread of pathogens. As mucosal vaccine strategies continue to evolve, the development of a safe and effective mucosal vaccine against Brucella appears promising.This paper reviews the immune mechanism of mucosal vaccines, the infection mechanism of Brucella, successful Brucella mucosal vaccines in animals, and mucosal adjuvants. Additionally, it elucidates targeting and optimization strategies for mucosal vaccines to facilitate the development of human vaccines against Brucella.
Collapse
Affiliation(s)
- Tingting Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Yuejie Zhu
- Reproductive Fertility Assistance Center, First Afffliated Hospital of Xinjiang Medical University, China
| | - Juan Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Kaiyu Shang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Zhengwei Yin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Huidong Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Yueyue He
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Jianbing Ding
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Fengbo Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China; Department of Clinical laboratory, The First Affiliated hospital of Xinjiang Medical University, China.
| |
Collapse
|
4
|
Yu E, Oh SW, Park SH, Kwon K, Han SB, Kang SH, Lee JH, Ha H, Yoon D, Jung E, Song M, Cho JY, Lee J. The Pigmentation of Blue Light Is Mediated by Both Melanogenesis Activation and Autophagy Inhibition through OPN3-TRPV1. J Invest Dermatol 2024:S0022-202X(24)02080-3. [PMID: 39241981 DOI: 10.1016/j.jid.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/09/2024]
Abstract
Blue light, a high-energy radiation in the visible light spectrum, was recently reported to induce skin pigmentation. In this study, we investigated the involvement of TRPV1-mediated signaling along with OPN3 in blue light-induced melanogenesis as well as its signaling pathway. Operating downstream target of OPN3 in blue light-induced melanogenesis, blue light activated TRPV1 and upregulated its expression, resulting in calcium influx. Calcium ion induced the activation of calcium/calmodulin-dependent protein kinase II and MAPK. It also downregulated clusterin expression, leading to the nuclear translocation of PAX3, ultimately affecting melanin synthesis. In addition, blue light interfered with autophagy-mediated regulation of melanosomes by decreasing not only the interaction between clusterin and LC3B but the expression of activating transcription factor family. These findings demonstrate that the pigmenting effects of blue light are mediated by calcium/calmodulin-dependent protein kinase II- and MAPK-mediated signaling as well as clusterin-dependent inhibition of autophagy through OPN3-TRPV1-calcium influx, suggesting, to our knowledge, a previously unreported signaling pathway through which blue light regulates melanocyte biology. Furthermore, these results suggest that TRPV1 and clusterin could be potential therapeutic targets for blue light-induced pigmentation due to prolonged exposure to blue light.
Collapse
Affiliation(s)
- Eunbi Yu
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Sae Woong Oh
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong City, Korea
| | - Kitae Kwon
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Su Bin Han
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Su Hyun Kang
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Jung Hyun Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Heejun Ha
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Donghoon Yoon
- Myeloma Center, Department of Internal Medicine, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Eunsun Jung
- Biospectrum Life Science Institute, Seongnam, Korea
| | - Minkyung Song
- Integrative Research of T cells Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Korea
| | - Jae Youl Cho
- Molecular Immunology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea.
| | - Jongsung Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
5
|
Chen X. Emerging adjuvants for intradermal vaccination. Int J Pharm 2023; 632:122559. [PMID: 36586639 PMCID: PMC9794530 DOI: 10.1016/j.ijpharm.2022.122559] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/18/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
The majority of vaccines have been delivered into the muscular tissue. Skin contains large amounts of antigen-presenting cells and has been recognized as a more immunogenic site for vaccine delivery. Intradermal delivery has been approved to improve influenza vaccine efficacy and spare influenza vaccine doses. In response to the recent monkeypox outbreak, intradermal delivery has been also approved to stretch the limited monkeypox vaccine doses to immunize more people at risk. Incorporation of vaccine adjuvants is promising to further increase intradermal vaccine efficacy and spare more vaccine doses. Yet, intradermal vaccination is associated with more significant local reactions than intramuscular vaccination. Thus, adjuvants suitable to boost intradermal vaccination need to have a good local safety without inducing overt local reactions. This review introduces currently approved adjuvants in licensed human vaccines and their relative reactogenicity for intradermal delivery and then introduces emerging chemical and physical adjuvants with a good local safety to boost intradermal vaccination. The rational to develop physical adjuvants, the types of physical adjuvants, and the unique advantages of physical adjuvants to boost intradermal vaccination are also introduced in this review.
