1
|
Kelly RDW, Stengel KR, Chandru A, Johnson LC, Hiebert SW, Cowley SM. Histone deacetylases maintain expression of the pluripotent gene network via recruitment of RNA polymerase II to coding and noncoding loci. Genome Res 2024; 34:34-46. [PMID: 38290976 PMCID: PMC10903948 DOI: 10.1101/gr.278050.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Histone acetylation is a dynamic modification regulated by the opposing actions of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Deacetylation of histone tails results in chromatin tightening, and therefore, HDACs are generally regarded as transcriptional repressors. Counterintuitively, simultaneous deletion of Hdac1 and Hdac2 in embryonic stem cells (ESCs) reduces expression of the pluripotency-associated transcription factors Pou5f1, Sox2, and Nanog (PSN). By shaping global histone acetylation patterns, HDACs indirectly regulate the activity of acetyl-lysine readers, such as the transcriptional activator BRD4. Here, we use inhibitors of HDACs and BRD4 (LBH589 and JQ1, respectively) in combination with precision nuclear run-on and sequencing (PRO-seq) to examine their roles in defining the ESC transcriptome. Both LBH589 and JQ1 cause a marked reduction in the pluripotent gene network. However, although JQ1 treatment induces widespread transcriptional pausing, HDAC inhibition causes a reduction in both paused and elongating polymerase, suggesting an overall reduction in polymerase recruitment. Using enhancer RNA (eRNA) expression to measure enhancer activity, we find that LBH589-sensitive eRNAs are preferentially associated with superenhancers and PSN binding sites. These findings suggest that HDAC activity is required to maintain pluripotency by regulating the PSN enhancer network via the recruitment of RNA polymerase II.
Collapse
Affiliation(s)
- Richard D W Kelly
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Kristy R Stengel
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, Bronx, New York 10461, USA
| | - Aditya Chandru
- Cancer Research UK Beatson Institute, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Lyndsey C Johnson
- Locate Bio Limited, MediCity, Beeston, Nottingham NG90 6BH, United Kingdom
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Shaun M Cowley
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, United Kingdom;
| |
Collapse
|
2
|
Xu F, Lu S, Jia X, Zhou Y. Bromodomain protein 4 mediates the roles of TGFβ1-induced Stat3 signaling in mouse liver fibrogenesis. Toxicol Lett 2023; 385:42-50. [PMID: 37634812 DOI: 10.1016/j.toxlet.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/30/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Epigenetic reader Bromodomain protein 4 (BrD4) functions as a global genomic regulator to direct hepatic stellate cell (HSC) activation (a key step in liver fibrogenesis) and liver fibrosis. The pivotal pro-fibrotic cytokine transforming growth factor-β1 (TGFβ1) signals through both Smad and Stat3 to elicit a wide array of biological effects. Stat3 is widely acknowledged as a regulator of gene transcription and is involved in fibrosis of multiple tissues. The present study focused on BrD4 function implication in the roles of TGFβ1-induced Stat3 signaling in HSC activation and liver fibrosis by using heterozygous TGFβ1 knockout mice and HSC culture. Results showed that Stat3 was required for TGFβ1-induced BrD4 expression in HSCs. BrD4 expression paralleled Stat3 activation in activated HSCs in human cirrhotic livers. BrD4 was involved in the roles of TGFβ1-induced Stat3 in HSC activation and liver fibrogenesis. Smad3 bound to phosphorylated-Stat3 and contributed to TGFβ1-induced Stat3 signaling. BrD4 expression induced by Stat3 signaling required the early-immediate gene Egr1. Egr1 had a positive feedback on Stat3 activation. In conclusion, a network consisting of Stat3 signaling, Smad3 signaling, Egr1, and BrD4 was involved in the effects of TGFβ1 on liver fibrosis, providing new toxicological mechanisms for TGFβ1 in liver fibrogenesis.
Collapse
Affiliation(s)
- Feifan Xu
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), 500 Yonghe Road, Nantong 226011, Jiangsu, China
| | - Sidan Lu
- Department of Biochemistry & Molecular Biology, Medical School, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China
| | - Xin Jia
- Department of Biochemistry & Molecular Biology, Medical School, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China
| | - Yajun Zhou
- Department of Biochemistry & Molecular Biology, Medical School, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China.
| |
Collapse
|
3
|
Zhang X, Zhang Y, Wang C, Wang X. TET (Ten-eleven translocation) family proteins: structure, biological functions and applications. Signal Transduct Target Ther 2023; 8:297. [PMID: 37563110 PMCID: PMC10415333 DOI: 10.1038/s41392-023-01537-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 08/12/2023] Open
Abstract
Ten-eleven translocation (TET) family proteins (TETs), specifically, TET1, TET2 and TET3, can modify DNA by oxidizing 5-methylcytosine (5mC) iteratively to yield 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxycytosine (5caC), and then two of these intermediates (5fC and 5caC) can be excised and return to unmethylated cytosines by thymine-DNA glycosylase (TDG)-mediated base excision repair. Because DNA methylation and demethylation play an important role in numerous biological processes, including zygote formation, embryogenesis, spatial learning and immune homeostasis, the regulation of TETs functions is complicated, and dysregulation of their functions is implicated in many diseases such as myeloid malignancies. In addition, recent studies have demonstrated that TET2 is able to catalyze the hydroxymethylation of RNA to perform post-transcriptional regulation. Notably, catalytic-independent functions of TETs in certain biological contexts have been identified, further highlighting their multifunctional roles. Interestingly, by reactivating the expression of selected target genes, accumulated evidences support the potential therapeutic use of TETs-based DNA methylation editing tools in disorders associated with epigenetic silencing. In this review, we summarize recent key findings in TETs functions, activity regulators at various levels, technological advances in the detection of 5hmC, the main TETs oxidative product, and TETs emerging applications in epigenetic editing. Furthermore, we discuss existing challenges and future directions in this field.
