1
|
Parkes L, Kim JZ, Stiso J, Brynildsen JK, Cieslak M, Covitz S, Gur RE, Gur RC, Pasqualetti F, Shinohara RT, Zhou D, Satterthwaite TD, Bassett DS. A network control theory pipeline for studying the dynamics of the structural connectome. Nat Protoc 2024; 19:3721-3749. [PMID: 39075309 DOI: 10.1038/s41596-024-01023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/16/2024] [Indexed: 07/31/2024]
Abstract
Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure-function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter the dynamics of a system in a desired way. An interesting development for NCT in the neuroscience field is its application to study behavior and mental health symptoms. To date, NCT has been validated to study different aspects of the human structural connectome. NCT outputs can be monitored throughout developmental stages to study the effects of connectome topology on neural dynamics and, separately, to test the coherence of empirical datasets with brain function and stimulation. Here, we provide a comprehensive pipeline for applying NCT to structural connectomes by following two procedures. The main procedure focuses on computing the control energy associated with the transitions between specific neural activity states. The second procedure focuses on computing average controllability, which indexes nodes' general capacity to control the dynamics of the system. We provide recommendations for comparing NCT outputs against null network models, and we further support this approach with a Python-based software package called 'network control theory for python'. The procedures in this protocol are appropriate for users with a background in network neuroscience and experience in dynamical systems theory.
Collapse
Affiliation(s)
- Linden Parkes
- Department of Psychiatry, Rutgers University, Piscataway, NJ, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jason Z Kim
- Department of Physics, Cornell University, Ithaca, NY, USA
| | - Jennifer Stiso
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia K Brynildsen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Cieslak
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney Covitz
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Raquel E Gur
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C Gur
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fabio Pasqualetti
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, Philadelphia, PA, USA
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dale Zhou
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
2
|
Luppi AI, Sanz Perl Y, Vohryzek J, Mediano PAM, Rosas FE, Milisav F, Suarez LE, Gini S, Gutierrez-Barragan D, Gozzi A, Misic B, Deco G, Kringelbach ML. Competitive interactions shape brain dynamics and computation across species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619194. [PMID: 39484469 PMCID: PMC11526968 DOI: 10.1101/2024.10.19.619194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Adaptive cognition relies on cooperation across anatomically distributed brain circuits. However, specialised neural systems are also in constant competition for limited processing resources. How does the brain's network architecture enable it to balance these cooperative and competitive tendencies? Here we use computational whole-brain modelling to examine the dynamical and computational relevance of cooperative and competitive interactions in the mammalian connectome. Across human, macaque, and mouse we show that the architecture of the models that most faithfully reproduce brain activity, consistently combines modular cooperative interactions with diffuse, long-range competitive interactions. The model with competitive interactions consistently outperforms the cooperative-only model, with excellent fit to both spatial and dynamical properties of the living brain, which were not explicitly optimised but rather emerge spontaneously. Competitive interactions in the effective connectivity produce greater levels of synergistic information and local-global hierarchy, and lead to superior computational capacity when used for neuromorphic computing. Altogether, this work provides a mechanistic link between network architecture, dynamical properties, and computation in the mammalian brain.
Collapse
Affiliation(s)
- Andrea I. Luppi
- University of Oxford, Oxford, UK
- St John’s College, Cambridge, UK
- Montreal Neurological Institute, Montreal, Canada
| | | | | | | | | | | | | | - Silvia Gini
- Italian Institute of Technology, Rovereto, Italy
- Centre for Mind/Brain Sciences, University of Trento, Italy
| | | | | | | | | | | |
Collapse
|
3
|
Ritz H, Jha A, Pillow J, Daw ND, Cohen JD. Humans actively reconfigure neural task states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.29.615736. [PMID: 39416099 PMCID: PMC11482766 DOI: 10.1101/2024.09.29.615736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The ability to switch between different tasks is a core component of adaptive cognition, but a mechanistic understanding of this capacity has remained elusive. Longstanding questions over whether task switching requires active preparation remain hotly contested, in large part due to the difficulty of inferring preparatory dynamics from behavior or time-locked neuroimaging. We make progress on this debate by quantifying neural task representations using high-dimensional linear dynamical systems fit to human electroencephalographic recordings. We find that these dynamical systems have high predictive accuracy and reveal neural signatures of active preparation that are shared with task-optimized neural networks. These findings inform a classic debate about how we control our cognition, and offer a promising new paradigm for neuroimaging analysis.