Collapse
Affiliation(s)
- Xinyuan Chen
- Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, RI 02881, United States.
| |
Collapse
|
6
|
Nguyen HX, Nguyen CN. Microneedle-Mediated Transdermal Delivery of Biopharmaceuticals. Pharmaceutics 2023; 15:277. [PMID: 36678906 PMCID: PMC9864466 DOI: 10.3390/pharmaceutics15010277] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Transdermal delivery provides numerous benefits over conventional routes of administration. However, this strategy is generally limited to a few molecules with specific physicochemical properties (low molecular weight, high potency, and moderate lipophilicity) due to the barrier function of the stratum corneum layer. Researchers have developed several physical enhancement techniques to expand the applications of the transdermal field; among these, microneedle technology has recently emerged as a promising platform to deliver therapeutic agents of any size into and across the skin. Typically, hydrophilic biomolecules cannot penetrate the skin by passive diffusion. Microneedle insertion disrupts skin integrity and compromises its protective function, thus creating pathways (microchannels) for enhanced permeation of macromolecules. Microneedles not only improve stability but also enhance skin delivery of various biomolecules. Academic institutions and industrial companies have invested substantial resources in the development of microneedle systems for biopharmaceutical delivery. This review article summarizes the most recent research to provide a comprehensive discussion about microneedle-mediated delivery of macromolecules, covering various topics from the introduction of the skin, transdermal delivery, microneedles, and biopharmaceuticals (current status, conventional administration, and stability issues), to different microneedle types, clinical trials, safety and acceptability of microneedles, manufacturing and regulatory issues, and the future of microneedle technology.
Collapse
Affiliation(s)
- Hiep X. Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Chien N. Nguyen
- National Institute of Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi 100000, Vietnam
- Faculty of Pharmaceutics and Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi 100000, Vietnam
| |
Collapse
|
7
|
Choo JJY, McMillan CLD, Young PR, Muller DA. Microarray patches: scratching the surface of vaccine delivery. Expert Rev Vaccines 2023; 22:937-955. [PMID: 37846657 DOI: 10.1080/14760584.2023.2270598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Microneedles are emerging as a promising technology for vaccine delivery, with numerous advantages over traditional needle and syringe methods. Preclinical studies have demonstrated the effectiveness of MAPs in inducing robust immune responses over traditional needle and syringe methods, with extensive studies using vaccines targeted against different pathogens in various animal models. Critically, the clinical trials have demonstrated safety, immunogenicity, and patient acceptance for MAP-based vaccines against influenza, measles, rubella, and SARS-CoV-2. AREAS COVERED This review provides a comprehensive overview of the different types of microarray patches (MAPs) and analyses of their applications in preclinical and clinical vaccine delivery settings. This review also covers additional considerations for microneedle-based vaccination, including adjuvants that are compatible with MAPs, patient safety and factors for global vaccination campaigns. EXPERT OPINION MAP vaccine delivery can potentially be a game-changer for vaccine distribution and coverage in both high-income and low- and middle-income countries. For MAPs to reach this full potential, many critical hurdles must be overcome, such as large-scale production, regulatory compliance, and adoption by global health authorities. However, given the considerable strides made in recent years by MAP developers, it may be possible to see the first MAP-based vaccines in use within the next 5 years.
Collapse
Affiliation(s)
- Jovin J Y Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - David A Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Sim HJ, Choi C. Microbuckled Mechano-electrochemical Harvesting Fiber for Self-Powered Organ Motion Sensors. NANO LETTERS 2022; 22:8695-8703. [PMID: 36301734 DOI: 10.1021/acs.nanolett.2c03296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mechanical harvesters have attracted tremendous attention as self-powered strain sensors; previous harvesters required high stress to stretch the fiber because of their high Young's modulus and low elasticity. We report on a mechano-electrochemical harvesting (MECH) fiber based on the new buckle structure, which has a low Young's modulus (2 MPa) with high elasticity (up to 100%) in a similar physiological fluid. MECH converts mechanical energy into electrical energy by changing the capacitance due to changing the surface area caused by the microbuckle on the surface. The damage to the cells can be minimized by their softness; the fiber was stitched on the tissue of the pig stomach while maintaining the performance like a suture fiber. Additionally, the fiber successfully operated in an organ-similar system, which is composed of the stomach or bladder of a pig. The fiber has a high potential to be applied in wearable energy sources and self-powered strain sensors.
Collapse
Affiliation(s)
- Hyeon Jun Sim
- Department of Energy and Materials Engineering, Dongguk University, Seoul04620, Korea
| | - Changsoon Choi
- Department of Energy and Materials Engineering, Dongguk University, Seoul04620, Korea
| |
Collapse
|
9
|
Tran KTM, Gavitt TD, Le TT, Graichen A, Lin F, Liu Y, Tulman ER, Szczepanek SM, Nguyen TD. A Single-Administration Microneedle Skin Patch for Multi-Burst Release of Vaccine against SARS-CoV-2. ADVANCED MATERIALS TECHNOLOGIES 2022; 8:2200905. [PMID: 36714215 PMCID: PMC9874724 DOI: 10.1002/admt.202200905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/25/2022] [Indexed: 06/18/2023]
Abstract
The necessity for multiple injections and cold-chain storage has contributed to suboptimal vaccine utilization, especially in pandemic situations. Thermally-stable and single-administration vaccines hold a great potential to revolutionize the global immunization process. Here, a new approach to thermally stabilize protein-based antigens is presented and a new high-throughput antigen-loading process is devised to create a single-administration, pulsatile-release microneedle (MN) patch which can deliver a recombinant SARS-CoV-2 S1-RBD protein-a model for the COVID-19 vaccine. Nearly 100% of the protein antigen could be stabilized at temperatures up to 100 °C for at least 1 h and at an average human body temperature (37 °C) for up to 4 months. Arrays of the stabilized S1-RBD formulations can be loaded into the MN shells via a single-alignment assembly step. The fabricated MNs are administered at a single time into the skin of rats and induce antibody response which could neutralize authentic SARS-CoV-2 viruses, providing similar immunogenic effect to that induced by multiple bolus injections of the same antigen stored in conventional cold-chain conditions. The MN system presented herein could offer the key solution to global immunization campaigns by avoiding low patient compliance, the requirement for cold-chain storage, and the need for multiple booster injections.