Collapse
Affiliation(s)
- Xinchao Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
4
|
Soaita I, Megill E, Kantner D, Chatoff A, Cheong YJ, Clarke P, Arany Z, Snyder NW, Wellen KE, Trefely S. Dynamic protein deacetylation is a limited carbon source for acetyl-CoA-dependent metabolism. J Biol Chem 2023; 299:104772. [PMID: 37142219 PMCID: PMC10244699 DOI: 10.1016/j.jbc.2023.104772] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
The ability of cells to store and rapidly mobilize energy reserves in response to nutrient availability is essential for survival. Breakdown of carbon stores produces acetyl-CoA (AcCoA), which fuels essential metabolic pathways and is also the acyl donor for protein lysine acetylation. Histones are abundant and highly acetylated proteins, accounting for 40% to 75% of cellular protein acetylation. Notably, histone acetylation is sensitive to AcCoA availability, and nutrient replete conditions induce a substantial accumulation of acetylation on histones. Deacetylation releases acetate, which can be recycled to AcCoA, suggesting that deacetylation could be mobilized as an AcCoA source to feed downstream metabolic processes under nutrient depletion. While the notion of histones as a metabolic reservoir has been frequently proposed, experimental evidence has been lacking. Therefore, to test this concept directly, we used acetate-dependent, ATP citrate lyase-deficient mouse embryonic fibroblasts (Acly-/- MEFs), and designed a pulse-chase experimental system to trace deacetylation-derived acetate and its incorporation into AcCoA. We found that dynamic protein deacetylation in Acly-/- MEFs contributed carbons to AcCoA and proximal downstream metabolites. However, deacetylation had no significant effect on acyl-CoA pool sizes, and even at maximal acetylation, deacetylation transiently supplied less than 10% of cellular AcCoA. Together, our data reveal that although histone acetylation is dynamic and nutrient-sensitive, its potential for maintaining cellular AcCoA-dependent metabolic pathways is limited compared to cellular demand.
Collapse
Affiliation(s)
- Ioana Soaita
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily Megill
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, TempleUniversity, Philadelphia, Pennsylvania, USA
| | - Daniel Kantner
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, TempleUniversity, Philadelphia, Pennsylvania, USA
| | - Adam Chatoff
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, TempleUniversity, Philadelphia, Pennsylvania, USA
| | - Yuen Jian Cheong
- Epigenetics and Signalling Programs, Babraham Institute, Cambridge, UK
| | - Philippa Clarke
- Epigenetics and Signalling Programs, Babraham Institute, Cambridge, UK
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Nathaniel W Snyder
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, TempleUniversity, Philadelphia, Pennsylvania, USA.
| | - Kathryn E Wellen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Sophie Trefely
- Epigenetics and Signalling Programs, Babraham Institute, Cambridge, UK.
| |
Collapse
|
5
|
RDW K, KR S, A C, LC4 J, SW H, SM C. Histone Deacetylases (HDACs) maintain expression of the pluripotent gene network via recruitment of RNA polymerase II to coding and non-coding loci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535398. [PMID: 37066171 PMCID: PMC10104071 DOI: 10.1101/2023.04.06.535398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Histone acetylation is a dynamic modification regulated by the opposing actions of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Deacetylation of histone tails results in chromatin tightening and therefore HDACs are generally regarded as transcriptional repressors. Counterintuitively, simultaneous deletion of Hdac1 and Hdac2 in embryonic stem cells (ESC) reduced expression of pluripotent transcription factors, Oct4, Sox2 and Nanog (OSN). By shaping global histone acetylation patterns, HDACs indirectly regulate the activity of acetyl-lysine readers, such as the transcriptional activator, BRD4. We used inhibitors of HDACs and BRD4 (LBH589 and JQ1 respectively) in combination with precision nuclear run-on and sequencing (PRO-seq) to examine their roles in defining the ESC transcriptome. Both LBH589 and JQ1 caused a marked reduction in the pluripotent network. However, while JQ1 treatment induced widespread transcriptional pausing, HDAC inhibition caused a reduction in both paused and elongating polymerase, suggesting an overall reduction in polymerase recruitment. Using enhancer RNA (eRNA) expression to measure enhancer activity we found that LBH589-sensitive eRNAs were preferentially associated with super-enhancers and OSN binding sites. These findings suggest that HDAC activity is required to maintain pluripotency by regulating the OSN enhancer network via the recruitment of RNA polymerase II.
