1
|
Wei Z, Jin F, Li T, He Y, Qian L, Ma J, Yuan T, Yu X, Zheng W, Javanmardi N, Pena-Pitrach E, Wang T, Xu J, Feng ZQ. Biofluid-Permeable and Erosion-Resistant Wireless Neural-Electronic Interfaces for Neurohomeostasis Modulation. ACS NANO 2025; 19:4541-4560. [PMID: 39818765 DOI: 10.1021/acsnano.4c14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Neural-electronic interfaces through delivering electroceuticals to lesions and modulating pathological endogenous electrical environments offer exciting opportunities to treat drug-refractory neurological disorders. Such an interface should ideally be compatible with the neural tissue and aggressive biofluid environment. Unfortunately, no interface specifically designed for the biofluid environments is available so far; instead, simply stacking an encapsulation layer on silicon-based substrates makes them susceptible to biofluid leakage, device malfunction, and foreign-body reactions. Here, we developed a biofluid-permeable and erosion-resistant wireless neural-electronic interface (BNEI) that is composed of a flexible 3D interconnected poly(l-lactide) fibrous network with a dense and axially aligned piezoelectrical molecular chain arrangement architecture. The organized molecular chain structure enhances the tortuous pathway and longitudinal piezoelectric coefficient of poly(l-lactide) fibers, improves their water barrier properties, and enables efficient conversion of low-intensity acoustic vibrations transmitted in biofluids into electrical signals, achieving long-term stable and wireless neuromodulation. A 3-month clinical trial demonstrated that the BNEI can effectively accelerate the pathological cascade in peripheral neuropathy for nerve regeneration and transcranially modulate cerebellar-cerebral circuit dynamics, suppressing seizures in temporal lobe epilepsy. The BNEI can be a clinically scalable approach for wireless neuromodulation that is broadly applicable to the modulation of neurohomeostasis in both the peripheral and central nervous systems.
Collapse
Affiliation(s)
- Zhidong Wei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Fei Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Tong Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yuyuan He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Lili Qian
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Juan Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Tao Yuan
- Department of Orthopedic, Nanjing Jinling Hospital, Nanjing 210002, P. R. China
| | - Xin Yu
- Department of Orthopedic, Nanjing Jinling Hospital, Nanjing 210002, P. R. China
| | - Weiying Zheng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Negar Javanmardi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Esteban Pena-Pitrach
- Department of Manufacturing Technology Catalonia Spain, Polytechnic University of Catalonia, Catalonia 08700, Spain
| | - Ting Wang
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Jianda Xu
- Department of Orthopaedics, Changzhou Hospital of Traditional Chinese Medicine, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou 213003, P. R. China
| | - Zhang-Qi Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
2
|
Ban S, Yi H, Park J, Huang Y, Yu KJ, Yeo WH. Advances in Photonic Materials and Integrated Devices for Smart and Digital Healthcare: Bridging the Gap Between Materials and Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416899. [PMID: 39905874 DOI: 10.1002/adma.202416899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/06/2024] [Indexed: 02/06/2025]
Abstract
Recent advances in developing photonic technologies using various materials offer enhanced biosensing, therapeutic intervention, and non-invasive imaging in healthcare. Here, this article summarizes significant technological advancements in materials, photonic devices, and bio-interfaced systems, which demonstrate successful applications for impacting human healthcare via improved therapies, advanced diagnostics, and on-skin health monitoring. The details of required materials, necessary properties, and device configurations are described for next-generation healthcare systems, followed by an explanation of the working principles of light-based therapeutics and diagnostics. Next, this paper shares the recent examples of integrated photonic systems focusing on translation and immediate applications for clinical studies. In addition, the limitations of existing materials and devices and future directions for smart photonic systems are discussed. Collectively, this review article summarizes the recent focus and trends of technological advancements in developing new nanomaterials, light delivery methods, system designs, mechanical structures, material functionalization, and integrated photonic systems to advance human healthcare and digital healthcare.
Collapse
Affiliation(s)
- Seunghyeb Ban
- George W. Woodruff School of Mechanical Engineering, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hoon Yi
- George W. Woodruff School of Mechanical Engineering, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jaejin Park
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Yunuo Huang
- School of Industrial Design, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ki Jun Yu
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, South Korea
- The Biotech Center, Pohang University of Science and Technology (POSTECH), Gyeongbuk, 37673, South Korea
- Department of Electrical and Electronic Engineering, YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University, Seoul, 03722, South Korea
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
3
|
Zhu C, Wang E, Li Z, Ouyang H. Advances in Symbiotic Bioabsorbable Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410289. [PMID: 39846424 DOI: 10.1002/advs.202410289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/03/2024] [Indexed: 01/24/2025]
Abstract
Symbiotic bioabsorbable devices are ideal for temporary treatment. This eliminates the boundaries between the device and organism and develops a symbiotic relationship by degrading nutrients that directly enter the cells, tissues, and body to avoid the hazards of device retention. Symbiotic bioresorbable electronics show great promise for sensing, diagnostics, therapy, and rehabilitation, as underpinned by innovations in materials, devices, and systems. This review focuses on recent advances in bioabsorbable devices. Innovation is focused on the material, device, and system levels. Significant advances in biomedical applications are reviewed, including integrated diagnostics, tissue repair, cardiac pacing, and neurostimulation. In addition to the material, device, and system issues, the challenges and trends in symbiotic bioresorbable electronics are discussed.
Collapse
Affiliation(s)
- Chang Zhu
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Engui Wang
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhou Li
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Han Ouyang
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
4
|
Fan X, Tang Y, Zhang J, Ma K, Xu Z, Liu Y, Xue B, Cao Y, Mei D, Wang W, Wei G, Tao K. Gaseous Synergistic Self-Assembly and Arraying to Develop Bio-Organic Photocapacitors for Neural Photostimulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410471. [PMID: 39840461 DOI: 10.1002/advs.202410471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/24/2024] [Indexed: 01/23/2025]
Abstract
Bioinspired supramolecular architectonics is attracting increasing interest due to their flexible organization and multifunctionality. However, state-of-the-art bioinspired architectonics generally take place in solvent-based circumstance, thus leading to achieving precise control over the self-assembly remains challenging. Moreover, the intrinsic difficulty of ordering the bio-organic self-assemblies into stable large-scale arrays in the liquid environment for engineering devices severely restricts their extensive applications. Herein, a gaseous organization strategy is proposed with the physical vapor deposition (PVD) technology, allowing the bio-organic monomers not only self-assemble into architectures well-established from the solvent-based approaches but morphologies distinct from those delivered from the liquid cases. Specifically, 9-fluorenylmethyloxycarbonyl-phenylalanine-phenylalanine (Fmoc-FF) self-assembles into spheres with tailored dimensions in the gaseous environment rather than conventional nanofibers, due to the distinct organization mechanisms. Arraying of the spherical architectures can integrate their behaviors, thus endorsing the bio-organic film the ability of programmable optoelectronic properties, which can be employed to design P-N heterojunction-based bio-photocapacitors for non-invasive and nongenetic neurostimulations. The findings demonstrate that the gaseous strategy may offer an alternative approach to achieve unprecedented bio-organic superstructures, and allow ordering into large-scale arrays for behavior integration, potentially paving the avenue of developing supramolecular devices and promoting the practical applications of bio-organic architectonics.