Collapse
Affiliation(s)
- Khanh T. M. Tran
- Department of Biomedical EngineeringUniversity of Connecticut181 Auditorium RoadStorrs06269USA
| | - Tyler D. Gavitt
- Department of Pathobiology and Veterinary ScienceCenter of Excellence for Vaccine ResearchUniversity of Connecticut61 North Eagleville RoadStorrs06269USA
| | - Thinh T. Le
- Department of Mechanical EngineeringUniversity of Connecticut191 Auditorium RoadStorrs06269USA
| | - Adam Graichen
- Department of ChemistryUniversity of Connecticut55 North Eagleville RoadStorrs06269USA
| | - Feng Lin
- Department of Mechanical EngineeringUniversity of Connecticut191 Auditorium RoadStorrs06269USA
| | - Yang Liu
- Department of Mechanical EngineeringUniversity of Connecticut191 Auditorium RoadStorrs06269USA
| | - Edan R. Tulman
- Department of Pathobiology and Veterinary ScienceCenter of Excellence for Vaccine ResearchUniversity of Connecticut61 North Eagleville RoadStorrs06269USA
| | - Steven M. Szczepanek
- Department of Pathobiology and Veterinary ScienceCenter of Excellence for Vaccine ResearchUniversity of Connecticut61 North Eagleville RoadStorrs06269USA
| | - Thanh D. Nguyen
- Department of Biomedical EngineeringUniversity of Connecticut181 Auditorium RoadStorrs06269USA
- Department of Mechanical EngineeringUniversity of Connecticut191 Auditorium RoadStorrs06269USA
| |
Collapse
|
10
|
Coffey JW, van der Burg NMD, Rananakomol T, Ng HI, Fernando GJP, Kendall MAF. An Ultrahigh‐Density Microneedle Array for Skin Vaccination: Inducing Epidermal Cell Death by Increasing Microneedle Density Enhances Total IgG and IgG1 Immune Responses. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jacob W. Coffey
- The Delivery of Drugs and Genes Group (D2G) Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia QLD 4072 Australia
- Department of Chemical Engineering David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Division of Gastroenterology Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
- Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunology University of Melbourne Melbourne VIC 3000 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland St Lucia QLD 4072 Australia
| | - Nicole M. D. van der Burg
- The Delivery of Drugs and Genes Group (D2G) Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia QLD 4072 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland St Lucia QLD 4072 Australia
| | - Thippayawan Rananakomol
- The Delivery of Drugs and Genes Group (D2G) Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia QLD 4072 Australia
| | - Hwee-Ing Ng
- The Delivery of Drugs and Genes Group (D2G) Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia QLD 4072 Australia
| | - Germain J. P. Fernando
- The Delivery of Drugs and Genes Group (D2G) Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia QLD 4072 Australia
- The University of Queensland School of Chemistry and Molecular Biosciences Brisbane QLD 4072 Australia
- Vaxxas Pty Translational Research Institute Woolloongabba QLD 4102 Australia
| | - Mark A. F. Kendall
- The Delivery of Drugs and Genes Group (D2G) Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia QLD 4072 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland St Lucia QLD 4072 Australia
- The University of Queensland School of Chemistry and Molecular Biosciences Brisbane QLD 4072 Australia
| |
Collapse
|
11
|
Local Response and Barrier Recovery in Elderly Skin Following the Application of High-Density Microarray Patches. Vaccines (Basel) 2022; 10:vaccines10040583. [PMID: 35455332 PMCID: PMC9031416 DOI: 10.3390/vaccines10040583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
The high-density microneedle array patch (HD-MAP) is a promising alternative vaccine delivery system device with broad application in disease, including SARS-CoV-2. Skin reactivity to HD-MAP applications has been extensively studied in young individuals, but not in the >65 years population, a risk group often requiring higher dose vaccines to produce protective immune responses. The primary aims of the present study were to characterise local inflammatory responses and barrier recovery to HD-MAPs in elderly skin. In twelve volunteers aged 69−84 years, HD-MAPs were applied to the forearm and deltoid regions. Measurements of transepidermal water loss (TEWL), dielectric permittivity and erythema were performed before and after HD-MAP application at t = 10 min, 30 min, 48 h, and 7 days. At all sites, TEWL (barrier damage), dielectric permittivity (superficial water);, and erythema measurements rapidly increased after HD-MAP application. After 7 days, the mean measures had recovered toward pre-application values. The fact that the degree and chronology of skin reactivity and recovery after HD-MAP was similar in elderly skin to that previously reported in younger adults suggests that the reactivity basis for physical immune enhancement observed in younger adults will also be achievable in the older population.