Collapse
Affiliation(s)
- Kelly RDW
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 9HN, UK
| | - Stengel KR
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue Chanin Building, Bronx, NY 10461
| | - Chandru A
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Johnson LC4
- Locate Bio Limited, MediCity, Thane Road, Beeston, Nottingham, NG90 6BH
| | - Hiebert SW
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cowley SM
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 9HN, UK
| |
Collapse
|
6
|
The influence of high-order chromatin state in the regulation of stem cell fate. Biochem Soc Trans 2022; 50:1809-1822. [DOI: 10.1042/bst20220763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
In eukaryotic cells, genomic DNA is hierarchically compacted by histones into chromatin, which is initially assembled by the nucleosome and further folded into orderly and flexible structures that include chromatin fiber, chromatin looping, topologically associated domains (TADs), chromosome compartments, and chromosome territories. These distinct structures and motifs build the three-dimensional (3D) genome architecture, which precisely controls spatial and temporal gene expression in the nucleus. Given that each type of cell is characterized by its own unique gene expression profile, the state of high-order chromatin plays an essential role in the cell fate decision. Accumulating evidence suggests that the plasticity of high-order chromatin is closely associated with stem cell fate. In this review, we summarize the biological roles of the state of high-order chromatin in embryogenesis, stem cell differentiation, the maintenance of stem cell identity, and somatic cell reprogramming. In addition, we highlight the roles of epigenetic factors and pioneer transcription factors (TFs) involved in regulating the state of high-order chromatin during the determination of stem cell fate and discuss how H3K9me3-heterochromatin restricts stem cell fate. In summary, we review the most recent progress in research on the regulatory functions of high-order chromatin dynamics in the determination and maintenance of stem cell fate.
Collapse
|
7
|
Yamatani Y, Nakai K. Comprehensive comparison of gene expression diversity among a variety of human stem cells. NAR Genom Bioinform 2022; 4:lqac087. [PMCID: PMC9706419 DOI: 10.1093/nargab/lqac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
Several factors, including tissue origins and culture conditions, affect the gene expression of undifferentiated stem cells. However, understanding the basic identity across different stem cells has not been pursued well despite its importance in stem cell biology. Thus, we aimed to rank the relative importance of multiple factors to gene expression profile among undifferentiated human stem cells by analyzing publicly available RNA-seq datasets. We first conducted batch effect correction to avoid undefined variance in the dataset as possible. Then, we highlighted the relative impact of biological and technical factors among undifferentiated stem cell types: a more influence on tissue origins in induced pluripotent stem cells than in other stem cell types; a stronger impact of culture condition in embryonic stem cells and somatic stem cell types, including mesenchymal stem cells and hematopoietic stem cells. In addition, we found that a characteristic gene module, enriched in histones, exhibits higher expression across different stem cell types that were annotated by specific culture conditions. This tendency was also observed in mouse stem cell RNA-seq data. Our findings would help to obtain general insights into stem cell quality, such as the balance of differentiation potentials that undifferentiated stem cells possess.
Collapse
Affiliation(s)
- Yukiyo Yamatani
- Department of Computational Biology and Medical Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Kenta Nakai
- To whom correspondence should be addressed. Tel: +81 3 5449 5131; Fax: +81 3 5449 5133;
| |
Collapse
|
8
|
Human gingival mesenchymal stem cells improve movement disorders and tyrosine hydroxylase neuronal damage in Parkinson disease rats. Cytotherapy 2022; 24:1105-1120. [PMID: 35973920 DOI: 10.1016/j.jcyt.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 06/10/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AIMS Gingival mesenchymal stem cells (GMSCs) demonstrate high proliferation, trilineage differentiation and immunomodulatory properties. Parkinson disease (PD) is the second most common type of neurodegenerative disease. This study aimed to explore the effect and mechanism of GMSC-based therapy in 6-hydroxydopamine-induced PD rats. METHODS RNA sequencing and quantitative proteomics technology was used to validate the neuroprotective role of GMSCs therapeutic in 6-Hydroxydopamine -induced PD model in vitro and in vivo. Western blotting, immunofluorescence and real-time quantitative PCR verified the molecular mechanism of GMSCs treatment. RESULTS Intravenous injection of GMSCs improved rotation and forelimb misalignment behavior, enhanced the anti-apoptotic B-cell lymphoma 2/B-cell lymphoma 2-associated X axis, protected tyrosine hydroxylase neurons, decreased the activation of astrocytes and reduced the astrocyte marker glial fibrillary acidic protein and microglia marker ionized calcium-binding adaptor molecule 1 in the substantia nigra and striatum of PD rats. The authors found that GMSCs upregulated nerve regeneration-related molecules and inhibited metabolic disorders and the activation of signal transducer and activator of transcription 3. GMSCs showed a strong ability to protect neurons and reduce mitochondrial membrane potential damage and reactive oxygen species accumulation. The safety of GMSC transplantation was confirmed by the lack of tumor formation following subcutaneous transplantation into nude mice for up to 8 weeks. CONCLUSIONS The authors' research helps to explain the mechanism of GMSC-based therapeutic strategies and promote potential clinical application in Parkinson disease.
Collapse
|
9
|
Epigenetics as "conductor" in "orchestra" of pluripotent states. Cell Tissue Res 2022; 390:141-172. [PMID: 35838826 DOI: 10.1007/s00441-022-03667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/01/2022] [Indexed: 11/02/2022]
Abstract
Pluripotent character is described as the potency of cells to differentiate into all three germ layers. The best example to reinstate the term lies in the context of embryonic stem cells (ESCs). Pluripotent ESC describes the in vitro status of those cells that originate during the complex process of embryogenesis. Pre-implantation to post-implantation development of embryo embrace cells with different levels of stemness. Currently, four states of pluripotency have been recognized, in the progressing order of "naïve," "poised," "formative," and "primed." Epigenetics act as the "conductor" in this "orchestra" of transition in pluripotent states. With a distinguishable gene expression profile, these four states associate with different epigenetic signatures, sometimes distinct while otherwise overlapping. The present review focuses on how epigenetic factors, including DNA methylation, bivalent chromatin, chromatin remodelers, chromatin/nuclear architecture, and microRNA, could dictate pluripotent states and their transition among themselves.