Collapse
Affiliation(s)
- Xinyuan Fan
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Zhejiang-Ireland Joint Laboratory of Bio-Organic Dielectrics & Devices, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, 200438, China
| | - Jiahao Zhang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Zhejiang-Ireland Joint Laboratory of Bio-Organic Dielectrics & Devices, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Kang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Zhejiang-Ireland Joint Laboratory of Bio-Organic Dielectrics & Devices, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhengyu Xu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Yuying Liu
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, 200438, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250021, China
- Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine innovation center, Nanjing University, Nanjing, 210093, China
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
- Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, 200438, China
| | - Kai Tao
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Zhejiang-Ireland Joint Laboratory of Bio-Organic Dielectrics & Devices, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
5
|
Wang S, Song X, Xu J, Wang J, Yu L. Flexible silicon for high-performance photovoltaics, photodetectors and bio-interfaced electronics. MATERIALS HORIZONS 2024. [PMID: 39688131 DOI: 10.1039/d4mh01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Silicon (Si) is currently the most mature and reliable semiconductor material in the industry, playing a pivotal role in the development of modern microelectronics, renewable energy, and bio-electronic technologies. In recent years, widespread research attention has been devoted to the development of advanced flexible electronics, photovoltaics, and bio-interfaced sensors/detectors, boosting their emerging applications in distributed energy sources, healthcare, environmental monitoring, and brain-computer interfaces (BCIs). Despite the rigid and brittle nature of Si, a series of new fabrication technologies and integration strategies have been developed to enable a wide range of c-Si-based high-performance flexible photovoltaics and electronics, which were previously only achievable with intrinsically soft organic and polymer semiconductors. More interestingly, programmable geometric engineering of crystalline silicon (c-Si) units and logic circuits has been explored to enable the fabrication of various highly flexible nanoprobes for intracellular sensing and the deployment of soft BCI matrices to record and understand brain neural activities for the development of advanced neuroprosthetics. This review will systematically examine the latest progress in the fabrication of Si-based flexible solar cells, photodetectors, and biological probing interfaces over the past decade, identifying key design principles, mechanisms, and technological milestones achieved through novel geometry, morphology, and composition control. These advancements, when combined, will not only promote the practical applications of sustainable energy and wearable electronics but also spur new breakthroughs in emerging human-machine interfaces (HMIs) and artificial intelligence applications, which hold significant implications for understanding neural activities, implementing more efficient artificial Intelligence (AI) algorithms, and developing new therapies or treatments. Finally, we will summarize and provide an outlook on the current challenges and future opportunities of Si-based electronics, flexible optoelectronics, and bio-sensing.
Collapse
Affiliation(s)
- Shuyi Wang
- School of Electronics Science and Engineering, Nanjing University, 210023 Nanjing, P. R. China.
| | - Xiaopan Song
- School of Electronics Science and Engineering, Nanjing University, 210023 Nanjing, P. R. China.
| | - Jun Xu
- School of Electronics Science and Engineering, Nanjing University, 210023 Nanjing, P. R. China.
- School of Microelectronics and School of Integrated Circuits, Nantong University, 226019, Nantong, P. R. China.
| | - Junzhuan Wang
- School of Electronics Science and Engineering, Nanjing University, 210023 Nanjing, P. R. China.
| | - Linwei Yu
- School of Electronics Science and Engineering, Nanjing University, 210023 Nanjing, P. R. China.
| |
Collapse
|
6
|
Deng K, Luo R, Chen Y, Liu X, Xi Y, Usman M, Jiang X, Li Z, Zhang J. Electrical Stimulation Therapy - Dedicated to the Perfect Plastic Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409884. [PMID: 39680745 DOI: 10.1002/advs.202409884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Tissue repair and reconstruction are a clinical difficulty. Bioelectricity has been identified as a critical factor in supporting tissue and cell viability during the repair process, presenting substantial potential for clinical application. This review delves into various sources of electrical stimulation and identifies appropriate electrode materials for clinical use. It also highlights the biological mechanisms of electrical stimulation at both the subcellular and cellular levels, elucidating how these interactions facilitate the repair and regeneration processes across different organs. Moreover, specific electrode materials and stimulation sources are outlined, detailing their impact on cellular activity. The future development trends are projected from two perspectives: the optimization of equipment performance and the fulfillment of clinical demands, focusing on the feasibility, safety, and cost-effectiveness of technologies.
Collapse
Affiliation(s)
- Kexin Deng
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ruizeng Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiaoqiang Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanyin Xi
- A Breast Disease Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Muhammad Usman
- Department of Plastic Surgery and Burn, Central Hospital Affiliated with Chongqing University of Technology, Chongqing, 400054, P.R. China
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhou Li
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
7
|
Quan Y, Wang E, Ouyang H, Xu L, Jiang L, Teng L, Li J, Luo L, Wu X, Zeng Z, Li Z, Zheng Q. Biodegradable and Implantable Triboelectric Nanogenerator Improved by β-Lactoglobulin Fibrils-Assisted Flexible PVA Porous Film. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409914. [PMID: 39526831 DOI: 10.1002/advs.202409914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/02/2024] [Indexed: 11/16/2024]
Abstract
Triboelectric nanogenerators (TENGs) are highly promising as implantable, degradable energy sources and self-powered sensors. However, the degradable triboelectric materials are often limited in terms of contact electrification and mechanical properties. Here, a bio-macromolecule-assisted toughening strategy for PVA aerogel-based triboelectric materials is proposed. By introducing β-lactoglobulin fibrils (BF) into the PVA aerogel network, the material's mechanical properties while preserving its swelling resistance is significantly enhanced. Compared to pure PVA porous film, the BF-PVA porous film exhibits an eightfold increase in fracture strength (from 1.92 to 15.48 J) and a fourfold increase in flexibility (from 10.956 to 39.36 MPa). Additionally, the electrical output of BF-PVA in triboelectric performance tests increased nearly fivefold (from 45 to 203 V). Leveraging these enhanced properties, a biodegradable TENG (bi-TENG) for implantable muscle activity sensing is developed, achieving real-time monitoring of neuromuscular processes. This innovation holds significant potential for advancing implantable medical devices and promoting new applications in bio-integrated electronics.
Collapse
Affiliation(s)
- Yichang Quan
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Engui Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Han Ouyang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lingling Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Lu Jiang
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Lijing Teng
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Jiaxuan Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Lin Luo
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xujie Wu
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Zhu Zeng
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Qiang Zheng
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, P. R. China
| |
Collapse
|
8
|
Cheng X, Li W, Wang Y, Weng K, Xing Y, Huang Y, Sheng X, Yao J, Zhang H, Li J. Highly Branched Au Superparticles as Efficient Photothermal Transducers for Optical Neuromodulation. ACS NANO 2024; 18:29572-29584. [PMID: 39400203 DOI: 10.1021/acsnano.4c07163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Precise neuromodulation is critical for interrogating cellular communication and treating neurological diseases. Nanoscale transducers have emerged as effective interfaces to exert photothermal effects and modulate neural activities with a high spatiotemporal resolution. Ideal materials for this application should possess strong light absorption, high photothermal conversion efficiency, and great biocompatibility for clinical translation. Here, we show that the structurally designed 3D Au superparticles with a highly branched morphology can be promising candidates for nongenetic and remote neuromodulation. The structure-induced blackbody-like absorption endows Au superparticles with photothermal conversion efficiency over 90%, much higher than that of conventional Au nanorods. With the biocompatible polydopamine ligands, Au superparticles can be readily interfaced with primary mouse hippocampal neurons and other cells and can photostimulate or inhibit their activities in both cell networks or with a single-cell resolution. These findings highlight the importance of structural designs as powerful tools to promote the performance of plasmonic materials in neuromodulation and related research of neuroscience and neuroengineering.