Collapse
|
12
|
McMillan CLD, Azuar A, Choo JJY, Modhiran N, Amarilla AA, Isaacs A, Honeyman KE, Cheung STM, Liang B, Wurm MJ, Pino P, Kint J, Fernando GJP, Landsberg MJ, Khromykh AA, Hobson-Peters J, Watterson D, Young PR, Muller DA. Dermal Delivery of a SARS-CoV-2 Subunit Vaccine Induces Immunogenicity against Variants of Concern. Vaccines (Basel) 2022; 10:578. [PMID: 35455326 PMCID: PMC9030474 DOI: 10.3390/vaccines10040578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 01/02/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic continues to disrupt essential health services in 90 percent of countries today. The spike (S) protein found on the surface of the causative agent, the SARS-CoV-2 virus, has been the prime target for current vaccine research since antibodies directed against the S protein were found to neutralize the virus. However, as new variants emerge, mutations within the spike protein have given rise to potential immune evasion of the response generated by the current generation of SARS-CoV-2 vaccines. In this study, a modified, HexaPro S protein subunit vaccine, delivered using a needle-free high-density microarray patch (HD-MAP), was investigated for its immunogenicity and virus-neutralizing abilities. Mice given two doses of the vaccine candidate generated potent antibody responses capable of neutralizing the parental SARS-CoV-2 virus as well as the variants of concern, Alpha and Delta. These results demonstrate that this alternative vaccination strategy has the potential to mitigate the effect of emerging viral variants.
Collapse
Affiliation(s)
- Christopher L. D. McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Jovin J. Y. Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Ariel Isaacs
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Kate E. Honeyman
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Stacey T. M. Cheung
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Benjamin Liang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Maria J. Wurm
- ExcellGene SA, CH1870 Monthey, Switzerland; (M.J.W.); (P.P.); (J.K.)
| | - Paco Pino
- ExcellGene SA, CH1870 Monthey, Switzerland; (M.J.W.); (P.P.); (J.K.)
| | - Joeri Kint
- ExcellGene SA, CH1870 Monthey, Switzerland; (M.J.W.); (P.P.); (J.K.)
| | - Germain J. P. Fernando
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Translational Research Institute, Vaxxas Pty Ltd., Brisbane, QLD 4102, Australia
| | - Michael J. Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| | - Paul R. Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| | - David A. Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| |
Collapse
|
13
|
Labouta HI, Langer R, Cullis PR, Merkel OM, Prausnitz MR, Gomaa Y, Nogueira SS, Kumeria T. Role of drug delivery technologies in the success of COVID-19 vaccines: a perspective. Drug Deliv Transl Res 2022; 12:2581-2588. [PMID: 35290656 PMCID: PMC8923087 DOI: 10.1007/s13346-022-01146-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 12/15/2022]
Abstract
The triumphant success of mRNA vaccines is a testimony to the important role drug delivery technologies have played in protecting billions of people against SARS-CoV-2 (or the Corona Virus Disease 2019; COVID-19). Several lipid nanoparticle (LNP) mRNA vaccines were developed and have been instrumental in preventing the disease by boosting the immune system against the pathogen, SARS-CoV-2. These vaccines have been built on decades of scientific research in drug delivery of mRNA, vaccines, and other biologicals. In this manuscript, several leading and emerging scientists in the field of drug delivery share their perspective on the role of drug delivery technologies in developing safe and efficacious vaccines, in a roundtable discussion. The authors also discussed their viewpoint on the current challenges, and the key research questions that should drive this important area of research.