Collapse
|
10
|
Wang Z, Yan H, Boysen JC, Secreto CR, Tschumper RC, Ali D, Guo Q, Zhong J, Zhou J, Gan H, Yu C, Jelinek DF, Slager SL, Parikh SA, Braggio E, Kay NE. B cell receptor signaling drives APOBEC3 expression via direct enhancer regulation in chronic lymphocytic leukemia B cells. Blood Cancer J 2022; 12:99. [PMID: 35778390 PMCID: PMC9249768 DOI: 10.1038/s41408-022-00690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Constitutively activated B cell receptor (BCR) signaling is a primary biological feature of chronic lymphocytic leukemia (CLL). The biological events controlled by BCR signaling in CLL are not fully understood and need investigation. Here, by analysis of the chromatin states and gene expression profiles of CLL B cells from patients before and after Bruton's tyrosine kinase inhibitor (BTKi) ibrutinib treatment, we show that BTKi treatment leads to a decreased expression of APOBEC3 family genes by regulating the activity of their enhancers. BTKi treatment reduces enrichment of enhancer marks (H3K4me1 and H3K27ac) and chromatin accessibility at putative APOBEC3 enhancers. CRISPR-Cas9 directed deletion or inhibition of the putative APOBEC3 enhancers leads to reduced APOBEC3 expression. We further find that transcription factor NFATc1 couples BCR signaling with the APOBEC3 enhancer activity to control APOBEC3 expression. We also find that enhancer-regulated APOBEC3 expression contributes to replication stress in malignant B cells. In total we demonstrate a novel mechanism for BTKi suppression of APOBEC3 expression via direct enhancer regulation in an NFATc1-dependent manner, implicating BCR signaling as a potential regulator of leukemic genomic instability.
Collapse
MESH Headings
- APOBEC Deaminases/biosynthesis
- APOBEC Deaminases/genetics
- APOBEC Deaminases/metabolism
- Chromatin
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Protein Kinase Inhibitors/pharmacology
- Pyrazoles/pharmacology
- Pyrimidines/pharmacology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
Collapse
Affiliation(s)
- Zhiquan Wang
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Huihuang Yan
- Division of Computational Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Justin C Boysen
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Charla R Secreto
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Dania Ali
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qianqian Guo
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jian Zhong
- Epigenomics Development Laboratory, Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jiaqi Zhou
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haiyun Gan
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chuanhe Yu
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Diane F Jelinek
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Susan L Slager
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Computational Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sameer A Parikh
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Esteban Braggio
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Neil E Kay
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
11
|
Tsume-Kajioka M, Kimura-Yoshida C, Mochida K, Ueda Y, Matsuo I. BET proteins are essential for the specification and maintenance of the epiblast lineage in mouse preimplantation embryos. BMC Biol 2022; 20:64. [PMID: 35264162 PMCID: PMC8905768 DOI: 10.1186/s12915-022-01251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background During mammalian preimplantation development, as the fertilized egg develops and differentiates, three cell lineages become specified: trophectoderm (TE), epiblast, and primitive endoderm (PrE). Through two steps of cell fate decisions, 16-cell blastomeres develop into TE and an inner cell mass (ICM), and thereafter, the latter differentiates into pluripotent epiblast and PrE. Although bromodomain and extra-terminal domain (BET) proteins, such as BRD4, are necessary for the transcriptional activation of genes involved in the maintenance of mouse embryonic stem cells by occupying their enhancers, their roles in the development of mouse preimplantation are unknown. Results To evaluate the effect of BET protein deficiency on cell lineage formation, we cultured preimplantation embryos in the presence of JQ1, which blocks the binding of BET bromodomains to acetylated-histones. We found BET inhibition blocked the transcriptional activation of genes, such as Nanog, Otx2, and Sox2, important for the formation of the epiblast lineage in blastocysts. Expression studies with lineage-specific markers in morulae and blastocysts revealed BET proteins were essential for the specification and maintenance of the epiblast lineage but were dispensable for the formation of primarily extraembryonic TE and PrE lineages. Additional Ingenuity Pathway Analysis and expression studies with a transcriptionally active form of signal transducer and activator of the transcription 3 (STAT3) suggested BET-dependent activation was partly associated with the STAT3-dependent pathway to maintain the epiblast lineage. To identify BET proteins involved in the formation of the epiblast lineage, we analyzed mutant embryos deficient in Brd4, Brd2, and double mutants. Abolishment of NANOG-positive epiblast cells was only evident in Brd4/Brd2 double-deficient morulae. Thus, the phenotype of JQ1-treated embryos is reproduced not by a Brd4- or Brd2-single deficiency, but only Brd4/Brd2-double deficiency, demonstrating the redundant roles of BRD2 and BRD4 in the specification of the epiblast lineage. Conclusions BET proteins are essential to the specification and maintenance of the epiblast lineage by activating lineage-specific core transcription factors during mouse preimplantation development. Among BET proteins, BRD4 plays a central role and BRD2 a complementary role in the specification and maintenance of epiblast lineages. Additionally, BET-dependent maintenance of the epiblast lineage may be partly associated with the STAT3-dependent pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01251-0.