Collapse
Affiliation(s)
- Harrison Ritz
- Princeton Neuroscience Institute, Princeton University
| | - Aditi Jha
- Princeton Neuroscience Institute, Princeton University
- Department of Statistics, Stanford University
| | | | - Nathaniel D Daw
- Princeton Neuroscience Institute, Princeton University
- Department of Psychology, Princeton University
| | - Jonathan D Cohen
- Princeton Neuroscience Institute, Princeton University
- Department of Psychology, Princeton University
| |
Collapse
|
4
|
Benozzo D, Baggio G, Baron G, Chiuso A, Zampieri S, Bertoldo A. Analyzing asymmetry in brain hierarchies with a linear state-space model of resting-state fMRI data. Netw Neurosci 2024; 8:965-988. [PMID: 39355437 PMCID: PMC11424037 DOI: 10.1162/netn_a_00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/02/2024] [Indexed: 10/03/2024] Open
Abstract
This study challenges the traditional focus on zero-lag statistics in resting-state functional magnetic resonance imaging (rsfMRI) research. Instead, it advocates for considering time-lag interactions to unveil the directionality and asymmetries of the brain hierarchy. Effective connectivity (EC), the state matrix in dynamical causal modeling (DCM), is a commonly used metric for studying dynamical properties and causal interactions within a linear state-space system description. Here, we focused on how time-lag statistics are incorporated within the framework of DCM resulting in an asymmetric EC matrix. Our approach involves decomposing the EC matrix, revealing a steady-state differential cross-covariance matrix that is responsible for modeling information flow and introducing time-irreversibility. Specifically, the system's dynamics, influenced by the off-diagonal part of the differential covariance, exhibit a curl steady-state flow component that breaks detailed balance and diverges the dynamics from equilibrium. Our empirical findings indicate that the EC matrix's outgoing strengths correlate with the flow described by the differential cross covariance, while incoming strengths are primarily driven by zero-lag covariance, emphasizing conditional independence over directionality.
Collapse
Affiliation(s)
- Danilo Benozzo
- Information Engineering Department, University of Padova, Padova, Italy
| | - Giacomo Baggio
- Information Engineering Department, University of Padova, Padova, Italy
| | - Giorgia Baron
- Information Engineering Department, University of Padova, Padova, Italy
| | - Alessandro Chiuso
- Information Engineering Department, University of Padova, Padova, Italy
| | - Sandro Zampieri
- Information Engineering Department, University of Padova, Padova, Italy
| | - Alessandra Bertoldo
- Information Engineering Department, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
5
|
Li X, Zhang Y. Identifying Brain Network Structure for an fMRI Effective Connectivity Study Using the Least Absolute Shrinkage and Selection Operator (LASSO) Method. Tomography 2024; 10:1564-1576. [PMID: 39453032 PMCID: PMC11511430 DOI: 10.3390/tomography10100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Studying causality relationships between different brain regions using the fMRI method has attracted great attention. To investigate causality relationships between different brain regions, we need to identify both the brain network structure and the influence magnitude. Most current methods concentrate on magnitude estimation, but not on identifying the connection or structure of the network. To address this problem, we proposed a nonlinear system identification method, in which a polynomial kernel was adopted to approximate the relation between the system inputs and outputs. However, this method has an overfitting problem for modelling the input-output relation if we apply the method to model the brain network directly. Methods: To overcome this limitation, this study applied the least absolute shrinkage and selection operator (LASSO) model selection method to identify both brain region networks and the connection strength (system coefficients). From these coefficients, the causality influence is derived from the identified structure. The method was verified based on the human visual cortex with phase-encoded designs. The functional data were pre-processed with motion correction. The visual cortex brain regions were defined based on a retinotopic mapping method. An eight-connection visual system network was adopted to validate the method. The proposed method was able to identify both the connected visual networks and associated coefficients from the LASSO model selection. Results: The result showed that this method can be applied to identify both network structures and associated causalities between different brain regions. Conclusions: System identification with LASSO model selection algorithm is a powerful approach for fMRI effective connectivity study.