Collapse
Affiliation(s)
- Hagar I. Labouta
- grid.21613.370000 0004 1936 9609College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5 Canada ,grid.21613.370000 0004 1936 9609Biomedical Engineering, University of Manitoba, Winnipeg, MB Canada ,grid.460198.20000 0004 4685 0561Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4 Canada ,grid.7155.60000 0001 2260 6941Faculty of Pharmacy, Alexandria University, Alexandria, 21521 Egypt
| | - Robert Langer
- grid.116068.80000 0001 2341 2786David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Pieter R. Cullis
- grid.17091.3e0000 0001 2288 9830Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Olivia M. Merkel
- grid.5252.00000 0004 1936 973XDepartment of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, 81337 Munich, Germany
| | - Mark R. Prausnitz
- grid.213917.f0000 0001 2097 4943School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Yasmine Gomaa
- grid.213917.f0000 0001 2097 4943School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Sara S. Nogueira
- grid.1005.40000 0004 4902 0432School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432Australian Centre for NanoMedicine, University of New South Wales, Kensington, Sydney, NSW 2052 Australia
| | - Tushar Kumeria
- grid.1005.40000 0004 4902 0432School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432Australian Centre for NanoMedicine, University of New South Wales, Kensington, Sydney, NSW 2052 Australia
| |
Collapse
|
14
|
Developing a Stabilizing Formulation of a Live Chimeric Dengue Virus Vaccine Dry Coated on a High-Density Microarray Patch. Vaccines (Basel) 2021; 9:vaccines9111301. [PMID: 34835234 PMCID: PMC8625757 DOI: 10.3390/vaccines9111301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
Alternative delivery systems such as the high-density microarray patch (HD-MAP) are being widely explored due to the variety of benefits they offer over traditional vaccine delivery methods. As vaccines are dry coated onto the HD-MAP, there is a need to ensure the stability of the vaccine in a solid state upon dry down. Other challenges faced are the structural stability during storage as a dried vaccine and during reconstitution upon application into the skin. Using a novel live chimeric virus vaccine candidate, BinJ/DENV2-prME, we explored a panel of pharmaceutical excipients to mitigate vaccine loss during the drying and storage process. This screening identified human serum albumin (HSA) as the lead stabilizing excipient. When bDENV2-coated HD-MAPs were stored at 4 °C for a month, we found complete retention of vaccine potency as assessed by the generation of potent virus-neutralizing antibody responses in mice. We also demonstrated that HD-MAP wear time did not influence vaccine deposition into the skin or the corresponding immunological outcomes. The final candidate formulation with HSA maintained ~100% percentage recovery after 6 months of storage at 4 °C.
Collapse
|
15
|
McMillan CLD, Choo JJY, Idris A, Supramaniam A, Modhiran N, Amarilla AA, Isaacs A, Cheung STM, Liang B, Bielefeldt-Ohmann H, Azuar A, Acharya D, Kelly G, Fernando GJP, Landsberg MJ, Khromykh AA, Watterson D, Young PR, McMillan NAJ, Muller DA. Complete protection by a single-dose skin patch-delivered SARS-CoV-2 spike vaccine. SCIENCE ADVANCES 2021; 7:eabj8065. [PMID: 34714668 PMCID: PMC8555896 DOI: 10.1126/sciadv.abj8065] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/08/2021] [Indexed: 05/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 160 million people and resulted in more than 3.3 million deaths, and despite the availability of multiple vaccines, the world still faces many challenges with their rollout. Here, we use the high-density microarray patch (HD-MAP) to deliver a SARS-CoV-2 spike subunit vaccine directly to the skin. We show that the vaccine is thermostable on the patches, with patch delivery enhancing both cellular and antibody immune responses. Elicited antibodies potently neutralize clinically relevant isolates including the Alpha and Beta variants. Last, a single dose of HD-MAP–delivered spike provided complete protection from a lethal virus challenge in an ACE2-transgenic mouse model. Collectively, these data show that HD-MAP delivery of a SARS-CoV-2 vaccine was superior to traditional needle-and-syringe vaccination and may be a significant addition to the ongoing COVID-19 (coronavirus disease 2019) pandemic.
Collapse
Affiliation(s)
- Christopher L. D. McMillan
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jovin J. Y. Choo
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Adi Idris
- Menzies Health Institute Queensland, School of Pharmacy, Anatomy and Medical Sciences, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Aroon Supramaniam
- Menzies Health Institute Queensland, School of Pharmacy, Anatomy and Medical Sciences, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ariel Isaacs
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Stacey T. M. Cheung
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Benjamin Liang
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
- School of Veterinary Science, University of Queensland Gatton Campus, Gatton, Queensland 4343, Australia
| | - Armira Azuar
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Dhruba Acharya
- Menzies Health Institute Queensland, School of Pharmacy, Anatomy and Medical Sciences, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Gabrielle Kelly
- Menzies Health Institute Queensland, School of Pharmacy, Anatomy and Medical Sciences, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Germain J. P. Fernando
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, Queensland 4102, Australia