Collapse
Affiliation(s)
- Mami Tsume-Kajioka
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Chiharu Kimura-Yoshida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Kyoko Mochida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Yoko Ueda
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Isao Matsuo
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan. .,Department of Pediatric and Neonatal-Perinatal Research, Osaka Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
12
|
Malla S, Prasad Bhattarai D, Groza P, Melguizo‐Sanchis D, Atanasoai I, Martinez‐Gamero C, Román Á, Zhu D, Lee D, Kutter C, Aguilo F. ZFP207 sustains pluripotency by coordinating OCT4 stability, alternative splicing and RNA export. EMBO Rep 2022; 23:e53191. [PMID: 35037361 PMCID: PMC8892232 DOI: 10.15252/embr.202153191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sandhya Malla
- Department of Medical Biosciences Umeå University Umeå Sweden
- Department of Molecular Biology Umeå University Umeå Sweden
- Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
| | - Devi Prasad Bhattarai
- Department of Medical Biosciences Umeå University Umeå Sweden
- Department of Molecular Biology Umeå University Umeå Sweden
- Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
| | - Paula Groza
- Department of Molecular Biology Umeå University Umeå Sweden
- Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
| | - Dario Melguizo‐Sanchis
- Department of Medical Biosciences Umeå University Umeå Sweden
- Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
| | - Ionut Atanasoai
- Department of Microbiology, Tumor and Cell Biology Science for Life Laboratory Karolinska Institute Stockholm Sweden
| | - Carlos Martinez‐Gamero
- Department of Molecular Biology Umeå University Umeå Sweden
- Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
| | - Ángel‐Carlos Román
- Department of Biochemistry, Molecular Biology and Genetics University of Extremadura Badajoz Spain
| | - Dandan Zhu
- Department of Integrative Biology and Pharmacology McGovern Medical School The University of Texas Health Science Center at Houston Houston TX USA
| | - Dung‐Fang Lee
- Department of Integrative Biology and Pharmacology McGovern Medical School The University of Texas Health Science Center at Houston Houston TX USA
- Center for Precision Health School of Biomedical Informatics The University of Texas Health Science Center at Houston Houston TX USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Houston TX USA
- Center for Stem Cell and Regenerative Medicine The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases The University of Texas Health Science Center at Houston Houston TX USA
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology Science for Life Laboratory Karolinska Institute Stockholm Sweden
| | - Francesca Aguilo
- Department of Medical Biosciences Umeå University Umeå Sweden
- Department of Molecular Biology Umeå University Umeå Sweden
- Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
| |
Collapse
|
13
|
Ma X, Lu Y, Zhou Z, Li Q, Chen X, Wang W, Jin Y, Hu Z, Chen G, Deng Q, Shang W, Wang H, Fu H, He X, Feng XH, Zhu S. Human expandable pancreatic progenitor-derived β cells ameliorate diabetes. SCIENCE ADVANCES 2022; 8:eabk1826. [PMID: 35196077 PMCID: PMC8865776 DOI: 10.1126/sciadv.abk1826] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
An unlimited source of human pancreatic β cells is in high demand. Even with recent advances in pancreatic differentiation from human pluripotent stem cells, major hurdles remain in large-scale and cost-effective production of functional β cells. Here, through chemical screening, we demonstrate that the bromodomain and extraterminal domain (BET) inhibitor I-BET151 can robustly promote the expansion of PDX1+NKX6.1+ pancreatic progenitors (PPs). These expandable PPs (ePPs) maintain pancreatic progenitor cell status in the long term and can efficiently differentiate into functional pancreatic β (ePP-β) cells. Notably, transplantation of ePP-β cells rapidly ameliorated diabetes in mice, suggesting strong potential for cell replacement therapy. Mechanistically, I-BET151 activates Notch signaling and promotes the expression of key PP-associated genes, underscoring the importance of epigenetic and transcriptional modulations for lineage-specific progenitor self-renewal. In summary, our studies achieve the long-term goal of robust expansion of PPs and represent a substantial step toward unlimited supplies of functional β cells for biomedical research and regenerative medicine.
Collapse
Affiliation(s)
- Xiaojie Ma
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yunkun Lu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ziyu Zhou
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qin Li
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xi Chen
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Weiyun Wang
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yan Jin
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhensheng Hu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Guo Chen
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qian Deng
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Weina Shang
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Hangzhou Women’s Hospital, Prenatal Diagnosis Center, 369 Kunpeng Road, Hangzhou, China
| | - Hongxing Fu
- Department of Pharmacy, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shunlan International Medical College, 848 Dongxin Road, Hangzhou, China
| | - Xiangwei He
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Saiyong Zhu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Corresponding author.
| |
Collapse
|
14
|
Czerwinska P, Jaworska AM, Wlodarczyk NA, Cisek M, Karwacka M, Lipowicz J, Ostapowicz J, Rosochowicz M, Mackiewicz AA. The association between bromodomain (BrD) proteins and cancer stemness in different solid tumor types. Int J Cancer 2022; 150:1838-1849. [PMID: 35049055 PMCID: PMC9303422 DOI: 10.1002/ijc.33937] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 11/16/2022]
Abstract
Cancer stemness, which covers the stem cell‐like molecular traits of cancer cells, is essential for tumor development, progression and relapse. Both transcriptional and epigenetic aberrations are essentially connected with cancer stemness. The engagement of bromodomain (BrD) proteins—a family of epigenetic factors—has been presented in the pathogenesis of several tumor types, although their association with cancer stemness remains largely unknown. Here, we harnessed TCGA and GEO databases and used several bioinformatic tools (ie, Oncomine, PrognoScan, GEPIA2, TIMER2.0, TISIDB, GSEA, R2 platform) to characterize the association between the BrD family members' expression and cancer stemness in solid tumors. Our results demonstrate that significant upregulation of ATAD2 and SMARCA4, and downregulation of SMARCA2 is consistently associated with enriched cancer stem cell‐like phenotype, respectively. Especially, higher‐grade tumors that display stem cell‐like properties overexpress ATAD2. In contrast to most BrD members, the gene expression profiles of ATAD2HIGH expressing tumors are strongly enriched with known markers of stem cells and with specific targets for c‐Myc transcription factor. For other BrD proteins, the association with cancer de‐differentiation status is rather tumor‐specific. Our results demonstrate for the first time the relation between distinct BrD family proteins and cancer stemness across 27 solid tumor types. Specifically, our approach allowed us to discover a robust association of high ATAD2 expression with cancer stemness and reveal its' versatility in tumors. As bromodomains are attractive targets from a chemical and structural perspective, we propose ATAD2 as a novel druggable target for de‐differentiated tumors, especially those overexpressing MYC.