Collapse
Affiliation(s)
- Xingfeng Li
- Department of Surgery & Cancer, Hammersmith Campus, Imperial College London, Du Cane Road, London W12 0HS, UK
| | - Yuan Zhang
- Key Laboratory of Language, Cognition and Computation of Ministry of Industry and Information Technology, School of Foreign Languages, Beijing Institute of Technology, 5 Zhongguancun South Street, Beijing 100081, China;
| |
Collapse
|
6
|
Acharya G, Davis KA, Nozari E. Predictive modeling of evoked intracranial EEG response to medial temporal lobe stimulation in patients with epilepsy. Commun Biol 2024; 7:1210. [PMID: 39342058 PMCID: PMC11438964 DOI: 10.1038/s42003-024-06859-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
Despite promising advancements, closed-loop neurostimulation for drug-resistant epilepsy (DRE) still relies on manual tuning and produces variable outcomes, while automated predictable algorithms remain an aspiration. As a fundamental step towards addressing this gap, here we study predictive dynamical models of human intracranial EEG (iEEG) response under parametrically rich neurostimulation. Using data from n = 13 DRE patients, we find that stimulation-triggered switched-linear models with ~300 ms of causal historical dependence best explain evoked iEEG dynamics. These models are highly consistent across different stimulation amplitudes and frequencies, allowing for learning a generalizable model from abundant STIM OFF and limited STIM ON data. Further, evoked iEEG in nearly all subjects exhibited a distance-dependent pattern, whereby stimulation directly impacts the actuation site and nearby regions (≲ 20 mm), affects medium-distance regions (20 ~ 100 mm) through network interactions, and hardly reaches more distal areas (≳ 100 mm). Peak network interaction occurs at 60 ~ 80 mm from the stimulation site. Due to their predictive accuracy and mechanistic interpretability, these models hold significant potential for model-based seizure forecasting and closed-loop neurostimulation design.
Collapse
Affiliation(s)
- Gagan Acharya
- Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA
| | - Kathryn A Davis
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Erfan Nozari
- Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA.
- Department of Mechanical Engineering, University of California, Riverside, CA, USA.
- Department of Bioengineering, University of California, Riverside, CA, USA.
| |
Collapse
|
7
|
Nartallo-Kaluarachchi R, Asllani M, Deco G, Kringelbach ML, Goriely A, Lambiotte R. Broken detailed balance and entropy production in directed networks. Phys Rev E 2024; 110:034313. [PMID: 39425339 DOI: 10.1103/physreve.110.034313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/06/2024] [Indexed: 10/21/2024]
Abstract
The structure of a complex network plays a crucial role in determining its dynamical properties. In this paper , we show that the the degree to which a network is directed and hierarchically organized is closely associated with the degree to which its dynamics break detailed balance and produce entropy. We consider a range of dynamical processes and show how different directed network features affect their entropy production rate. We begin with an analytical treatment of a two-node network followed by numerical simulations of synthetic networks using the preferential attachment and Erdös-Renyi algorithms. Next, we analyze a collection of 97 empirical networks to determine the effect of complex real-world topologies. Finally, we present a simple method for inferring broken detailed balance and directed network structure from multivariate time series and apply our method to identify non-equilibrium dynamics and hierarchical organisation in both human neuroimaging and financial time series. Overall, our results shed light on the consequences of directed network structure on non-equilibrium dynamics and highlight the importance and ubiquity of hierarchical organisation and non-equilibrium dynamics in real-world systems.