Collapse
Affiliation(s)
- Xinyu Cheng
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Wenjun Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yinghan Wang
- School of Life Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Kangkang Weng
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- School of Optics and Photonics, Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing Institute of Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Yunyun Xing
- School of Life Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Yunxiang Huang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Jun Yao
- School of Life Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Hao Zhang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Zhu G, Xiong J, Li X, He Z, Zhong S, Chen J, Shi Y, Pan T, Zhang L, Li B, Xin H. Neural stimulation and modulation with sub-cellular precision by optomechanical bio-dart. LIGHT, SCIENCE & APPLICATIONS 2024; 13:258. [PMID: 39300070 DOI: 10.1038/s41377-024-01617-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
Neural stimulation and modulation at high spatial resolution are crucial for mediating neuronal signaling and plasticity, aiding in a better understanding of neuronal dysfunction and neurodegenerative diseases. However, developing a biocompatible and precisely controllable technique for accurate and effective stimulation and modulation of neurons at the subcellular level is highly challenging. Here, we report an optomechanical method for neural stimulation and modulation with subcellular precision using optically controlled bio-darts. The bio-dart is obtained from the tip of sunflower pollen grain and can generate transient pressure on the cell membrane with submicrometer spatial resolution when propelled by optical scattering force controlled with an optical fiber probe, which results in precision neural stimulation via precisely activation of membrane mechanosensitive ion channel. Importantly, controllable modulation of a single neuronal cell, even down to subcellular neuronal structures such as dendrites, axons, and soma, can be achieved. This bio-dart can also serve as a drug delivery tool for multifunctional neural stimulation and modulation. Remarkably, our optomechanical bio-darts can also be used for in vivo neural stimulation in larval zebrafish. This strategy provides a novel approach for neural stimulation and modulation with sub-cellular precision, paving the way for high-precision neuronal plasticity and neuromodulation.
Collapse
Affiliation(s)
- Guoshuai Zhu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Jianyun Xiong
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Xing Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Ziyi He
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Shuhan Zhong
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Junlin Chen
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Yang Shi
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Ting Pan
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| | - Hongbao Xin
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
10
|
Wang Y, Hartung JE, Goad A, Preisegger MA, Chacon B, Gold MS, Gogotsi Y, Cohen-Karni T. Photothermal Excitation of Neurons Using MXene: Cellular Stress and Phototoxicity Evaluation. Adv Healthc Mater 2024; 13:e2302330. [PMID: 37755313 PMCID: PMC10963341 DOI: 10.1002/adhm.202302330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/17/2023] [Indexed: 09/28/2023]
Abstract
Understanding the communication of individual neurons necessitates precise control of neural activity. Photothermal modulation is a remote and non-genetic technique to control neural activity with high spatiotemporal resolution. The local heat release by photothermally active nanomaterial will change the membrane properties of the interfaced neurons during light illumination. Recently, it is demonstrated that the two-dimensional Ti3C2Tx MXene is an outstanding candidate to photothermally excite neurons with low incident energy. However, the safety of using Ti3C2Tx for neural modulation is unknown. Here, the biosafety of Ti3C2Tx-based photothermal modulation is thoroughly investigated, including assessments of plasma membrane integrity, mitochondrial stress, and oxidative stress. It is demonstrated that culturing neurons on 25 µg cm-2 Ti3C2Tx films and illuminating them with laser pulses (635 nm) with different incident energies (2-10 µJ per pulse) and different pulse frequencies (1 pulse, 1 Hz, and 10 Hz) neither damage the cell membrane, induce cellular stress, nor generate oxidative stress. The threshold energy to cause damage (i.e., 14 µJ per pulse) exceeded the incident energy for neural excitation (<10 µJ per pulse). This multi-assay safety evaluation provides crucial insights for guiding the establishment of light conditions and protocols in the clinical translation of photothermal modulation.
Collapse
Affiliation(s)
- Yingqiao Wang
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213
| | - Jane E. Hartung
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15260
| | - Adam Goad
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104
| | | | - Benjamin Chacon
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104
| | - Michael S. Gold
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15260
| | - Yury Gogotsi
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104
| | - Tzahi Cohen-Karni
- Department of Materials Science and Engineering and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213
| |
Collapse
|
11
|
Wang L, Liu S, Zhao W, Li J, Zeng H, Kang S, Sheng X, Wang L, Fan Y, Yin L. Recent Advances in Implantable Neural Interfaces for Multimodal Electrical Neuromodulation. Adv Healthc Mater 2024; 13:e2303316. [PMID: 38323711 DOI: 10.1002/adhm.202303316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/29/2024] [Indexed: 02/08/2024]
Abstract
Electrical neuromodulation plays a pivotal role in enhancing patient outcomes among individuals suffering from neurological disorders. Implantable neural interfaces are vital components of the electrical neuromodulation system to ensure desirable performance; However, conventional devices are limited to a single function and are constructed with bulky and rigid materials, which often leads to mechanical incompatibility with soft tissue and an inability to adapt to the dynamic and complex 3D structures of biological systems. In addition, current implantable neural interfaces utilized in clinical settings primarily rely on wire-based techniques, which are associated with complications such as increased risk of infection, limited positioning options, and movement restrictions. Here, the state-of-art applications of electrical neuromodulation are presented. Material schemes and device structures that can be employed to develop robust and multifunctional neural interfaces, including flexibility, stretchability, biodegradability, self-healing, self-rolling, or morphing are discussed. Furthermore, multimodal wireless neuromodulation techniques, including optoelectronics, mechano-electrics, magnetoelectrics, inductive coupling, and electrochemically based self-powered devices are reviewed. In the end, future perspectives are given.
Collapse
Affiliation(s)
- Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Shengnan Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Wentai Zhao
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Jiakun Li
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Haoxuan Zeng
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Shaoyang Kang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
12
|
Dorrian RM, Leonard AV, Lauto A. Millimetric devices for nerve stimulation: a promising path towards miniaturization. Neural Regen Res 2024; 19:1702-1706. [PMID: 38103235 PMCID: PMC10960286 DOI: 10.4103/1673-5374.389627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 10/19/2023] [Indexed: 12/18/2023] Open
Abstract
Nerve stimulation is a rapidly developing field, demonstrating positive outcomes across several conditions. Despite potential benefits, current nerve stimulation devices are large, complicated, and are powered via implanted pulse generators. These factors necessitate invasive surgical implantation and limit potential applications. Reducing nerve stimulation devices to millimetric sizes would make these interventions less invasive and facilitate broader therapeutic applications. However, device miniaturization presents a serious engineering challenge. This review presents significant advancements from several groups that have overcome this challenge and developed millimetric-sized nerve stimulation devices. These are based on antennas, mini-coils, magneto-electric and opto-electronic materials, or receive ultrasound power. We highlight key design elements, findings from pilot studies, and present several considerations for future applications of these devices.
Collapse
Affiliation(s)
- Ryan M. Dorrian
- Spinal Cord Injury Research Group, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Anna V. Leonard
- Spinal Cord Injury Research Group, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Antonio Lauto
- School of Science, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
13
|
Qiao Z, Ding J, Yang M, Wang Y, Zhou T, Tian Y, Zeng M, Wu C, Wei D, Sun J, Fan H. Red-light-excited TiO 2/Bi 2S 3 heterojunction nanotubes and photoelectric hydrogels mediate epidermal-neural network reconstruction in deep burns. Acta Biomater 2024; 184:114-126. [PMID: 38942188 DOI: 10.1016/j.actbio.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Inspired by the strong light absorption of carbon nanotubes, we propose a fabrication approach involving one-dimensional TiO2/Bi2S3 QDs nanotubes (TBNTs) with visible red-light excitable photoelectric properties. By integrating the construction of heterojunctions, quantum confinement effects, and morphological modifications, the photocurrent reached 9.22 µA/cm2 which is 66 times greater than that of TiO2 nanotubes (TNTs). Then, a red light-responsive photoelectroactive hydrogel dressing (TBCHA) was developed by embedding TBNTs into a collagen/hyaluronic acid-based biomimetic extracellular matrix hydrogel with good biocompatibility, aiming to promote wound healing and skin function restoration. This approach is primarily grounded in the recognized significance of electrical stimulation in modulating nerve function and immune responses. Severe burns are often accompanied by extensive damage to epithelial-neural networks, leading to a loss of excitatory function and difficulty in spontaneous healing, while conventional dressings inadequately address the critical need for nerve reinnervation. Furthermore, we highlight the remarkable ability of the TBCHA photoelectric hydrogel to promote the reinnervation of nerve endings, facilitate the repair of skin substructures, and modulate immune responses in a deep burn model. This hydrogel not only underpins wound closure and collagen synthesis but also advances vascular reformation, immune modulation, and neural restoration. This photoelectric-based therapy offers a robust solution for the comprehensive repair of deep burns and functional tissue regeneration. STATEMENT OF SIGNIFICANCE: We explore the fabrication of 1D TiO2/Bi2S3 nanotubes with visible red-light excitability and high photoelectric conversion properties. By integrating heterojunctions, quantum absorption effects, and morphological modifications, the photocurrent of TiO2/Bi2S3 nanotubes could reach 9.22 µA/cm², which is 66 times greater than that of TiO2 nanotubes under 625 nm illumination. The efficient red-light excitability solves the problem of poor biosafety and low tissue penetration caused by shortwave excitation. Furthermore, we highlight the remarkable ability of the TiO2/Bi2S3 nanotubes integrated photoelectric hydrogel in promoting the reinnervation of nerve endings and modulating immune responses. This work proposes an emerging therapeutic strategy of remote, passive electrical stimulation, offering a robust boost for repairing deep burn wounds.