| | - Michael J. Landsberg
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - Paul R. Young
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - Nigel A. J. McMillan
- Menzies Health Institute Queensland, School of Pharmacy, Anatomy and Medical Sciences, Griffith University, Gold Coast, Queensland 4222, Australia
| | - David A. Muller
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
16
|
Depelsenaire ACI, Witham K, Veitch M, Wells JW, Anderson CD, Lickliter JD, Rockman S, Bodle J, Treasure P, Hickling J, Fernando GJP, Forster AH. Cellular responses at the application site of a high-density microarray patch delivering an influenza vaccine in a randomized, controlled phase I clinical trial. PLoS One 2021; 16:e0255282. [PMID: 34329337 PMCID: PMC8323919 DOI: 10.1371/journal.pone.0255282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 06/09/2021] [Indexed: 12/23/2022] Open
Abstract
Microarray patches (MAPs) have the potential to be a safer, more acceptable, easier to use and more cost-effective method for administration of vaccines when compared to the needle and syringe. Since MAPs deliver vaccine to the dermis and epidermis, a degree of local immune response at the site of application is expected. In a phase 1 clinical trial (ACTRN 12618000112268), the Vaxxas high-density MAP (HD-MAP) was used to deliver a monovalent, split inactivated influenza virus vaccine into the skin. HD-MAP immunisation led to significantly enhanced humoral responses on day 8, 22 and 61 compared with IM injection of a quadrivalent commercial seasonal influenza vaccine (Afluria Quadrivalent®). Here, the aim was to analyse cellular responses to HD-MAPs in the skin of trial subjects, using flow cytometry and immunohistochemistry. HD-MAPs were coated with a split inactivated influenza virus vaccine (A/Singapore/GP1908/2015 [H1N1]), to deliver 5 μg haemagglutinin (HA) per HD-MAP. Three HD-MAPs were applied to the volar forearm (FA) of five healthy volunteers (to achieve the required 15 μg HA dose), whilst five control subjects received three uncoated HD-MAPs (placebo). Local skin response was recorded for over 61 days and haemagglutination inhibition antibody titres (HAI) were assessed on days 1, 4, 8, 22, and 61. Skin biopsies were taken before (day 1), and three days after HD-MAP application (day 4) and analysed by flow-cytometry and immunohistochemistry to compare local immune subset infiltration. HD-MAP vaccination with 15 μg HA resulted in significant HAI antibody titres compared to the placebo group. Application of uncoated placebo HD-MAPs resulted in mild erythema and oedema in most subjects, that resolved by day 4 in 80% of subjects. Active, HA-coated HD-MAP application resulted in stronger erythema responses on day 4, which resolved between days 22-61. Overall, these erythema responses were accompanied by an influx of immune cells in all subjects. Increased cell infiltration of CD3+, CD4+, CD8+ T cells as well as myeloid CD11b+ CD11c+ and non-myeloid CD11b- dendritic cells were observed in all subjects, but more pronounced in active HD-MAP groups. In contrast, CD19+/CD20+ B cell counts remained unchanged. Key limitations include the use of an influenza vaccine, to which the subjects may have had previous exposure. Different results might have been obtained with HD-MAPs inducing a primary immune response. In conclusion, influenza vaccine administered to the forearm (FA) using the HD-MAP was well-tolerated and induced a mild to moderate skin response with lymphocytic infiltrate at the site of application.
Collapse
Affiliation(s)
| | | | - Margaret Veitch
- The University of Queensland Diamantina Institute, Woolloongabba, Queensland, Australia
| | - James W. Wells
- The University of Queensland Diamantina Institute, Woolloongabba, Queensland, Australia
| | | | | | - Steve Rockman
- Seqirus Pty Ltd, Parkville, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jesse Bodle
- Seqirus Pty Ltd, Parkville, Victoria, Australia
| | - Peter Treasure
- Peter Treasure Statistical Services Ltd, Kings Lynn, United Kingdom
| | | | - Germain J. P. Fernando
- Vaxxas Pty Ltd, Brisbane, Queensland, Australia
- The University of Queensland, School of Chemistry & Molecular Biosciences, Faculty of Science, Brisbane, Queensland, Australia
| | | |
Collapse
|
17
|
Choo JJY, Vet LJ, McMillan CLD, Harrison JJ, Scott CAP, Depelsenaire ACI, Fernando GJP, Watterson D, Hall RA, Young PR, Hobson-Peters J, Muller DA. A chimeric dengue virus vaccine candidate delivered by high density microarray patches protects against infection in mice. NPJ Vaccines 2021; 6:66. [PMID: 33963191 PMCID: PMC8105366 DOI: 10.1038/s41541-021-00328-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Dengue viruses (DENV) cause an estimated 390 million infections globally. With no dengue-specific therapeutic treatment currently available, vaccination is the most promising strategy for its control. A wide range of DENV vaccines are in development, with one having already been licensed, albeit with limited distribution. We investigated the immunogenicity and protective efficacy of a chimeric virus vaccine candidate based on the insect-specific flavivirus, Binjari virus (BinJV), displaying the structural prM/E proteins of DENV (BinJ/DENV2-prME). In this study, we immunized AG129 mice with BinJ/DENV2-prME via a needle-free, high-density microarray patch (HD-MAP) delivery system. Immunization with a single, 1 µg dose of BinJ/DENV2-prME delivered via the HD-MAPs resulted in enhanced kinetics of neutralizing antibody induction when compared to needle delivery and complete protection against mortality upon virus challenge in the AG129 DENV mouse model.
