1
|
Qiu W, Dincer AB, Janizek JD, Celik S, Pittet M, Naxerova K, Lee SI. A deep profile of gene expression across 18 human cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585426. [PMID: 38559197 PMCID: PMC10980029 DOI: 10.1101/2024.03.17.585426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Clinically and biologically valuable information may reside untapped in large cancer gene expression data sets. Deep unsupervised learning has the potential to extract this information with unprecedented efficacy but has thus far been hampered by a lack of biological interpretability and robustness. Here, we present DeepProfile, a comprehensive framework that addresses current challenges in applying unsupervised deep learning to gene expression profiles. We use DeepProfile to learn low-dimensional latent spaces for 18 human cancers from 50,211 transcriptomes. DeepProfile outperforms existing dimensionality reduction methods with respect to biological interpretability. Using DeepProfile interpretability methods, we show that genes that are universally important in defining the latent spaces across all cancer types control immune cell activation, while cancer type-specific genes and pathways define molecular disease subtypes. By linking DeepProfile latent variables to secondary tumor characteristics, we discover that tumor mutation burden is closely associated with the expression of cell cycle-related genes. DNA mismatch repair and MHC class II antigen presentation pathway expression, on the other hand, are consistently associated with patient survival. We validate these results through Kaplan-Meier analyses and nominate tumor-associated macrophages as an important source of survival-correlated MHC class II transcripts. Our results illustrate the power of unsupervised deep learning for discovery of cancer biology from existing gene expression data.
Collapse
Affiliation(s)
- Wei Qiu
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA
| | - Ayse B. Dincer
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA
| | - Joseph D. Janizek
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA
- Medical Scientist Training Program, University of Washington, Seattle, WA
| | | | - Mikael Pittet
- Department of Pathology and Immunology, University of Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Switzerland
| | - Kamila Naxerova
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Su-In Lee
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA
| |
Collapse
|
2
|
Connell W, Garcia K, Goodarzi H, Keiser MJ. Learning chemical sensitivity reveals mechanisms of cellular response. Commun Biol 2024; 7:1149. [PMID: 39278951 PMCID: PMC11402971 DOI: 10.1038/s42003-024-06865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/06/2024] [Indexed: 09/18/2024] Open
Abstract
Chemical probes interrogate disease mechanisms at the molecular level by linking genetic changes to observable traits. However, comprehensive chemical screens in diverse biological models are impractical. To address this challenge, we develop ChemProbe, a model that predicts cellular sensitivity to hundreds of molecular probes and drugs by learning to combine transcriptomes and chemical structures. Using ChemProbe, we infer the chemical sensitivity of cancer cell lines and tumor samples and analyze how the model makes predictions. We retrospectively evaluate drug response predictions for precision breast cancer treatment and prospectively validate chemical sensitivity predictions in new cellular models, including a genetically modified cell line. Our model interpretation analysis identifies transcriptome features reflecting compound targets and protein network modules, identifying genes that drive ferroptosis. ChemProbe is an interpretable in silico screening tool that allows researchers to measure cellular response to diverse compounds, facilitating research into molecular mechanisms of chemical sensitivity.
Collapse
Affiliation(s)
- William Connell
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kristle Garcia
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Hani Goodarzi
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Michael J Keiser
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Li F, Mou M, Li X, Xu W, Yin J, Zhang Y, Zhu F. DrugMAP 2.0: molecular atlas and pharma-information of all drugs. Nucleic Acids Res 2024:gkae791. [PMID: 39271119 DOI: 10.1093/nar/gkae791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
The escalating costs and high failure rates have decelerated the pace of drug development, which amplifies the research interests in developing combinatorial/repurposed drugs and understanding off-target adverse drug reaction (ADR). In other words, it is demanded to delineate the molecular atlas and pharma-information for the combinatorial/repurposed drugs and off-target interactions. However, such invaluable data were inadequately covered by existing databases. In this study, a major update was thus conducted to the DrugMAP, which accumulated (a) 20831 combinatorial drugs and their interacting atlas involving 1583 pharmacologically important molecules; (b) 842 repurposed drugs and their interacting atlas with 795 molecules; (c) 3260 off-targets relevant to the ADRs of 2731 drugs and (d) various types of pharmaceutical information, including diverse ADMET properties, versatile diseases, and various ADRs/off-targets. With the growing demands for discovering combinatorial/repurposed therapies and the rapidly emerging interest in AI-based drug discovery, DrugMAP was highly expected to act as an indispensable supplement to existing databases facilitating drug discovery, which was accessible at: https://idrblab.org/drugmap/.