Collapse
Affiliation(s)
- Zi Qiao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jie Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Mei Yang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yuchen Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Ting Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yuan Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Mingze Zeng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China; Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, Sichuan, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
14
|
Fu X, Hu Z, Li W, Ma L, Chen J, Liu M, Liu J, Hu S, Wang H, Huang Y, Tang G, Zhang B, Cai X, Wang Y, Li L, Ma J, Shi SH, Yin L, Zhang H, Li X, Sheng X. A silicon diode-based optoelectronic interface for bidirectional neural modulation. Proc Natl Acad Sci U S A 2024; 121:e2404164121. [PMID: 39012823 PMCID: PMC11287284 DOI: 10.1073/pnas.2404164121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024] Open
Abstract
The development of advanced neural modulation techniques is crucial to neuroscience research and neuroengineering applications. Recently, optical-based, nongenetic modulation approaches have been actively investigated to remotely interrogate the nervous system with high precision. Here, we show that a thin-film, silicon (Si)-based diode device is capable to bidirectionally regulate in vitro and in vivo neural activities upon adjusted illumination. When exposed to high-power and short-pulsed light, the Si diode generates photothermal effects, evoking neuron depolarization and enhancing intracellular calcium dynamics. Conversely, low-power and long-pulsed light on the Si diode hyperpolarizes neurons and reduces calcium activities. Furthermore, the Si diode film mounted on the brain of living mice can activate or suppress cortical activities under varied irradiation conditions. The presented material and device strategies reveal an innovated optoelectronic interface for precise neural modulations.
Collapse
Affiliation(s)
- Xin Fu
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials (Ministry of Education), State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing100084, China
| | - Zhengwei Hu
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Wenjun Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing100084, China
| | - Liang Ma
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Junyu Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Muyang Liu
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Jie Liu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Shuhan Hu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Huachun Wang
- School of Integrated Circuits, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Yunxiang Huang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials (Ministry of Education), State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing100084, China
| | - Guo Tang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Bozhen Zhang
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials (Ministry of Education), State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing100084, China
| | - Xue Cai
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Yuqi Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Lizhu Li
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Jian Ma
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Song-Hai Shi
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Lan Yin
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials (Ministry of Education), State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing100084, China
| | - Hao Zhang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing100084, China
| | - Xiaojian Li
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| |
Collapse
|
15
|
Li G, Li D, Lan B, Chen Y, Zhang W, Li B, Liu Y, Fan H, Lu H. Functional nanotransducer-mediated wireless neural modulation techniques. Phys Med Biol 2024; 69:14TR02. [PMID: 38959904 DOI: 10.1088/1361-6560/ad5ef0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
Functional nanomaterials have emerged as versatile nanotransducers for wireless neural modulation because of their minimal invasion and high spatiotemporal resolution. The nanotransducers can convert external excitation sources (e.g. NIR light, x-rays, and magnetic fields) to visible light (or local heat) to activate optogenetic opsins and thermosensitive ion channels for neuromodulation. The present review provides insights into the fundamentals of the mostly used functional nanomaterials in wireless neuromodulation including upconversion nanoparticles, nanoscintillators, and magnetic nanoparticles. We further discussed the recent developments in design strategies of functional nanomaterials with enhanced energy conversion performance that have greatly expanded the field of neuromodulation. We summarized the applications of functional nanomaterials-mediated wireless neuromodulation techniques, including exciting/silencing neurons, modulating brain activity, controlling motor behaviors, and regulating peripheral organ function in mice. Finally, we discussed some key considerations in functional nanotransducer-mediated wireless neuromodulation along with the current challenges and future directions.
Collapse
Affiliation(s)
- Galong Li
- School of Biomedical Engineering, Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Dongyan Li
- School of Biomedical Engineering, Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Bin Lan
- School of Biomedical Engineering, Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yihuan Chen
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Wenli Zhang
- School of Biomedical Engineering, Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Baojuan Li
- School of Biomedical Engineering, Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yang Liu
- School of Biomedical Engineering, Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Haiming Fan
- Faculty of Life Sciences and Medicine, College of Chemistry and Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Northwest University, Xi'an, People's Republic of China
| | - Hongbin Lu
- School of Biomedical Engineering, Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
16
|
Sun P, Li C, Yang C, Sun M, Hou H, Guan Y, Chen J, Liu S, Chen K, Ma Y, Huang Y, Li X, Wang H, Wang L, Chen S, Cheng H, Xiong W, Sheng X, Zhang M, Peng J, Wang S, Wang Y, Yin L. A biodegradable and flexible neural interface for transdermal optoelectronic modulation and regeneration of peripheral nerves. Nat Commun 2024; 15:4721. [PMID: 38830884 PMCID: PMC11148186 DOI: 10.1038/s41467-024-49166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Optoelectronic neural interfaces can leverage the photovoltaic effect to convert light into electrical current, inducing charge redistribution and enabling nerve stimulation. This method offers a non-genetic and remote approach for neuromodulation. Developing biodegradable and efficient optoelectronic neural interfaces is important for achieving transdermal stimulation while minimizing infection risks associated with device retrieval, thereby maximizing therapeutic outcomes. We propose a biodegradable, flexible, and miniaturized silicon-based neural interface capable of transdermal optoelectronic stimulation for neural modulation and nerve regeneration. Enhancing the device interface with thin-film molybdenum significantly improves the efficacy of neural stimulation. Our study demonstrates successful activation of the sciatic nerve in rodents and the facial nerve in rabbits. Moreover, transdermal optoelectronic stimulation accelerates the functional recovery of injured facial nerves.
Collapse
Affiliation(s)
- Pengcheng Sun
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Chaochao Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Can Yang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Mengchun Sun
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Hanqing Hou
- School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Yanjun Guan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Jinger Chen
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Shangbin Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Kuntao Chen
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuan Ma
- Department of Electronic Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yunxiang Huang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Xiangling Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Huachun Wang
- School of Integrated Circuits, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Liu Wang
- School of Biological Science and Medical Engineering, Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, P. R. China
- School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Shengfeng Chen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Haofeng Cheng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Wei Xiong
- Chinese Institute for Brain Research, Beijing, 102206, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, P. R. China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, P. R. China
| | - Milin Zhang
- Department of Electronic Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, P. R. China
| | - Shirong Wang
- MegaRobo Technologies Co. ltd, Beijing, 100085, P. R. China.
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, P. R. China.