Collapse
Affiliation(s)
- Jovin J Y Choo
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Laura J Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher L D McMillan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Connor A P Scott
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Germain J P Fernando
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Vaxxas Pty Ltd, Translational Research Institute, Brisbane, QLD, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| | - David A Muller
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
18
|
Korkmaz E, Balmert SC, Sumpter TL, Carey CD, Erdos G, Falo LD. Microarray patches enable the development of skin-targeted vaccines against COVID-19. Adv Drug Deliv Rev 2021; 171:164-186. [PMID: 33539853 PMCID: PMC8060128 DOI: 10.1016/j.addr.2021.01.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic is a serious threat to global health and the global economy. The ongoing race to develop a safe and efficacious vaccine to prevent infection by SARS-CoV-2, the causative agent for COVID-19, highlights the importance of vaccination to combat infectious pathogens. The highly accessible cutaneous microenvironment is an ideal target for vaccination since the skin harbors a high density of antigen-presenting cells and immune accessory cells with broad innate immune functions. Microarray patches (MAPs) are an attractive intracutaneous biocargo delivery system that enables safe, reproducible, and controlled administration of vaccine components (antigens, with or without adjuvants) to defined skin microenvironments. This review describes the structure of the SARS-CoV-2 virus and relevant antigenic targets for vaccination, summarizes key concepts of skin immunobiology in the context of prophylactic immunization, and presents an overview of MAP-mediated cutaneous vaccine delivery. Concluding remarks on MAP-based skin immunization are provided to contribute to the rational development of safe and effective MAP-delivered vaccines against emerging infectious diseases, including COVID-19.
Collapse
Affiliation(s)
- Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Stephen C Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tina L Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
19
|
Vassilieva EV, Li S, Korniychuk H, Taylor DM, Wang S, Prausnitz MR, Compans RW. cGAMP/Saponin Adjuvant Combination Improves Protective Response to Influenza Vaccination by Microneedle Patch in an Aged Mouse Model. Front Immunol 2021; 11:583251. [PMID: 33603732 PMCID: PMC7884748 DOI: 10.3389/fimmu.2020.583251] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Current strategies for improving protective response to influenza vaccines during immunosenescence do not adequately protect individuals over 65 years of age. Here, we used an aged mouse model to investigate the potential of co-delivery of influenza vaccine with the recently identified combination of a saponin adjuvant Quil-A and an activator of the STING pathway, 2’3 cyclic guanosine monophosphate–adenosine monophosphate (cGAMP) via dissolving microneedle patches (MNPs) applied to skin. We demonstrate that synergy between the two adjuvant components is observed after their incorporation with H1N1 vaccine into MNPs as revealed by analysis of the immune responses in adult mice. Aged 21-month-old mice were found to be completely protected against live influenza challenge after vaccination with the MNPs adjuvanted with the Quil-A/cGAMP combination (5 µg each) and demonstrated significantly reduced morbidity compared to the observed responses in these mice vaccinated with unadjuvanted MNPs. Analysis of the lung lysates of the surviving aged mice post challenge revealed the lowest level of residual inflammation in the adjuvanted groups. We conclude that combining influenza vaccine with a STING pathway activator and saponin-based adjuvant in MNPs is a novel option for skin vaccination of the immunosenescent population, which is at high risk for influenza.
Collapse
Affiliation(s)
- Elena V Vassilieva
- Department of Microbiology & Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Song Li
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Heorhiy Korniychuk
- Department of Microbiology & Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Dahnide M Taylor
- Department of Microbiology & Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Shelly Wang
- Department of Microbiology & Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Richard W Compans
- Department of Microbiology & Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
20
|
Korkmaz E, Balmert SC, Carey CD, Erdos G, Falo LD. Emerging skin-targeted drug delivery strategies to engineer immunity: A focus on infectious diseases. Expert Opin Drug Deliv 2021; 18:151-167. [PMID: 32924651 PMCID: PMC9355143 DOI: 10.1080/17425247.2021.1823964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Infectious pathogens are global disrupters. Progress in biomedical science and technology has expanded the public health arsenal against infectious diseases. Specifically, vaccination has reduced the burden of infectious pathogens. Engineering systemic immunity by harnessing the cutaneous immune network has been particularly attractive since the skin is an easily accessible immune-responsive organ. Recent advances in skin-targeted drug delivery strategies have enabled safe, patient-friendly, and controlled deployment of vaccines to cutaneous microenvironments for inducing long-lived pathogen-specific immunity to mitigate infectious diseases, including COVID-19. AREAS COVERED This review briefly discusses the basics of cutaneous immunomodulation and provides a concise overview of emerging skin-targeted drug delivery systems that enable safe, minimally invasive, and effective intracutaneous administration of vaccines for engineering systemic immune responses to combat infectious diseases. EXPERT OPINION In-situ engineering of the cutaneous microenvironment using emerging skin-targeted vaccine delivery systems offers remarkable potential to develop diverse immunization strategies against pathogens. Mechanistic studies with standard correlates of vaccine efficacy will be important to compare innovative intracutaneous drug delivery strategies to each other and to existing clinical approaches. Cost-benefit analyses will be necessary for developing effective commercialization strategies. Significant involvement of industry and/or government will be imperative for successfully bringing novel skin-targeted vaccine delivery methods to market for their widespread use.