Collapse
Affiliation(s)
- Fengcheng Li
- College of Pharmaceutical Sciences, Children's Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, Children's Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Xiaoyi Li
- College of Pharmaceutical Sciences, Children's Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou 310058, China
| | - Weize Xu
- College of Pharmaceutical Sciences, Children's Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou 310058, China
| | - Jiayi Yin
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yang Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Children's Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
4
|
Qin X, Lu T, Pang Z. Advancing cancer nanomedicine with machine learning. Acta Pharm Sin B 2024; 14:4183-4185. [PMID: 39309501 PMCID: PMC11413671 DOI: 10.1016/j.apsb.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 09/25/2024] Open
Affiliation(s)
- Xifeng Qin
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Tun Lu
- School of Computer Science, Fudan University, Shanghai 200438, China
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| |
Collapse
|
5
|
Deng Y, Yao Y, Wang Y, Yu T, Cai W, Zhou D, Yin F, Liu W, Liu Y, Xie C, Guan J, Hu Y, Huang P, Li W. An end-to-end deep learning method for mass spectrometry data analysis to reveal disease-specific metabolic profiles. Nat Commun 2024; 15:7136. [PMID: 39164279 PMCID: PMC11335749 DOI: 10.1038/s41467-024-51433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Untargeted metabolomic analysis using mass spectrometry provides comprehensive metabolic profiling, but its medical application faces challenges of complex data processing, high inter-batch variability, and unidentified metabolites. Here, we present DeepMSProfiler, an explainable deep-learning-based method, enabling end-to-end analysis on raw metabolic signals with output of high accuracy and reliability. Using cross-hospital 859 human serum samples from lung adenocarcinoma, benign lung nodules, and healthy individuals, DeepMSProfiler successfully differentiates the metabolomic profiles of different groups (AUC 0.99) and detects early-stage lung adenocarcinoma (accuracy 0.961). Model flow and ablation experiments demonstrate that DeepMSProfiler overcomes inter-hospital variability and effects of unknown metabolites signals. Our ensemble strategy removes background-category phenomena in multi-classification deep-learning models, and the novel interpretability enables direct access to disease-related metabolite-protein networks. Further applying to lipid metabolomic data unveils correlations of important metabolites and proteins. Overall, DeepMSProfiler offers a straightforward and reliable method for disease diagnosis and mechanism discovery, enhancing its broad applicability.
Collapse
Affiliation(s)
- Yongjie Deng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yao Yao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Metabolic Innovation Platform, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yanni Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tiantian Yu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Metabolic Innovation Platform, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenhao Cai
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Dingli Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Feng Yin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wanli Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuying Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chuanbo Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian Guan
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yumin Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Metabolic Innovation Platform, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Metabolic Innovation Platform, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Weizhong Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Sun Yat-Sen University School of Medicine, Sun Yat-Sen University, Shenzhen, China.
- Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Xiang L, Chen J, Zhao X, Hu J, Yu J, Zeng X, Liu T, Ren J, Zhang S. Synergistic Machine Learning Accelerated Discovery of Nanoporous Inorganic Crystals as Non-Absorbable Oral Drugs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404688. [PMID: 38815983 DOI: 10.1002/adma.202404688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Machine learning (ML) has taken drug discovery to new heights, where effective ML training requires vast quantities of high-quality experimental data as input. Non-absorbable oral drugs (NODs) have unique safety advantage for chronic diseases due to their zero systemic exposure, but their empirical discovery is still time-consuming and costly. Here, a synergistic ML method, integrating small data-driven multi-layer unsupervised learning, in silico quantum-mechanical computations, and minimal wet-lab experiments is devised to identify the finest NODs from massive inorganic materials to achieve multi-objective function (high selectivity, large capacity, and stability). Based on this method, a NH4-form nanoporous zeolite with merlinoite (MER) framework (NH4-MER) is discovered for the treatment of hyperkalemia. In three different animal models, NH4-MER shows a superior safety and efficacy profile in reducing blood K+ without Na+ release, which is an unmet clinical need in chronic kidney disease and Gordon's syndrome. This work provides a synergistic ML method to accelerate the discovery of NODs and other shape-selective materials.