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
17
|
Pal B, Majumdar S, Pal I, Lepcha G, Dey A, Ray PP, Dey B. Comparative outcomes of the voltage-dependent current density, charge transportation and rectification ratio of electronic devices fabricated using mechanically flexible supramolecular networks. Dalton Trans 2024; 53:7912-7921. [PMID: 38639606 DOI: 10.1039/d4dt00383g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
In this study, we report the synthetic method of two distinct supramolecular metallogels, namely Mn-BDA and Cd-BDA, using Mn(II) acetate tetrahydrate, Cd(II) acetate dihydrate and butane-1,4-dicarboxylic acid (BDA). DMF, a polar aprotic solvent, was immobilized in both metallogel-networks for their synthesis. The metallogelation of Mn-BDA was successfully attained through the instant mixing of a Mn(II)-source and BDA in DMF solvent media. By applying ultrasonication, a Cd-BDA metallogel was prepared. The stoichiometry of gel-forming components concerning metal salts and the LMWG are accountable to obtain respective stable metallogels. Rheological parameters such as storage modulus (G') and loss modulus (G'') explored the mechanical flexibility of the synthesized metallogels through amplitude and angular frequency sweep experiments. Both the metallogels possess significant mechanical stability, which was determined by monitoring diverse gel-to-sol transition shear strain values (γ%). Distinctive morphological visualizations of both of these metallogels (i.e., Mn-BDA and Cd-BDA) were made via field emission scanning electron microscopic (FESEM) studies, demonstrating a fibrous inter-connected network with a hierarchical self-assembled arrangement for Mn(II)-based metallogels and a typical stacked-flake-like association with hierarchical motifs for Cd(II)-based metallogels. EDAX elemental mapping substantiated the presence of metallogel-forming agents such as individual metal acetate salts, BDA acting as a low-molecular weight gelator, and gel-immobilized solvents such as DMF. Furthermore, Fourier transform infrared spectroscopy and ESI-mass spectroscopy were performed for both these supramolecular metallogels. FT-IR spectroscopic and ESI-mass spectroscopic results clearly substantiate the possible non-covalent supramolecular interactions among basic molecular repeating moieties, i.e., butane-1,4-dicarboxylic acid (the low-molecular weight gelator), individual metal salts and gel-immobilized polar aprotic solvent DMF for the construction of distinct stable supramolecular metallogel-systems. The semiconducting property of the fabricated metallogels was investigated. Two Schottky diodes (SDs) composed of ITO/Cd-BDA/Al and ITO/Mn-BDA/Al in a sandwich pattern with Al serving as the metal electrode were fabricated. Both these metallogel-based devices effectively offer significant semiconducting diode features with non-linear J-V characteristics. The non-ohmic conduction protocol of the fabricated metallogel-based devices was explored. Mn-BDA and Cd-BDA metallogel-based fabricated devices have rectification ratios of 6.67 and 23.50, respectively. The gel-based diode performances were examined by observing the voltage-dependent current density, charge transportation and rectification ratio.
Collapse
Affiliation(s)
- Baishakhi Pal
- Department of Physics, Jadavpur University, Kolkata 700032, India.
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| | - Indrajit Pal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| | - Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| | - Amiya Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| | | | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
18
|
Yang C, Cheng Z, Li P, Tian B. Exploring Present and Future Directions in Nano-Enhanced Optoelectronic Neuromodulation. Acc Chem Res 2024; 57:1398-1410. [PMID: 38652467 PMCID: PMC11650687 DOI: 10.1021/acs.accounts.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Electrical neuromodulation has achieved significant translational advancements, including the development of deep brain stimulators for managing neural disorders and vagus nerve stimulators for seizure treatment. Optoelectronics, in contrast to wired electrical systems, offers the leadless feature that guides multisite and high spatiotemporal neural system targeting, ensuring high specificity and precision in translational therapies known as "photoelectroceuticals". This Account provides a concise overview of developments in novel optoelectronic nanomaterials that are engineered through innovative molecular, chemical, and nanostructure designs to facilitate neural interfacing with high efficiency and minimally invasive implantation.This Account outlines the progress made both within our laboratory and across the broader scientific community, with particular attention to implications in materials innovation strategies, studying bioelectrical activation with spatiotemporal methods, and applications in regenerative medicine. In materials innovation, we highlight a nongenetic, biocompatible, and minimally invasive approach for neuromodulation that spans various length scales, from single neurons to nerve tissues using nanosized particles and monolithic membranes. Furthermore, our discussion exposes the critical unresolved questions in the field, including mechanisms of interaction at the nanobio interface, the precision of cellular or tissue targeting, and integration into existing neural networks with high spatiotemporal modulation. In addition, we present the challenges and pressing needs for long-term stability and biocompatibility, scalability for clinical applications, and the development of noninvasive monitoring and control systems.In addressing the existing challenges in the field of nanobio interfaces, particularly for neural applications, we envisage promising strategic directions that could significantly advance this burgeoning domain. This involves a deeper theoretical understanding of nanobiointerfaces, where simulations and experimental validations on how nanomaterials interact spatiotemporally with biological systems are crucial. The development of more durable materials is vital for prolonged applications in dynamic neural interfaces, and the ability to manipulate neural activity with high specificity and spatial resolution, paves the way for targeting individual neurons or specific neural circuits. Additionally, integrating these interfaces with advanced control systems, possibly leveraging artificial intelligence and machine learning algorithms and programming dynamically responsive materials designs, could significantly ease the implementation of stimulation and recording. These innovations hold the potential to introduce novel treatment modalities for a wide range of neurological and systemic disorders.
Collapse
Affiliation(s)
- Chuanwang Yang
- The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Zhe Cheng
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Pengju Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Bozhi Tian
- The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
19
|
Li P, Zhang J, Hayashi H, Yue J, Li W, Yang C, Sun C, Shi J, Huberman-Shlaes J, Hibino N, Tian B. Monolithic silicon for high spatiotemporal translational photostimulation. Nature 2024; 626:990-998. [PMID: 38383782 PMCID: PMC11646366 DOI: 10.1038/s41586-024-07016-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/02/2024] [Indexed: 02/23/2024]
Abstract
Electrode-based electrical stimulation underpins several clinical bioelectronic devices, including deep-brain stimulators1,2 and cardiac pacemakers3. However, leadless multisite stimulation is constrained by the technical difficulties and spatial-access limitations of electrode arrays. Optogenetics offers optically controlled random access with high spatiotemporal capabilities, but clinical translation poses challenges4-6. Here we show tunable spatiotemporal photostimulation of cardiac systems using a non-genetic platform based on semiconductor-enabled biomodulation interfaces. Through spatiotemporal profiling of photoelectrochemical currents, we assess the magnitude, precision, accuracy and resolution of photostimulation in four leadless silicon-based monolithic photoelectrochemical devices. We demonstrate the optoelectronic capabilities of the devices through optical overdrive pacing of cultured cardiomyocytes (CMs) targeting several regions and spatial extents, isolated rat hearts in a Langendorff apparatus, in vivo rat hearts in an ischaemia model and an in vivo mouse heart model with transthoracic optical pacing. We also perform the first, to our knowledge, optical override pacing and multisite pacing of a pig heart in vivo. Our systems are readily adaptable for minimally invasive clinical procedures using our custom endoscopic delivery device, with which we demonstrate closed-thoracic operations and endoscopic optical stimulation. Our results indicate the clinical potential of the leadless, lightweight and multisite photostimulation platform as a pacemaker in cardiac resynchronization therapy (CRT), in which lead-placement complications are common.
Collapse
Affiliation(s)
- Pengju Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Jing Zhang
- The James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Hidenori Hayashi
- Section of Cardiac Surgery, Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Jiping Yue
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Wen Li
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Chuanwang Yang
- The James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Changxu Sun
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Jiuyun Shi
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | | | - Narutoshi Hibino
- Section of Cardiac Surgery, Department of Surgery, The University of Chicago, Chicago, IL, USA.
| | - Bozhi Tian
- The James Franck Institute, The University of Chicago, Chicago, IL, USA.