Collapse
Affiliation(s)
- Patrycja Czerwinska
- Department of Cancer Immunology, Chair of Medical Biotechnology Poznan University of Medical Sciences, 15 Garbary St. Poznan Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre,15 Garbary St., 61‐866 Poznan Poland
| | - Anna Maria Jaworska
- Department of Cancer Immunology, Chair of Medical Biotechnology Poznan University of Medical Sciences, 15 Garbary St. Poznan Poland
| | - Nikola Agata Wlodarczyk
- Department of Cancer Immunology, Chair of Medical Biotechnology Poznan University of Medical Sciences, 15 Garbary St. Poznan Poland
| | - Małgorzata Cisek
- Department of Cancer Immunology, Chair of Medical Biotechnology Poznan University of Medical Sciences, 15 Garbary St. Poznan Poland
| | - Marianna Karwacka
- Department of Cancer Immunology, Chair of Medical Biotechnology Poznan University of Medical Sciences, 15 Garbary St. Poznan Poland
| | - Julia Lipowicz
- Department of Cancer Immunology, Chair of Medical Biotechnology Poznan University of Medical Sciences, 15 Garbary St. Poznan Poland
| | - Julia Ostapowicz
- Department of Cancer Immunology, Chair of Medical Biotechnology Poznan University of Medical Sciences, 15 Garbary St. Poznan Poland
| | - Monika Rosochowicz
- Department of Cancer Immunology, Chair of Medical Biotechnology Poznan University of Medical Sciences, 15 Garbary St. Poznan Poland
| | - Andrzej Adam Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology Poznan University of Medical Sciences, 15 Garbary St. Poznan Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre,15 Garbary St., 61‐866 Poznan Poland
| |
Collapse
|
15
|
Shao R, Kumar B, Lidschreiber K, Lidschreiber M, Cramer P, Elsässer SJ. Distinct transcription kinetics of pluripotent cell states. Mol Syst Biol 2022; 18:e10407. [PMID: 35020268 PMCID: PMC8754154 DOI: 10.15252/msb.202110407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Mouse embryonic stem cells (mESCs) can adopt naïve, ground, and paused pluripotent states that give rise to unique transcriptomes. Here, we use transient transcriptome sequencing (TT-seq) to define both coding and non-coding transcription units (TUs) in these three pluripotent states and combine TT-seq with RNA polymerase II occupancy profiling to unravel the kinetics of RNA metabolism genome-wide. Compared to the naïve state (serum), RNA synthesis and turnover rates are globally reduced in the ground state (2i) and the paused state (mTORi). The global reduction in RNA synthesis goes along with a genome-wide decrease of polymerase elongation velocity, which is related to epigenomic features and alterations in the Pol II termination window. Our data suggest that transcription activity is the main determinant of steady state mRNA levels in the naïve state and that genome-wide changes in transcription kinetics invoke ground and paused pluripotent states.
Collapse
Affiliation(s)
- Rui Shao
- Science for Life LaboratoryDepartment of Medical Biochemistry and BiophysicsDivision of Genome BiologyKarolinska InstitutetStockholmSweden
- Ming Wai Lau Centre for Reparative MedicineStockholm nodeKarolinska InstitutetStockholmSweden
| | - Banushree Kumar
- Science for Life LaboratoryDepartment of Medical Biochemistry and BiophysicsDivision of Genome BiologyKarolinska InstitutetStockholmSweden
- Ming Wai Lau Centre for Reparative MedicineStockholm nodeKarolinska InstitutetStockholmSweden
| | - Katja Lidschreiber
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Department of Molecular BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Michael Lidschreiber
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Department of Molecular BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Patrick Cramer
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Department of Molecular BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Simon J Elsässer
- Science for Life LaboratoryDepartment of Medical Biochemistry and BiophysicsDivision of Genome BiologyKarolinska InstitutetStockholmSweden
- Ming Wai Lau Centre for Reparative MedicineStockholm nodeKarolinska InstitutetStockholmSweden
| |
Collapse
|
16
|
Bonitto K, Sarathy K, Atai K, Mitra M, Coller HA. Is There a Histone Code for Cellular Quiescence? Front Cell Dev Biol 2021; 9:739780. [PMID: 34778253 PMCID: PMC8586460 DOI: 10.3389/fcell.2021.739780] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022] Open
Abstract
Many of the cells in our bodies are quiescent, that is, temporarily not dividing. Under certain physiological conditions such as during tissue repair and maintenance, quiescent cells receive the appropriate stimulus and are induced to enter the cell cycle. The ability of cells to successfully transition into and out of a quiescent state is crucial for many biological processes including wound healing, stem cell maintenance, and immunological responses. Across species and tissues, transcriptional, epigenetic, and chromosomal changes associated with the transition between proliferation and quiescence have been analyzed, and some consistent changes associated with quiescence have been identified. Histone modifications have been shown to play a role in chromatin packing and accessibility, nucleosome mobility, gene expression, and chromosome arrangement. In this review, we critically evaluate the role of different histone marks in these processes during quiescence entry and exit. We consider different model systems for quiescence, each of the most frequently monitored candidate histone marks, and the role of their writers, erasers and readers. We highlight data that support these marks contributing to the changes observed with quiescence. We specifically ask whether there is a quiescence histone “code,” a mechanism whereby the language encoded by specific combinations of histone marks is read and relayed downstream to modulate cell state and function. We conclude by highlighting emerging technologies that can be applied to gain greater insight into the role of a histone code for quiescence.