Collapse
Affiliation(s)
- Liang Xiang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiangzhi Chen
- School of Physics Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Xin Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jinbin Hu
- School of Physics Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Jia Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaodong Zeng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tianzhi Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jie Ren
- School of Physics Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
- Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai, 200092, P. R. China
| | - Shiyi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
7
|
Ma Q, Jiang Y, Cheng H, Xu D. Harnessing the deep learning power of foundation models in single-cell omics. Nat Rev Mol Cell Biol 2024; 25:593-594. [PMID: 38926531 DOI: 10.1038/s41580-024-00756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Affiliation(s)
- Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| | - Yi Jiang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Hao Cheng
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
8
|
Chen Y, Sun Z, Yin J, Ahmad MU, Zhou Z, Feng W, Yang F, Zhou K, Xie J, Bie C, Chen H, Jiang Y. Digital assessment of tertiary lymphoid structures and therapeutic responses in gastric cancer: A multi-centric retrospective study. Int J Surg 2024; 110:01279778-990000000-01684. [PMID: 38884256 PMCID: PMC11486929 DOI: 10.1097/js9.0000000000001834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Tertiary lymphoid structures (TLSs) are associated with favorable prognosis and enhanced response to anti-cancer therapy. A digital assessment of TLSs could provide an objective alternative that mitigates variability inherent in manual evaluation. This study aimed to develop and validate a digital gene panel based on biological prior knowledge for assessment of TLSs, and further investigate its associations with survival and multiple anti-cancer therapies. MATERIALS AND METHODS The present study involved 1,704 patients with gastric cancer from seven cancer centers. TLSs were identified morphologically through hematoxylin-and-eosin staining. We further developed a digital score based on targeted gene expression profiling to assess TLSs status, recorded as gene signature of tertiary lymphoid structures (gsTLS). For enhanced interpretability, we employed the SHapley Additive exPlanation (SHAP) analysis to elucidate its contribution to the prediction. We next evaluated the signature's associations with prognosis, and investigated its predictive accuracy for multiple anti-cancer therapies, including adjuvant chemotherapy and immunotherapy. RESULTS The gsTLS panel with nine gene features achieved high accuracies in predicting TLSs status in the training, internal and external validation cohorts (area under the curve, range: 0.729-0.791). In multivariable analysis, gsTLS remained an independent predictor of disease-free and overall survival (hazard ratio, range: 0.346-0.743, all P < 0.05) after adjusting for other clinicopathological variables. SHAP analysis highlighted gsTLS as the strongest predictor of TLSs status compared with clinical features. Importantly, patients with high gsTLS (but not those with low gsTLS) exhibited substantial benefits from adjuvant chemotherapy (P < 0.05). Furthermore, we found that the objective response rate to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy was significantly higher in the high-gsTLS group (40.7%) versus the low-gsTLS group (5.6%, P = 0.036), and the diagnosis was independent from Epstein-Barr virus (EBV), tumor mutation burden (TMB), and programmed cell death-ligand 1 (PD-L1) expression. CONCLUSION The gsTLS digital panel enables accurate assessment of TLSs status, and provides information regarding prognosis and responses to multiple therapies for gastric cancer.
Collapse
Affiliation(s)
- Yan Chen
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Zepang Sun
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junmei Yin
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - M. Usman Ahmad
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Zixia Zhou
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wanying Feng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fan Yang
- Department of Computer Science, Wake Forest University, Winston Salem
| | - Kangneng Zhou
- College of Computer Science, Nankai University, Tianjin, People’s Republic of China
| | - Jingjing Xie
- Graduate Group of Epidemiology, University of California Davis, Davis, California USA
| | - Caiqun Bie
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Hongzhuan Chen
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Yuming Jiang
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| |
Collapse
|
9
|
Perez-Lopez R, Ghaffari Laleh N, Mahmood F, Kather JN. A guide to artificial intelligence for cancer researchers. Nat Rev Cancer 2024; 24:427-441. [PMID: 38755439 DOI: 10.1038/s41568-024-00694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
Artificial intelligence (AI) has been commoditized. It has evolved from a specialty resource to a readily accessible tool for cancer researchers. AI-based tools can boost research productivity in daily workflows, but can also extract hidden information from existing data, thereby enabling new scientific discoveries. Building a basic literacy in these tools is useful for every cancer researcher. Researchers with a traditional biological science focus can use AI-based tools through off-the-shelf software, whereas those who are more computationally inclined can develop their own AI-based software pipelines. In this article, we provide a practical guide for non-computational cancer researchers to understand how AI-based tools can benefit them. We convey general principles of AI for applications in image analysis, natural language processing and drug discovery. In addition, we give examples of how non-computational researchers can get started on the journey to productively use AI in their own work.