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
20
|
Sun P, Guan Y, Yang C, Hou H, Liu S, Yang B, Li X, Chen S, Wang L, Wang H, Huang Y, Sheng X, Peng J, Xiong W, Wang Y, Yin L. A Bioresorbable and Conductive Scaffold Integrating Silicon Membranes for Peripheral Nerve Regeneration. Adv Healthc Mater 2023; 12:e2301859. [PMID: 37750601 DOI: 10.1002/adhm.202301859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/03/2023] [Indexed: 09/27/2023]
Abstract
Peripheral nerve injury represents one of the most common types of traumatic damage, severely impairing motor and sensory functions, and posttraumatic nerve regeneration remains a major challenge. Electrical cues are critical bioactive factors that promote nerve regrowth, and bioartificial scaffolds incorporating conductive materials to enhance the endogenous electrical field have been demonstrated to be effective. The utilization of fully biodegradable scaffolds can eliminate material residues, and circumvent the need for secondary retrieval procedures. Here, a fully bioresorbable and conductive nerve scaffold integrating N-type silicon (Si) membranes is proposed, which can deliver both structural guidance and electrical cues for the repair of nerve defects. The entire scaffold is fully biodegradable, and the introduction of N-type Si can significantly promote the proliferation and production of neurotrophic factors of Schwann cells and enhance the calcium activity of dorsal root ganglion (DRG) neurons. The conductive scaffolds enable accelerated nerve regeneration and motor functional recovery in rodents with sciatic nerve transection injuries. This work sheds light on the advancement of bioresorbable and electrically active materials to achieve desirable neural interfaces and improved therapeutic outcomes, offering essential strategies for regenerative medicine.
Collapse
Affiliation(s)
- Pengcheng Sun
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yanjun Guan
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, P. R. China
- Co-innovation Center of Neuroregeneration, Nantong University Nantong, Nantong, Jiangsu Province, 226007, P. R. China
- Graduate School of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Can Yang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Hanqing Hou
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuang Liu
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, 100084, P. R. China
| | - Boyao Yang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, P. R. China
- Graduate School of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Xiangling Li
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, P. R. China
| | - Shengfeng Chen
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, P. R. China
| | - Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Huachun Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Yunxiang Huang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Jiang Peng
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, P. R. China
| | - Wei Xiong
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, 100084, P. R. China
| | - Yu Wang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, P. R. China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
21
|
Lee DM, Kang M, Hyun I, Park BJ, Kim HJ, Nam SH, Yoon HJ, Ryu H, Park HM, Choi BO, Kim SW. An on-demand bioresorbable neurostimulator. Nat Commun 2023; 14:7315. [PMID: 37951985 PMCID: PMC10640647 DOI: 10.1038/s41467-023-42791-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Bioresorbable bioelectronics, with their natural degradation properties, hold significant potential to eliminate the need for surgical removal. Despite notable achievements, two major challenges hinder their practical application in medical settings. First, they necessitate sustainable energy solutions with biodegradable components via biosafe powering mechanisms. More importantly, reliability in their function is undermined by unpredictable device lifetimes due to the complex polymer degradation kinetics. Here, we propose an on-demand bioresorbable neurostimulator to address these issues, thus allowing for clinical operations to be manipulated using biosafe ultrasound sources. Our ultrasound-mediated transient mechanism enables (1) electrical stimulation through transcutaneous ultrasound-driven triboelectricity and (2) rapid device elimination using high-intensity ultrasound without adverse health effects. Furthermore, we perform neurophysiological analyses to show that our neurostimulator provides therapeutic benefits for both compression peripheral nerve injury and hereditary peripheral neuropathy. We anticipate that the on-demand bioresorbable neurostimulator will prove useful in the development of medical implants to treat peripheral neuropathy.
Collapse
Affiliation(s)
- Dong-Min Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Human-oriented Triboelectric Energy Harvesting, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minki Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Inah Hyun
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Human-oriented Triboelectric Energy Harvesting, Yonsei University, Seoul, 03722, Republic of Korea
| | - Byung-Joon Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Human-oriented Triboelectric Energy Harvesting, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hye Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Soo Hyun Nam
- Cell and Gene Therapy Institute (CGTI), Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Hong-Joon Yoon
- Department of Electronic Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Hanjun Ryu
- Department of Advanced Materials Engineering, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hyun-Moon Park
- Research and Development Center, Energy-Mining Co., LTD., Suwon, 16226, Republic of Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
- Cell and Gene Therapy Institute (CGTI), Samsung Medical Center, Seoul, 06351, Republic of Korea.
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Seoul, 06351, Republic of Korea.
| | - Sang-Woo Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
- Center for Human-oriented Triboelectric Energy Harvesting, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
22
|
Yi L, Hou B, Liu X. Optical Integration in Wearable, Implantable and Swallowable Healthcare Devices. ACS NANO 2023; 17:19491-19501. [PMID: 37807286 DOI: 10.1021/acsnano.3c04284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Recent advances in materials and semiconductor technologies have led to extensive research on optical integration in wearable, implantable, and swallowable health devices. These optical systems utilize the properties of light─intensity, wavelength, polarization, and phase─to monitor and potentially intervene in various biological events. The potential of these devices is greatly enhanced through the use of multifunctional optical materials, adaptable integration processes, advanced optical sensing principles, and optimized artificial intelligence algorithms. This synergy creates many possibilities for clinical applications. This Perspective discusses key opportunities, challenges, and future directions, particularly with respect to sensing modalities, multifunctionality, and the integration of miniaturized optoelectronic devices. We present fundamental insights and illustrative examples of such devices in wearable, implantable, and swallowable forms. The constant pursuit of innovation and the dedicated approach to critical challenges are poised to influence diverse fields.
Collapse
Affiliation(s)
- Luying Yi
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Bo Hou
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| |
Collapse
|
23
|
Cui H, Zhao S, Hong G. Wireless deep-brain neuromodulation using photovoltaics in the second near-infrared spectrum. DEVICE 2023; 1:100113. [PMID: 37990694 PMCID: PMC10659575 DOI: 10.1016/j.device.2023.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Conventional electrical neuromodulation techniques are constrained by the need for invasive implants in neural tissues, whereas methods using optogenetic are subjected to genetic alterations and hampered by the poor tissue penetration of visible light. Photovoltaic neuromodulation using light from the second near-infrared (NIR-II) spectrum, which minimizes scattering and enhances tissue penetration, shows promise as an alternative to existing neuromodulation technologies. NIR-II light has been used in deep-tissue imaging and in deep-brain photothermal neuromodulation via nanotransducers. This Perspective will provide an overview for the underpinning mechanisms of photovoltaic neuromodulation and identify avenues for future research in materials science and bioengineering that can further advance NIR-II photovoltaic neuromodulation methods.
Collapse
Affiliation(s)
- Han Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Su Zhao
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
24
|
Kang M, Lee DM, Hyun I, Rubab N, Kim SH, Kim SW. Advances in Bioresorbable Triboelectric Nanogenerators. Chem Rev 2023; 123:11559-11618. [PMID: 37756249 PMCID: PMC10571046 DOI: 10.1021/acs.chemrev.3c00301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 09/29/2023]
Abstract
With the growing demand for next-generation health care, the integration of electronic components into implantable medical devices (IMDs) has become a vital factor in achieving sophisticated healthcare functionalities such as electrophysiological monitoring and electroceuticals worldwide. However, these devices confront technological challenges concerning a noninvasive power supply and biosafe device removal. Addressing these challenges is crucial to ensure continuous operation and patient comfort and minimize the physical and economic burden on the patient and the healthcare system. This Review highlights the promising capabilities of bioresorbable triboelectric nanogenerators (B-TENGs) as temporary self-clearing power sources and self-powered IMDs. First, we present an overview of and progress in bioresorbable triboelectric energy harvesting devices, focusing on their working principles, materials development, and biodegradation mechanisms. Next, we examine the current state of on-demand transient implants and their biomedical applications. Finally, we address the current challenges and future perspectives of B-TENGs, aimed at expanding their technological scope and developing innovative solutions. This Review discusses advancements in materials science, chemistry, and microfabrication that can advance the scope of energy solutions available for IMDs. These innovations can potentially change the current health paradigm, contribute to enhanced longevity, and reshape the healthcare landscape soon.