Collapse
Affiliation(s)
- Kenya Bonitto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kirthana Sarathy
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kaiser Atai
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mithun Mitra
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hilary A Coller
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
17
|
Liang Y, Tian J, Wu T. BRD4 in physiology and pathology: ''BET'' on its partners. Bioessays 2021; 43:e2100180. [PMID: 34697817 DOI: 10.1002/bies.202100180] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022]
Abstract
Bromodomain-containing 4 (BRD4), a member of Bromo and Extra-Terminal (BET) family, recognizes acetylated histones and is of importance in transcription, replication, and DNA repair. It also binds non-histone proteins, DNA and RNA, contributing to development, tissue growth, and various physiological processes. Additionally, BRD4 has been implicated in driving diverse diseases, ranging from cancer, viral infection, inflammation to neurological disorders. Inhibiting its functions with BET inhibitors (BETis) suppresses the progression of several types of cancer, creating an impetus for translating these chemicals to the clinic. The diverse roles of BRD4 are largely dependent on its interaction partners in different contexts. In this review we discuss the molecular mechanisms of BRD4 with its interacting partners in physiology and pathology. Current development of BETis is also summarized. Further understanding the functions of BRD4 and its partners will facilitate resolving the liabilities of present BETis and accelerate their clinical translation.
Collapse
Affiliation(s)
- Yin Liang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jieyi Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Tao Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
18
|
Dey A, Uppal S, Giri J, Misra HS. Emerging roles of bromodomain protein 4 in regulation of stem cell identity. Stem Cells 2021; 39:1615-1624. [PMID: 34520583 DOI: 10.1002/stem.3454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/27/2021] [Indexed: 01/17/2023]
Abstract
Understanding the mechanism of fate decision and lineage commitment is the key step for developing novel stem cell applications in therapeutics. This process is coordinately regulated through systematic epigenetic reprogramming and concomitant changes in the transcriptional landscape of the stem cells. One of the bromo- and extra-terminal domain (BET) family member proteins, bromodomain protein 4 (BRD4), performs the role of epigenetic reader and modulates gene expression by recruiting other transcription factors and directly regulating RNA polymerase II elongation. Controlled gene regulation is the critical step in maintenance of stem cell potency and dysregulation may lead to tumor formation. As a key transcriptional factor and epigenetic regulator, BRD4 contributes to stem cell maintenance in several ways. Being a druggable target, BRD4 is an attractive candidate for exploiting its potential in stem cell therapeutics. Therefore, it is crucial to elucidate how BRD4, through its interplay with pluripotency transcriptional regulators, control lineage commitment in stem cells. Here, we systemically review the role of BRD4 in complex gene regulatory network during three specific states of stem cell transitions: cell differentiation, cell reprogramming and transdifferentiation. A thorough understanding of BRD4 mediated epigenetic regulation in the maintenance of stem cell potency will be helpful to strategically control stem cell fates in regenerative medicine.
Collapse
Affiliation(s)
- Anusree Dey
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Sheetal Uppal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Jayeeta Giri
- TIFR Complex, 605 Raman, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai, India
| | - Hari Sharan Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
19
|
Kong W, Dimitri A, Wang W, Jung IY, Ott CJ, Fasolino M, Wang Y, Kulikovskaya I, Gupta M, Yoder T, DeNizio JE, Everett JK, Williams EF, Xu J, Scholler J, Reich TJ, Bhoj VG, Haines KM, Maus MV, Melenhorst JJ, Young RM, Jadlowsky JK, Marcucci KT, Bradner JE, Levine BL, Porter DL, Bushman FD, Kohli RM, June CH, Davis MM, Lacey SF, Vahedi G, Fraietta JA. BET bromodomain protein inhibition reverses chimeric antigen receptor extinction and reinvigorates exhausted T cells in chronic lymphocytic leukemia. J Clin Invest 2021; 131:e145459. [PMID: 34396987 DOI: 10.1172/jci145459] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells have induced remarkable antitumor responses in B cell malignancies. Some patients do not respond because of T cell deficiencies that hamper the expansion, persistence, and effector function of these cells. We used longitudinal immune profiling to identify phenotypic and pharmacodynamic changes in CD19-directed CAR T cells in patients with chronic lymphocytic leukemia (CLL). CAR expression maintenance was also investigated because this can affect response durability. CAR T cell failure was accompanied by preexisting T cell-intrinsic defects or dysfunction acquired after infusion. In a small subset of patients, CAR silencing was observed coincident with leukemia relapse. Using a small molecule inhibitor, we demonstrated that the bromodomain and extra-terminal (BET) family of chromatin adapters plays a role in downregulating CAR expression. BET protein blockade also ameliorated CAR T cell exhaustion as manifested by inhibitory receptor reduction, enhanced metabolic fitness, increased proliferative capacity, and enriched transcriptomic signatures of T cell reinvigoration. BET inhibition decreased levels of the TET2 methylcytosine dioxygenase, and forced expression of the TET2 catalytic domain eliminated the potency-enhancing effects of BET protein targeting in CAR T cells, providing a mechanism linking BET proteins and T cell dysfunction. Thus, modulating BET epigenetic readers may improve the efficacy of cell-based immunotherapies.