Collapse
Affiliation(s)
- Raquel Perez-Lopez
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Narmin Ghaffari Laleh
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
| | - Faisal Mahmood
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Harvard Data Science Initiative, Harvard University, Cambridge, MA, USA
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany.
- Department of Medicine I, University Hospital Dresden, Dresden, Germany.
- Medical Oncology, National Center for Tumour Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
10
|
Lin PJ, Li W, Zhai X, Sun J, Pan Y, Ji L, Li C. AM-EEGNet: An advanced multi-input deep learning framework for classifying stroke patient EEG task states. Neurocomputing 2024; 585:127622. [DOI: 10.1016/j.neucom.2024.127622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2024]
|
11
|
Dong Y, Chang Y, Wang Y, Han Q, Wen X, Yang Z, Zhang Y, Qiang Y, Wu K, Fan X, Ren X. MFSynDCP: multi-source feature collaborative interactive learning for drug combination synergy prediction. BMC Bioinformatics 2024; 25:140. [PMID: 38561679 PMCID: PMC10985899 DOI: 10.1186/s12859-024-05765-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Drug combination therapy is generally more effective than monotherapy in the field of cancer treatment. However, screening for effective synergistic combinations from a wide range of drug combinations is particularly important given the increase in the number of available drug classes and potential drug-drug interactions. Existing methods for predicting the synergistic effects of drug combinations primarily focus on extracting structural features of drug molecules and cell lines, but neglect the interaction mechanisms between cell lines and drug combinations. Consequently, there is a deficiency in comprehensive understanding of the synergistic effects of drug combinations. To address this issue, we propose a drug combination synergy prediction model based on multi-source feature interaction learning, named MFSynDCP, aiming to predict the synergistic effects of anti-tumor drug combinations. This model includes a graph aggregation module with an adaptive attention mechanism for learning drug interactions and a multi-source feature interaction learning controller for managing information transfer between different data sources, accommodating both drug and cell line features. Comparative studies with benchmark datasets demonstrate MFSynDCP's superiority over existing methods. Additionally, its adaptive attention mechanism graph aggregation module identifies drug chemical substructures crucial to the synergy mechanism. Overall, MFSynDCP is a robust tool for predicting synergistic drug combinations. The source code is available from GitHub at https://github.com/kkioplkg/MFSynDCP .
Collapse
Affiliation(s)
- Yunyun Dong
- School of Software, Taiyuan University of Technology, Taiyuan, Shanxi, China.
| | - Yunqing Chang
- School of Software, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Yuxiang Wang
- School of Software, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Qixuan Han
- School of Software, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Xiaoyuan Wen
- School of Software, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Ziting Yang
- School of Software, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Yan Zhang
- School of Software, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Yan Qiang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, Shanxi, China.
| | - Kun Wu
- School of Computing, University of Leeds, Leeds, West Yorkshire, UK
| | - Xiaole Fan
- Information Management Department, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Xiaoqiang Ren
- Information Management Department, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
12
|
Zhang P, Zhang D, Zhou W, Wang L, Wang B, Zhang T, Li S. Network pharmacology: towards the artificial intelligence-based precision traditional Chinese medicine. Brief Bioinform 2023; 25:bbad518. [PMID: 38197310 PMCID: PMC10777171 DOI: 10.1093/bib/bbad518] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
Network pharmacology (NP) provides a new methodological perspective for understanding traditional medicine from a holistic perspective, giving rise to frontiers such as traditional Chinese medicine network pharmacology (TCM-NP). With the development of artificial intelligence (AI) technology, it is key for NP to develop network-based AI methods to reveal the treatment mechanism of complex diseases from massive omics data. In this review, focusing on the TCM-NP, we summarize involved AI methods into three categories: network relationship mining, network target positioning and network target navigating, and present the typical application of TCM-NP in uncovering biological basis and clinical value of Cold/Hot syndromes. Collectively, our review provides researchers with an innovative overview of the methodological progress of NP and its application in TCM from the AI perspective.