Collapse
Affiliation(s)
- Minki Kang
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Dong-Min Lee
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Inah Hyun
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Najaf Rubab
- Department
of Materials Science and Engineering, Gachon
University, Seongnam 13120, Republic
of Korea
| | - So-Hee Kim
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Woo Kim
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
25
|
Zhang Y, Lee G, Li S, Hu Z, Zhao K, Rogers JA. Advances in Bioresorbable Materials and Electronics. Chem Rev 2023; 123:11722-11773. [PMID: 37729090 DOI: 10.1021/acs.chemrev.3c00408] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Transient electronic systems represent an emerging class of technology that is defined by an ability to fully or partially dissolve, disintegrate, or otherwise disappear at controlled rates or triggered times through engineered chemical or physical processes after a required period of operation. This review highlights recent advances in materials chemistry that serve as the foundations for a subclass of transient electronics, bioresorbable electronics, that is characterized by an ability to resorb (or, equivalently, to absorb) in a biological environment. The primary use cases are in systems designed to insert into the human body, to provide sensing and/or therapeutic functions for timeframes aligned with natural biological processes. Mechanisms of bioresorption then harmlessly eliminate the devices, and their associated load on and risk to the patient, without the need of secondary removal surgeries. The core content focuses on the chemistry of the enabling electronic materials, spanning organic and inorganic compounds to hybrids and composites, along with their mechanisms of chemical reaction in biological environments. Following discussions highlight the use of these materials in bioresorbable electronic components, sensors, power supplies, and in integrated diagnostic and therapeutic systems formed using specialized methods for fabrication and assembly. A concluding section summarizes opportunities for future research.
Collapse
Affiliation(s)
- Yamin Zhang
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Geumbee Lee
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Shuo Li
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Ziying Hu
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Kaiyu Zhao
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - John A Rogers
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Mechanical Engineering, Biomedical Engineering, Chemistry, Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
26
|
Zhang Z, Zhu Z, Zhou P, Zou Y, Yang J, Haick H, Wang Y. Soft Bioelectronics for Therapeutics. ACS NANO 2023; 17:17634-17667. [PMID: 37677154 DOI: 10.1021/acsnano.3c02513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Soft bioelectronics play an increasingly crucial role in high-precision therapeutics due to their softness, biocompatibility, clinical accuracy, long-term stability, and patient-friendliness. In this review, we provide a comprehensive overview of the latest representative therapeutic applications of advanced soft bioelectronics, ranging from wearable therapeutics for skin wounds, diabetes, ophthalmic diseases, muscle disorders, and other diseases to implantable therapeutics against complex diseases, such as cardiac arrhythmias, cancer, neurological diseases, and others. We also highlight key challenges and opportunities for future clinical translation and commercialization of soft therapeutic bioelectronics toward personalized medicine.
Collapse
Affiliation(s)
- Zongman Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Zhongtai Zhu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yunfan Zou
- Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jiawei Yang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Hossam Haick
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| |
Collapse
|
27
|
Elsayed AM, Alkallas FH, Trabelsi ABG, Rabia M. Highly Uniform Spherical MoO 2-MoO 3/Polypyrrole Core-Shell Nanocomposite as an Optoelectronic Photodetector in UV, Vis, and IR Domains. MICROMACHINES 2023; 14:1694. [PMID: 37763857 PMCID: PMC10534459 DOI: 10.3390/mi14091694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
A highly uniform spherical MoO2-MoO3/polypyrrole core-shell nanocomposite has been successfully synthesized as an optoelectronic photon sensing material, capable of detecting light in the UV, Vis, and IR domains. The nanocomposite is prepared through the oxidation of pyrrole using Na2MoO4, resulting in a uniform spherical morphology that has been confirmed by TEM, theoretical modeling, and SEM analyses. This morphology contributes to its promising optical behavior, characterized by a small bandgap of 1.36 eV. The optoelectronic photosensing capability of the nanocomposite has been evaluated across the UV, Vis, and IR spectra, demonstrating high efficiency. The photoresponsivity R values indicate the ability of the nanocomposite to generate hot electrons in response to incident photons. With an R value of 4.15 mA·W-1 at 440 nm, this optoelectronic device exhibits considerable promise for integration into an advanced technological apparatus. The detection (D) value of 9.30 × 108 Jones at 440 nm further confirms the high sensitivity in the Vis region. The excellent stability of the device can be attributed to the inherent MoO2-MoO3 oxide and Ppy polymer materials. This stability has been demonstrated through reproducibility studies and current-voltage measurements under various optical conditions. The combination of stability, efficiency, and sensitivity makes this optoelectronic device well suited for light sensing applications in both industrial and commercial settings. Its promising performance opens up opportunities for advancements in various fields requiring accurate and reliable light detection.
Collapse
Affiliation(s)
- Asmaa M. Elsayed
- TH-PPM Group, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt;
| | - Fatemah H. Alkallas
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Amira Ben Gouider Trabelsi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohamed Rabia
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
28
|
Zhang L, Guo F, Xu S, Deng Q, Xie M, Sun J, Kwok RTK, Lam JWY, Deng H, Jiang H, Yu L, Tang BZ. AIEgen-Based Covalent Organic Frameworks for Preventing Malignant Ventricular Arrhythmias Via Local Hyperthermia Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304620. [PMID: 37532257 DOI: 10.1002/adma.202304620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/14/2023] [Indexed: 08/04/2023]
Abstract
The engineering of aggregation-induced emission luminogens (AIEgen) based covalent organic frameworks (COFs), TDTA-COF, BTDTA-COF, and BTDBETA-COF are reported, as hyperthermia agents for inhibiting the occurrence of malignant ventricular arrhythmias (VAs). These AIE COFs exhibit dual functionality, as they not only directly modulate the function and neural activity of stellate ganglion (SG) through local hyperthermia therapy (LHT) but also induce the browning of white fat and improve the neuroinflammation peri-SG microenvironment, which is favorable for inhibiting ischemia-induced VAs. In vivo studies have confirmed that BTDBETA-COF-mediated LHT enhances thermogenesis and browning-related gene expression, thereby serving a synergistic role in combating VAs. Transcriptome analysis of peri-SG adipose tissue reveals a substantial downregulation of inflammatory cytokines, highlighting the potency of BTDBETA-COF-mediated LHT in ameliorating the neuroinflammation peri-SG microenvironment and offering myocardial and arrhythmia protection. The work on AIE COF-based hyperthermia agent for VAs inhibition provides a new avenue for mitigating cardiac sympathetic nerve hyperactivity.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Chemistry and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan University, Jiefang Road, Wuhan, 430060, China
- Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Luojiashan, Wuhan, 430072, China
| | - Fuding Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan University, Jiefang Road, Wuhan, 430060, China
| | - Saiting Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan University, Jiefang Road, Wuhan, 430060, China
| | - Qiang Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan University, Jiefang Road, Wuhan, 430060, China
| | - Mengjie Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan University, Jiefang Road, Wuhan, 430060, China
| | - Jianwei Sun
- Department of Chemistry and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ryan T K Kwok
- Department of Chemistry and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jacky W Y Lam
- Department of Chemistry and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Hexiang Deng
- Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Luojiashan, Wuhan, 430072, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan University, Jiefang Road, Wuhan, 430060, China
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan University, Jiefang Road, Wuhan, 430060, China
| | - Ben Zhong Tang
- Department of Chemistry and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
29
|
Li L, Li D, Wang Y, Ye T, He E, Jiao Y, Wang L, Li F, Li Y, Ding J, Liu K, Ren J, Li Q, Ji J, Zhang Y. Implantable Zinc-Oxygen Battery for In Situ Electrical Stimulation-Promoted Neural Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302997. [PMID: 37159396 DOI: 10.1002/adma.202302997] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 05/11/2023]
Abstract
Electrical stimulation is a promising strategy for treating neural diseases. However, current energy suppliers cannot provide effective power for in situ electrical stimulation. Here, an implantable tubular zinc-oxygen battery is reported as the power source for in situ electrical stimulation during the neural repair. The battery exhibited a high volumetric energy density of 231.4 mWh cm-3 based on the entire anode and cathode in vivo. Due to its superior electrochemical properties and biosafety, the battery can be directly wrapped around the nerve to provide in situ electrical stimulation with a minimal size of 0.86 mm3 . The cell and animal experiments demonstrated that the zinc-oxygen battery-based nerve tissue engineering conduit effectively promoted regeneration of the injured long-segment sciatic nerve, proving its promising applications for powering implantable neural electronics in the future.