Collapse
Affiliation(s)
- Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen C. Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Louis D. Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA,UPMC Hillman Cancer Center, Pittsburgh, PA, USA,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA,The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Hazlewood JE, Dumenil T, Le TT, Slonchak A, Kazakoff SH, Patch AM, Gray LA, Howley PM, Liu L, Hayball JD, Yan K, Rawle DJ, Prow NA, Suhrbier A. Injection site vaccinology of a recombinant vaccinia-based vector reveals diverse innate immune signatures. PLoS Pathog 2021; 17:e1009215. [PMID: 33439897 PMCID: PMC7837487 DOI: 10.1371/journal.ppat.1009215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/26/2021] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Poxvirus systems have been extensively used as vaccine vectors. Herein a RNA-Seq analysis of intramuscular injection sites provided detailed insights into host innate immune responses, as well as expression of vector and recombinant immunogen genes, after vaccination with a new multiplication defective, vaccinia-based vector, Sementis Copenhagen Vector. Chikungunya and Zika virus immunogen mRNA and protein expression was associated with necrosing skeletal muscle cells surrounded by mixed cellular infiltrates. The multiple adjuvant signatures at 12 hours post-vaccination were dominated by TLR3, 4 and 9, STING, MAVS, PKR and the inflammasome. Th1 cytokine signatures were dominated by IFNγ, TNF and IL1β, and chemokine signatures by CCL5 and CXCL12. Multiple signatures associated with dendritic cell stimulation were evident. By day seven, vaccine transcripts were absent, and cell death, neutrophil, macrophage and inflammation annotations had abated. No compelling arthritis signatures were identified. Such injection site vaccinology approaches should inform refinements in poxvirus-based vector design. Poxvirus vector systems have been widely developed for vaccine applications. Despite considerable progress, so far only one recombinant poxvirus vectored vaccine has to date been licensed for human use, with ongoing efforts seeking to enhance immunogenicity whilst minimizing reactogenicity. The latter two characteristics are often determined by early post-vaccination events at the injection site. We therefore undertook an injection site vaccinology approach to analyzing gene expression at the vaccination site after intramuscular inoculation with a recombinant, multiplication defective, vaccinia-based vaccine. This provided detailed insights into inter alia expression of vector-encoded immunoregulatory genes, as well as host innate and adaptive immune responses. We propose that such injection site vaccinology can inform rational vaccine vector design, and we discuss how the information and approach elucidated herein might be used to improve immunogenicity and limit reactogenicity of poxvirus-based vaccine vector systems.
Collapse
Affiliation(s)
- Jessamine E. Hazlewood
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Troy Dumenil
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Thuy T. Le
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Australia
| | - Stephen H. Kazakoff
- Clinical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ann-Marie Patch
- Clinical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Lesley-Ann Gray
- Australian Genome Research Facility Ltd., Melbourne, Australia
| | | | - Liang Liu
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - John D. Hayball
- Sementis Ltd., Hackney, Australia
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Daniel J. Rawle
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Natalie A. Prow
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Australian Infectious Disease Research Centre, Brisbane, Australia
- * E-mail:
| |
Collapse
|
22
|
Efficient Delivery of Dengue Virus Subunit Vaccines to the Skin by Microprojection Arrays. Vaccines (Basel) 2019; 7:vaccines7040189. [PMID: 31756967 PMCID: PMC6963636 DOI: 10.3390/vaccines7040189] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 11/20/2022] Open
Abstract
Dengue virus is the most important arbovirus impacting global human health, with an estimated 390 million infections annually, and over half the world’s population at risk of infection. While significant efforts have been made to develop effective vaccines to mitigate this threat, the task has proven extremely challenging, with new approaches continually being sought. The majority of protective, neutralizing antibodies induced during infection are targeted by the envelope (E) protein, making it an ideal candidate for a subunit vaccine approach. Using truncated, recombinant, secreted E proteins (sE) of all 4 dengue virus serotypes, we have assessed their immunogenicity and protective efficacy in mice, with or without Quil-A as an adjuvant, and delivered via micropatch array (MPA) to the skin in comparison with more traditional routes of immunization. The micropatch contains an ultra-high density array (21,000/cm2) of 110 μm microprojections. Mice received 3 doses of 1 μg (nanopatch, intradermal, subcutaneous, or intra muscular injection) or 10 μg (intradermal, subcutaneous, or intra muscular injection) of tetravalent sE spaced 4 weeks apart. When adjuvanted with Quil-A, tetravalent sE vaccination delivered via MPA resulted in earlier induction of virus-neutralizing IgG antibodies for all four serotypes when compared with all of the other vaccination routes. Using the infectious dengue virus AG129 mouse infectious dengue model, these neutralizing antibodies protected all mice from lethal dengue virus type 2 D220 challenge, with protected animals showing no signs of disease or circulating virus. If these results can be translated to humans, MPA-delivered sE represents a promising approach to dengue virus vaccination.
Collapse
|