Collapse
Affiliation(s)
| | | | | | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, 7 Stoke Pl, Oxford OX3 9BX, United Kingdom
- Center for Music in the Brain, Aarhus University, & The Royal Academy of Music, Aarhus/Aalborg, Denmark
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX United Kingdom
| | | | | |
Collapse
|
8
|
Luppi AI, Singleton SP, Hansen JY, Jamison KW, Bzdok D, Kuceyeski A, Betzel RF, Misic B. Contributions of network structure, chemoarchitecture and diagnostic categories to transitions between cognitive topographies. Nat Biomed Eng 2024; 8:1142-1161. [PMID: 39103509 PMCID: PMC11410673 DOI: 10.1038/s41551-024-01242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/02/2024] [Indexed: 08/07/2024]
Abstract
The mechanisms linking the brain's network structure to cognitively relevant activation patterns remain largely unknown. Here, by leveraging principles of network control, we show how the architecture of the human connectome shapes transitions between 123 experimentally defined cognitive activation maps (cognitive topographies) from the NeuroSynth meta-analytic database. Specifically, we systematically integrated large-scale multimodal neuroimaging data from functional magnetic resonance imaging, diffusion tractography, cortical morphometry and positron emission tomography to simulate how anatomically guided transitions between cognitive states can be reshaped by neurotransmitter engagement or by changes in cortical thickness. Our model incorporates neurotransmitter-receptor density maps (18 receptors and transporters) and maps of cortical thickness pertaining to a wide range of mental health, neurodegenerative, psychiatric and neurodevelopmental diagnostic categories (17,000 patients and 22,000 controls). The results provide a comprehensive look-up table charting how brain network organization and chemoarchitecture interact to manifest different cognitive topographies, and establish a principled foundation for the systematic identification of ways to promote selective transitions between cognitive topographies.
Collapse
Affiliation(s)
- Andrea I Luppi
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | - S Parker Singleton
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Justine Y Hansen
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Keith W Jamison
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Danilo Bzdok
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- MILA, Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Richard F Betzel
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Tu W, Cramer SR, Zhang N. Disparity in temporal and spatial relationships between resting-state electrophysiological and fMRI signals. eLife 2024; 13:RP95680. [PMID: 39102347 PMCID: PMC11299978 DOI: 10.7554/elife.95680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Abstract
Resting-state brain networks (RSNs) have been widely applied in health and disease, but the interpretation of RSNs in terms of the underlying neural activity is unclear. To address this fundamental question, we conducted simultaneous recordings of whole-brain resting-state functional magnetic resonance imaging (rsfMRI) and electrophysiology signals in two separate brain regions of rats. Our data reveal that for both recording sites, spatial maps derived from band-specific local field potential (LFP) power can account for up to 90% of the spatial variability in RSNs derived from rsfMRI signals. Surprisingly, the time series of LFP band power can only explain to a maximum of 35% of the temporal variance of the local rsfMRI time course from the same site. In addition, regressing out time series of LFP power from rsfMRI signals has minimal impact on the spatial patterns of rsfMRI-based RSNs. This disparity in the spatial and temporal relationships between resting-state electrophysiology and rsfMRI signals suggests that electrophysiological activity alone does not fully explain the effects observed in the rsfMRI signal, implying the existence of an rsfMRI component contributed by 'electrophysiology-invisible' signals. These findings offer a novel perspective on our understanding of RSN interpretation.
Collapse
Affiliation(s)
- Wenyu Tu
- The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State UniversityUniversity ParkUnited States
| | - Samuel R Cramer
- The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State UniversityUniversity ParkUnited States
| | - Nanyin Zhang
- The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State UniversityUniversity ParkUnited States
- Center for Neural Engineering, Pennsylvania State UniversityUniversity ParkUnited States
- Center for Neurotechnology in Mental Health Research, Pennsylvania State UniversityUniversity ParkUnited States
- Department of Biomedical Engineering, Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
10
|
Luppi AI, Mediano PAM, Rosas FE, Allanson J, Pickard J, Carhart-Harris RL, Williams GB, Craig MM, Finoia P, Owen AM, Naci L, Menon DK, Bor D, Stamatakis EA. A synergistic workspace for human consciousness revealed by Integrated Information Decomposition. eLife 2024; 12:RP88173. [PMID: 39022924 PMCID: PMC11257694 DOI: 10.7554/elife.88173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a 'synergistic global workspace', comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain's default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Pedro AM Mediano
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Center for Complexity Science, Imperial College LondonLondonUnited Kingdom
- Data Science Institute, Imperial College LondonLondonUnited Kingdom
| | - Judith Allanson
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - John Pickard
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Psychedelics Division - Neuroscape, Department of Neurology, University of CaliforniaSan FranciscoUnited States
| | - Guy B Williams
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Michael M Craig
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Paola Finoia
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Adrian M Owen