Collapse
Affiliation(s)
- Luhe Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Dan Li
- Key Laboratory of Inflammation and Immunoregulation, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuanzhen Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Tingting Ye
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Er He
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yiding Jiao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Lie Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Fangyan Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yiran Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Kai Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Junye Ren
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Qianming Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Jianjian Ji
- Key Laboratory of Inflammation and Immunoregulation, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
30
|
Wang H, Tian J, Jiang Y, Liu S, Zheng J, Li N, Wang G, Dong F, Chen J, Xie Y, Huang Y, Cai X, Wang X, Xiong W, Qi H, Yin L, Wang Y, Sheng X. A 3D biomimetic optoelectronic scaffold repairs cranial defects. SCIENCE ADVANCES 2023; 9:eabq7750. [PMID: 36791200 PMCID: PMC9931229 DOI: 10.1126/sciadv.abq7750] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Bone fractures and defects pose serious health-related issues on patients. For clinical therapeutics, synthetic scaffolds have been actively explored to promote critical-sized bone regeneration, and electrical stimulations are recognized as an effective auxiliary to facilitate the process. Here, we develop a three-dimensional (3D) biomimetic scaffold integrated with thin-film silicon (Si)-based microstructures. This Si-based hybrid scaffold not only provides a 3D hierarchical structure for guiding cell growth but also regulates cell behaviors via photo-induced electrical signals. Remotely controlled by infrared illumination, these Si structures electrically modulate membrane potentials and intracellular calcium dynamics of stem cells and potentiate cell proliferation and differentiation. In a rodent model, the Si-integrated scaffold demonstrates improved osteogenesis under optical stimulations. Such a wirelessly powered optoelectronic scaffold eliminates tethered electrical implants and fully degrades in a biological environment. The Si-based 3D scaffold combines topographical and optoelectronic stimuli for effective biological modulations, offering broad potential for biomedicine.
Collapse
Affiliation(s)
- Huachun Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Jingjing Tian
- Department of Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yuxi Jiang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100082, China
| | - Shuang Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingchuan Zheng
- School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Ningyu Li
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100082, China
| | - Guiyan Wang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100082, China
| | - Fan Dong
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100082, China
| | - Junyu Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Yang Xie
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Yunxiang Huang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Xue Cai
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Xiumei Wang
- School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Wei Xiong
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Hui Qi
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Lan Yin
- School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yuguang Wang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100082, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
Lee S, Park K, Kum J, An S, Yu KJ, Kim H, Shin M, Son D. Stretchable Surface Electrode Arrays Using an Alginate/PEDOT:PSS-Based Conductive Hydrogel for Conformal Brain Interfacing. Polymers (Basel) 2022; 15:84. [PMID: 36616434 PMCID: PMC9824691 DOI: 10.3390/polym15010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
An electrocorticogram (ECoG) is the electrical activity obtainable from the cerebral cortex and an informative source with considerable potential for future advanced applications in various brain-interfacing technologies. Considerable effort has been devoted to developing biocompatible, conformal, soft, and conductive interfacial materials for bridging devices and brain tissue; however, the implementation of brain-adaptive materials with optimized electrical and mechanical characteristics remains challenging. Herein, we present surface electrode arrays using the soft tough ionic conductive hydrogel (STICH). The newly proposed STICH features brain-adaptive softness with Young's modulus of ~9.46 kPa, which is sufficient to form a conformal interface with the cortex. Additionally, the STICH has high toughness of ~36.85 kJ/mm3, highlighting its robustness for maintaining the solid structure during interfacing with wet brain tissue. The stretchable metal electrodes with a wavy pattern printed on the elastomer were coated with the STICH as an interfacial layer, resulting in an improvement of the impedance from 60 kΩ to 10 kΩ at 1 kHz after coating. Acute in vivo experiments for ECoG monitoring were performed in anesthetized rodents, thereby successfully realizing conformal interfacing to the animal's cortex and the sensitive recording of electrical activity using the STICH-coated electrodes, which exhibited a higher visual-evoked potential (VEP) amplitude than that of the control device.
Collapse
Affiliation(s)
- Sungjun Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Bionics of Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Kyuha Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jeungeun Kum
- Center for Bionics of Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Soojung An
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Ki Jun Yu
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyungmin Kim
- Center for Bionics of Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Mikyung Shin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Donghee Son
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Superintelligence Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
32
|
Zhu J, Meng S, Wang Y, Pang M, Hu Z, Ru C. A Novel Monopolar Cross-Scale Nanopositioning Stage Based on Dual Piezoelectric Stick-Slip Driving Principle. MICROMACHINES 2022; 13:2008. [PMID: 36422437 PMCID: PMC9692947 DOI: 10.3390/mi13112008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
The precise characterization and measurement of new nanomaterials and nano devices require in situ SEM nanorobotic instrumentation systems, which put forward further technical requirements on nanopositioning techniques of compact structure, cross-scale, nanometer accuracy, high vacuum and non-magnetic environment compatibility, etc. In this work, a novel cross-scale nanopositioning stage was proposed, which combined the advantages of piezoelectric stick-slip positioner and piezoelectric scanner techniques and adopted the idea of macro/micro positioning. A new structure design of a single flexible hinge shared by a small and large PZT was proposed to effectively reduce the size of the positioning stage and achieve millimeter stroke and nanometer motion positioning accuracy. Then, the cross-scale motion generation mechanism of the dual piezoelectric stick-slip drive was studied, the system-level dynamics model of the proposed positioning stages was constructed, and the mechanism design was optimized. Further, a prototype was manufactured and a series of experiments were carried out to test the performance of the stage. The results show that the proposed positioning stage has a maximum motion range of 20 mm and minimum step length of 70 nm under the small piezoceramic ceramic macro-motion stepping mode, and a maximum scanning range of 4.9 μm and motion resolution of 16 nm under the large piezoceramic ceramic micro-motion scanning mode. Moreover, the proposed stage has a compact structure size of 30 × 17 × 8 mm3, with a maximum motion speed of 10 mm/s and maximum load of 2 kg. The experimental results confirm the feasibility of the proposed stage, and nanometer positioning resolution, high accuracy, high speed, and a large travel range were achieved, which demonstrates that the proposed stage has significant performance and potential for many in situ SEM nanorobotic instrument systems.
Collapse
Affiliation(s)
- Junhui Zhu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Siyuan Meng
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150000, China
| | - Yong Wang
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215000, China
| | - Ming Pang
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Zhiping Hu
- Micro-Nano Automation Institute, JITRI, Suzhou 215100, China
| | - Changhai Ru
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215000, China
- Micro-Nano Automation Institute, JITRI, Suzhou 215100, China
| |
Collapse
|
33
|
Loos B, du Toit A, Hofmeyr JHS. Non-invasive monitoring of autophagy. Nat Biomed Eng 2022; 6:1015-1016. [PMID: 36127452 DOI: 10.1038/s41551-022-00943-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa.
| | - Andre du Toit
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | | |
Collapse
|