Collapse
Affiliation(s)
- Peng Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics/Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Dingfan Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics/Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Wuai Zhou
- China Mobile Information System Integration Co., Ltd, Beijing 100032, China
| | - Lan Wang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics/Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Boyang Wang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics/Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Tingyu Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics/Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Shao Li
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics/Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Toussaint PA, Leiser F, Thiebes S, Schlesner M, Brors B, Sunyaev A. Explainable artificial intelligence for omics data: a systematic mapping study. Brief Bioinform 2023; 25:bbad453. [PMID: 38113073 PMCID: PMC10729786 DOI: 10.1093/bib/bbad453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/28/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023] Open
Abstract
Researchers increasingly turn to explainable artificial intelligence (XAI) to analyze omics data and gain insights into the underlying biological processes. Yet, given the interdisciplinary nature of the field, many findings have only been shared in their respective research community. An overview of XAI for omics data is needed to highlight promising approaches and help detect common issues. Toward this end, we conducted a systematic mapping study. To identify relevant literature, we queried Scopus, PubMed, Web of Science, BioRxiv, MedRxiv and arXiv. Based on keywording, we developed a coding scheme with 10 facets regarding the studies' AI methods, explainability methods and omics data. Our mapping study resulted in 405 included papers published between 2010 and 2023. The inspected papers analyze DNA-based (mostly genomic), transcriptomic, proteomic or metabolomic data by means of neural networks, tree-based methods, statistical methods and further AI methods. The preferred post-hoc explainability methods are feature relevance (n = 166) and visual explanation (n = 52), while papers using interpretable approaches often resort to the use of transparent models (n = 83) or architecture modifications (n = 72). With many research gaps still apparent for XAI for omics data, we deduced eight research directions and discuss their potential for the field. We also provide exemplary research questions for each direction. Many problems with the adoption of XAI for omics data in clinical practice are yet to be resolved. This systematic mapping study outlines extant research on the topic and provides research directions for researchers and practitioners.
Collapse
Affiliation(s)
- Philipp A Toussaint
- Department of Economics and Management, Karlsruhe Institute of Technology, Karlsruhe, Germany
- HIDSS4Health – Helmholtz Information and Data Science School for Health, Karlsruhe, Heidelberg, Germany
| | - Florian Leiser
- Department of Economics and Management, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Scott Thiebes
- Department of Economics and Management, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Matthias Schlesner
- Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science and Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Translational Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ali Sunyaev
- Department of Economics and Management, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
14
|
Connell W, Garcia K, Goodarzi H, Keiser MJ. Learning chemical sensitivity reveals mechanisms of cellular response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.26.554851. [PMID: 37693536 PMCID: PMC10491110 DOI: 10.1101/2023.08.26.554851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Chemical probes interrogate disease mechanisms at the molecular level by linking genetic changes to observable traits. However, comprehensive chemical screens in diverse biological models are impractical. To address this challenge, we developed ChemProbe, a model that predicts cellular sensitivity to hundreds of molecular probes and drugs by learning to combine transcriptomes and chemical structures. Using ChemProbe, we inferred the chemical sensitivity of cancer cell lines and tumor samples and analyzed how the model makes predictions. We retrospectively evaluated drug response predictions for precision breast cancer treatment and prospectively validated chemical sensitivity predictions in new cellular models, including a genetically modified cell line. Our model interpretation analysis identified transcriptome features reflecting compound targets and protein network modules, identifying genes that drive ferroptosis. ChemProbe is an interpretable in silico screening tool that allows researchers to measure cellular response to diverse compounds, facilitating research into molecular mechanisms of chemical sensitivity.
Collapse
Affiliation(s)
- William Connell
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kristle Garcia
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Hani Goodarzi
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Michael J. Keiser
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Chen RJ, Wang JJ, Williamson DFK, Chen TY, Lipkova J, Lu MY, Sahai S, Mahmood F. Algorithmic fairness in artificial intelligence for medicine and healthcare. Nat Biomed Eng 2023; 7:719-742. [PMID: 37380750 PMCID: PMC10632090 DOI: 10.1038/s41551-023-01056-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/13/2023] [Indexed: 06/30/2023]
Abstract
In healthcare, the development and deployment of insufficiently fair systems of artificial intelligence (AI) can undermine the delivery of equitable care. Assessments of AI models stratified across subpopulations have revealed inequalities in how patients are diagnosed, treated and billed. In this Perspective, we outline fairness in machine learning through the lens of healthcare, and discuss how algorithmic biases (in data acquisition, genetic variation and intra-observer labelling variability, in particular) arise in clinical workflows and the resulting healthcare disparities. We also review emerging technology for mitigating biases via disentanglement, federated learning and model explainability, and their role in the development of AI-based software as a medical device.
Collapse
Affiliation(s)
- Richard J Chen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Judy J Wang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Drew F K Williamson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tiffany Y Chen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jana Lipkova
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ming Y Lu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sharifa Sahai
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Faisal Mahmood
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA.
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Data Science Initiative, Harvard University, Cambridge, MA, USA.
| |
Collapse
|