- Department of Psychology and Department of Physiology and Pharmacology, The Brain and Mind Institute, University of Western OntarioLondonCanada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Lloyd Building, Trinity CollegeDublinIreland
| | - David K Menon
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Daniel Bor
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Emmanuel A Stamatakis
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
11
|
Ghorbani F, Zhou X, Talebi N, Roessner V, Hommel B, Prochnow A, Beste C. Neural connectivity patterns explain why adolescents perceive the world as moving slow. Commun Biol 2024; 7:759. [PMID: 38909084 PMCID: PMC11193795 DOI: 10.1038/s42003-024-06439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/11/2024] [Indexed: 06/24/2024] Open
Abstract
That younger individuals perceive the world as moving slower than adults is a familiar phenomenon. Yet, it remains an open question why that is. Using event segmentation theory, electroencephalogram (EEG) beamforming and nonlinear causal relationship estimation using artificial neural network methods, we studied neural activity while adolescent and adult participants segmented a movie. We show when participants were instructed to segment a movie into meaningful units, adolescents partitioned incoming information into fewer encapsulated segments or episodes of longer duration than adults. Importantly, directed communication between medial frontal and lower-level perceptual areas and between occipito-temporal regions in specific neural oscillation spectrums explained behavioral differences between groups. Overall, the study reveals that a different organization of directed communication between brain regions and inefficient transmission of information between brain regions are key to understand why younger people perceive the world as moving slow.
Collapse
Affiliation(s)
- Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
| | - Xianzhen Zhou
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
| | - Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
| | - Bernhard Hommel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
- School of Psychology, Shandong Normal University, Jinan, China
| | - Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany.
- School of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
12
|
Bryant AG, Aquino K, Parkes L, Fornito A, Fulcher BD. Extracting interpretable signatures of whole-brain dynamics through systematic comparison. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.573372. [PMID: 38915560 PMCID: PMC11195072 DOI: 10.1101/2024.01.10.573372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The brain's complex distributed dynamics are typically quantified using a limited set of manually selected statistical properties, leaving the possibility that alternative dynamical properties may outperform those reported for a given application. Here, we address this limitation by systematically comparing diverse, interpretable features of both intra-regional activity and inter-regional functional coupling from resting-state functional magnetic resonance imaging (rs-fMRI) data, demonstrating our method using case-control comparisons of four neuropsychiatric disorders. Our findings generally support the use of linear time-series analysis techniques for rs-fMRI case-control analyses, while also identifying new ways to quantify informative dynamical fMRI structures. While simple statistical representations of fMRI dynamics performed surprisingly well (e.g., properties within a single brain region), combining intra-regional properties with inter-regional coupling generally improved performance, underscoring the distributed, multifaceted changes to fMRI dynamics in neuropsychiatric disorders. The comprehensive, data-driven method introduced here enables systematic identification and interpretation of quantitative dynamical signatures of multivariate time-series data, with applicability beyond neuroimaging to diverse scientific problems involving complex time-varying systems.
Collapse
Affiliation(s)
- Annie G. Bryant
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| | - Kevin Aquino
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
- Brain Key Incorporated, San Francisco, CA, USA
| | - Linden Parkes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
- Turner Institute for Brain & Mental Health, Monash University, VIC, Australia
| | - Alex Fornito
- Turner Institute for Brain & Mental Health, Monash University, VIC, Australia
| | - Ben D. Fulcher
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
13
|
Luppi AI, Gellersen HM, Liu ZQ, Peattie ARD, Manktelow AE, Adapa R, Owen AM, Naci L, Menon DK, Dimitriadis SI, Stamatakis EA. Systematic evaluation of fMRI data-processing pipelines for consistent functional connectomics. Nat Commun 2024; 15:4745. [PMID: 38834553 PMCID: PMC11150439 DOI: 10.1038/s41467-024-48781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/10/2024] [Indexed: 06/06/2024] Open
Abstract
Functional interactions between brain regions can be viewed as a network, enabling neuroscientists to investigate brain function through network science. Here, we systematically evaluate 768 data-processing pipelines for network reconstruction from resting-state functional MRI, evaluating the effect of brain parcellation, connectivity definition, and global signal regression. Our criteria seek pipelines that minimise motion confounds and spurious test-retest discrepancies of network topology, while being sensitive to both inter-subject differences and experimental effects of interest. We reveal vast and systematic variability across pipelines' suitability for functional connectomics. Inappropriate choice of data-processing pipeline can produce results that are not only misleading, but systematically so, with the majority of pipelines failing at least one criterion. However, a set of optimal pipelines consistently satisfy all criteria across different datasets, spanning minutes, weeks, and months. We provide a full breakdown of each pipeline's performance across criteria and datasets, to inform future best practices in functional connectomics.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- St John's College, University of Cambridge, Cambridge, UK.
- Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Helena M Gellersen
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Zhen-Qi Liu
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Alexander R D Peattie
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Anne E Manktelow
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ram Adapa
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adrian M Owen
- Department of Psychology, Western Institute for Neuroscience (WIN), Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western Institute for Neuroscience (WIN), Western University, London, ON, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Stavros I Dimitriadis
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Neuroinformatics Group, Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, UK
- Neuroscience and Mental Health Research Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, UK
- Integrative Neuroimaging Lab, Thessaloniki, Greece
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Verma P, Ranasinghe K, Prasad J, Cai C, Xie X, Lerner H, Mizuiri D, Miller B, Rankin K, Vossel K, Cheung SW, Nagarajan SS, Raj A. Impaired long-range excitatory time scale predicts abnormal neural oscillations and cognitive deficits in Alzheimer's disease. Alzheimers Res Ther 2024; 16:62. [PMID: 38504361 PMCID: PMC10953266 DOI: 10.1186/s13195-024-01426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of dementia, progressively impairing cognitive abilities. While neuroimaging studies have revealed functional abnormalities in AD, how these relate to aberrant neuronal circuit mechanisms remains unclear. Using magnetoencephalography imaging we documented abnormal local neural synchrony patterns in patients with AD. To identify global abnormal biophysical mechanisms underlying the spatial and spectral electrophysiological patterns in AD, we estimated the parameters of a biophysical spectral graph model (SGM). METHODS SGM is an analytic neural mass model that describes how long-range fiber projections in the brain mediate the excitatory and inhibitory activity of local neuronal subpopulations. Unlike other coupled neuronal mass models, the SGM is linear, available in closed-form, and parameterized by a small set of biophysical interpretable global parameters. This facilitates their rapid and unambiguous inference which we performed here on a well-characterized clinical population of patients with AD (N = 88, age = 62.73 +/- 8.64 years) and a cohort of age-matched controls (N = 88, age = 65.07 +/- 9.92 years). RESULTS Patients with AD showed significantly elevated long-range excitatory neuronal time scales, local excitatory neuronal time scales and local inhibitory neural synaptic strength. The long-range excitatory time scale had a larger effect size, compared to local excitatory time scale and inhibitory synaptic strength and contributed highest for the accurate classification of patients with AD from controls. Furthermore, increased long-range time scale was associated with greater deficits in global cognition. CONCLUSIONS These results demonstrate that long-range excitatory time scale of neuronal activity, despite being a global measure, is a key determinant in the local spectral signatures and cognition in the human brain, and how it might be a parsimonious factor underlying altered neuronal activity in AD. Our findings provide new insights into mechanistic links between abnormal local spectral signatures and global connectivity measures in AD.
Collapse
Affiliation(s)
- Parul Verma
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Kamalini Ranasinghe
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | - Chang Cai
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Xihe Xie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hannah Lerner
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Danielle Mizuiri
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Bruce Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Katherine Rankin
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Keith Vossel
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Steven W Cheung
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
- Surgical Services, Veterans Affairs, San Francisco, USA
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Ahmadipour P, Sani OG, Pesaran B, Shanechi MM. Multimodal subspace identification for modeling discrete-continuous spiking and field potential population activity. J Neural Eng 2024; 21:026001. [PMID: 38016450 PMCID: PMC10913727 DOI: 10.1088/1741-2552/ad1053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/23/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Objective.Learning dynamical latent state models for multimodal spiking and field potential activity can reveal their collective low-dimensional dynamics and enable better decoding of behavior through multimodal fusion. Toward this goal, developing unsupervised learning methods that are computationally efficient is important, especially for real-time learning applications such as brain-machine interfaces (BMIs). However, efficient learning remains elusive for multimodal spike-field data due to their heterogeneous discrete-continuous distributions and different timescales.Approach.Here, we develop a multiscale subspace identification (multiscale SID) algorithm that enables computationally efficient learning for modeling and dimensionality reduction for multimodal discrete-continuous spike-field data. We describe the spike-field activity as combined Poisson and Gaussian observations, for which we derive a new analytical SID method. Importantly, we also introduce a novel constrained optimization approach to learn valid noise statistics, which is critical for multimodal statistical inference of the latent state, neural activity, and behavior. We validate the method using numerical simulations and with spiking and local field potential population activity recorded during a naturalistic reach and grasp behavior.Main results.We find that multiscale SID accurately learned dynamical models of spike-field signals and extracted low-dimensional dynamics from these multimodal signals. Further, it fused multimodal information, thus better identifying the dynamical modes and predicting behavior compared to using a single modality. Finally, compared to existing multiscale expectation-maximization learning for Poisson-Gaussian observations, multiscale SID had a much lower training time while being better in identifying the dynamical modes and having a better or similar accuracy in predicting neural activity and behavior.Significance.Overall, multiscale SID is an accurate learning method that is particularly beneficial when efficient learning is of interest, such as for online adaptive BMIs to track non-stationary dynamics or for reducing offline training time in neuroscience investigations.
Collapse
Affiliation(s)
- Parima Ahmadipour
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Omid G Sani
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Bijan Pesaran
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Maryam M Shanechi
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
- Thomas Lord Department of Computer Science, Alfred E. Mann Department of Biomedical Engineering, and the Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
16
|
Samiei T, Zou Z, Imani M, Nozari E. Optimal decoding of neural dynamics occurs at mesoscale spatial and temporal resolutions. Front Cell Neurosci 2024; 18:1287123. [PMID: 38419658 PMCID: PMC10899419 DOI: 10.3389/fncel.2024.1287123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Understanding the neural code has been one of the central aims of neuroscience research for decades. Spikes are commonly referred to as the units of information transfer, but multi-unit activity (MUA) recordings are routinely analyzed in aggregate forms such as binned spike counts, peri-stimulus time histograms, firing rates, or population codes. Various forms of averaging also occur in the brain, from the spatial averaging of spikes within dendritic trees to their temporal averaging through synaptic dynamics. However, how these forms of averaging are related to each other or to the spatial and temporal units of information representation within the neural code has remained poorly understood. Materials and methods In this work we developed NeuroPixelHD, a symbolic hyperdimensional model of MUA, and used it to decode the spatial location and identity of static images shown to n = 9 mice in the Allen Institute Visual Coding-NeuroPixels dataset from large-scale MUA recordings. We parametrically varied the spatial and temporal resolutions of the MUA data provided to the model, and compared its resulting decoding accuracy. Results For almost all subjects, we found 125ms temporal resolution to maximize decoding accuracy for both the spatial location of Gabor patches (81 classes for patches presented over a 9×9 grid) as well as the identity of natural images (118 classes corresponding to 118 images) across the whole brain. This optimal temporal resolution nevertheless varied greatly between different regions, followed a sensory-associate hierarchy, and was significantly modulated by the central frequency of theta-band oscillations across different regions. Spatially, the optimal resolution was at either of two mesoscale levels for almost all mice: the area level, where the spiking activity of all neurons within each brain area are combined, and the population level, where neuronal spikes within each area are combined across fast spiking (putatively inhibitory) and regular spiking (putatively excitatory) neurons, respectively. We also observed an expected interplay between optimal spatial and temporal resolutions, whereby increasing the amount of averaging across one dimension (space or time) decreases the amount of averaging that is optimal across the other dimension, and vice versa. Discussion Our findings corroborate existing empirical practices of spatiotemporal binning and averaging in MUA data analysis, and provide a rigorous computational framework for optimizing the level of such aggregations. Our findings can also synthesize these empirical practices with existing knowledge of the various sources of biological averaging in the brain into a new theory of neural information processing in which the unit of information varies dynamically based on neuronal signal and noise correlations across space and time.
Collapse
Affiliation(s)
- Toktam Samiei
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
| | - Zhuowen Zou
- Department of Computer Science, University of California, Irvine, Irvine, CA, United States
| | - Mohsen Imani
- Department of Computer Science, University of California, Irvine, Irvine, CA, United States
| | - Erfan Nozari
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
- Department of Electrical and Computer Engineering, University of California, Riverside, Riverside, CA, United States
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
17
|
Vahidi P, Sani OG, Shanechi MM. Modeling and dissociation of intrinsic and input-driven neural population dynamics underlying behavior. Proc Natl Acad Sci U S A 2024; 121:e2212887121. [PMID: 38335258 PMCID: PMC10873612 DOI: 10.1073/pnas.2212887121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/03/2023] [Indexed: 02/12/2024] Open
Abstract
Neural dynamics can reflect intrinsic dynamics or dynamic inputs, such as sensory inputs or inputs from other brain regions. To avoid misinterpreting temporally structured inputs as intrinsic dynamics, dynamical models of neural activity should account for measured inputs. However, incorporating measured inputs remains elusive in joint dynamical modeling of neural-behavioral data, which is important for studying neural computations of behavior. We first show how training dynamical models of neural activity while considering behavior but not input or input but not behavior may lead to misinterpretations. We then develop an analytical learning method for linear dynamical models that simultaneously accounts for neural activity, behavior, and measured inputs. The method provides the capability to prioritize the learning of intrinsic behaviorally relevant neural dynamics and dissociate them from both other intrinsic dynamics and measured input dynamics. In data from a simulated brain with fixed intrinsic dynamics that performs different tasks, the method correctly finds the same intrinsic dynamics regardless of the task while other methods can be influenced by the task. In neural datasets from three subjects performing two different motor tasks with task instruction sensory inputs, the method reveals low-dimensional intrinsic neural dynamics that are missed by other methods and are more predictive of behavior and/or neural activity. The method also uniquely finds that the intrinsic behaviorally relevant neural dynamics are largely similar across the different subjects and tasks, whereas the overall neural dynamics are not. These input-driven dynamical models of neural-behavioral data can uncover intrinsic dynamics that may otherwise be missed.
Collapse
Affiliation(s)
- Parsa Vahidi
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA90089
| | - Omid G. Sani
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA90089
| | - Maryam M. Shanechi
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA90089
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA90089
- Thomas Lord Department of Computer Science and Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA90089
| |
Collapse
|
18
|
Chen R, Singh M, Braver TS, Ching S. Dynamical models reveal anatomically reliable attractor landscapes embedded in resting state brain networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575745. [PMID: 38293124 PMCID: PMC10827065 DOI: 10.1101/2024.01.15.575745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Analyses of functional connectivity (FC) in resting-state brain networks (RSNs) have generated many insights into cognition. However, the mechanistic underpinnings of FC and RSNs are still not well-understood. It remains debated whether resting state activity is best characterized as noise-driven fluctuations around a single stable state, or instead, as a nonlinear dynamical system with nontrivial attractors embedded in the RSNs. Here, we provide evidence for the latter, by constructing whole-brain dynamical systems models from individual resting-state fMRI (rfMRI) recordings, using the Mesoscale Individualized NeuroDynamic (MINDy) platform. The MINDy models consist of hundreds of neural masses representing brain parcels, connected by fully trainable, individualized weights. We found that our models manifested a diverse taxonomy of nontrivial attractor landscapes including multiple equilibria and limit cycles. However, when projected into anatomical space, these attractors mapped onto a limited set of canonical RSNs, including the default mode network (DMN) and frontoparietal control network (FPN), which were reliable at the individual level. Further, by creating convex combinations of models, bifurcations were induced that recapitulated the full spectrum of dynamics found via fitting. These findings suggest that the resting brain traverses a diverse set of dynamics, which generates several distinct but anatomically overlapping attractor landscapes. Treating rfMRI as a unimodal stationary process (i.e., conventional FC) may miss critical attractor properties and structure within the resting brain. Instead, these may be better captured through neural dynamical modeling and analytic approaches. The results provide new insights into the generative mechanisms and intrinsic spatiotemporal organization of brain networks.
Collapse
Affiliation(s)
- Ruiqi Chen
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63108
| | - Matthew Singh
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO 63108
| | - Todd S. Braver
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63108
| | - ShiNung Ching
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO 63108
| |
Collapse
|