Collapse
Affiliation(s)
- Weimin Kong
- Department of Microbiology.,Center for Cellular Immunotherapies.,Abramson Cancer Center, and
| | - Alexander Dimitri
- Department of Microbiology.,Center for Cellular Immunotherapies.,Abramson Cancer Center, and
| | - Wenliang Wang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - In-Young Jung
- Department of Microbiology.,Center for Cellular Immunotherapies.,Abramson Cancer Center, and
| | - Christopher J Ott
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Maria Fasolino
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yan Wang
- Center for Cellular Immunotherapies
| | | | | | | | - Jamie E DeNizio
- Department of Medicine and.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Erik F Williams
- Department of Microbiology.,Center for Cellular Immunotherapies.,Abramson Cancer Center, and
| | - Jun Xu
- Center for Cellular Immunotherapies
| | | | | | - Vijay G Bhoj
- Center for Cellular Immunotherapies.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Marcela V Maus
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts, USA
| | - J Joseph Melenhorst
- Center for Cellular Immunotherapies.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | - James E Bradner
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Bruce L Levine
- Center for Cellular Immunotherapies.,Abramson Cancer Center, and.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David L Porter
- Abramson Cancer Center, and.,Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Rahul M Kohli
- Department of Medicine and.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carl H June
- Center for Cellular Immunotherapies.,Abramson Cancer Center, and.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Megan M Davis
- Center for Cellular Immunotherapies.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Simon F Lacey
- Center for Cellular Immunotherapies.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Golnaz Vahedi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph A Fraietta
- Department of Microbiology.,Center for Cellular Immunotherapies.,Abramson Cancer Center, and.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Circ_0003423 Alleviates ox-LDL-Induced Human Brain Microvascular Endothelial Cell Injury via the miR-589-5p/TET2 Network. Neurochem Res 2021; 46:2885-2896. [PMID: 34226983 DOI: 10.1007/s11064-021-03387-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
Brain microvascular endothelial cells (BMECs) injury is one of the main causes of cerebrovascular diseases. Circular RNA (circRNA) has been found to be involved in the regulation of cerebrovascular diseases progression. However, the role and mechanism of circ_0003423 in cerebrovascular diseases is still unclear. In our study, oxidized low density lipoprotein (ox-LDL)-induced HBMEC-IM cells were used to construct cerebrovascular cell injury model in vitro. Quantitative real-time PCR was used to determine the expression levels of circ_0003423, miR-589-5p and Ten-eleven translocation 2 (TET2). The interactions between miR-589-5p and circ_0003423 or TET2 were confirmed by dual-luciferase reporter assay, RIP assay and RNA pull-down assay. Cell viability, angiogenesis and apoptosis were measured using cell counting kit 8 assay, tube formation assay and flow cytometry. Cell oxidative stress was evaluated by detecting the levels of reactive oxygen species and lactate dehydrogenase. The protein levels were examined by western blot analysis. Our results showed that circ_0003423 was a downregulated circRNA in ox-LDL-induced HBMEC-IM cells. In the terms of mechanism, circ_0003423 was found to be a sponge of miR-589-5p. Function analysis showed that circ_0003423 overexpression could relieve ox-LDL-induced HBMEC-IM cell injury, and this effect could be reversed by miR-589-5p mimic. In addition, TET2 was confirmed to be a target of miR-589-5p, and its overexpression could alleviate ox-LDL-induced HBMEC-IM cell injury. Moreover, the rescue experiments also confirmed that TET2 silencing could abolish the inhibition effect of anti-miR-589-5p on ox-LDL-induced HBMEC-IM cell injury. In summary, our data showed that circ_0003423 alleviated ox-LDL-induced HBMEC-IM cells injury through regulating the miR-589-5p/TET2 axis.
Collapse
|
21
|
Su Y, Song X, Teng J, Zhou X, Dong Z, Li P, Sun Y. Mesenchymal stem cells-derived extracellular vesicles carrying microRNA-17 inhibits macrophage apoptosis in lipopolysaccharide-induced sepsis. Int Immunopharmacol 2021; 95:107408. [PMID: 33915488 DOI: 10.1016/j.intimp.2021.107408] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Sepsis, as a disease affecting the microcirculation and tissue perfusion, results in tissue hypoxia and multiple organ dysfunctions. Bone mesenchymal stem cell (BMSC)-derived extracellular vesicles (EVs) have been demonstrated to transfer trivial molecules (proteins/peptides, mRNA, microRNA and lipids) to alleviate sepsis. We sought to define the function of microRNA (miR)-17 carried in BMSC-EVs in sepsis. METHODS The purity of the extracted BMSCs was identified and confirmed by detection of the surface markers by flow cytometry, followed by osteoblastic, adipogenic, and chondrocyte differentiation experiments. Subsequently, EVs were collected from the medium of BMSCs. The uptake of PKH-67-labeled BMSC-EVs or EVs carrying cy3-miR-17 by RAW264.7 cells was observed under laser confocal microscopy. Furthermore, a series of gain- and loss-of-function approaches were conducted to test the effects of LPS, miR-17 and BRD4 on the inflammatory factors (IL-1β, IL-6 and TNF-α), number of M1 macrophages and M2 macrophages, inflammatory-related signal pathway factors (EZH2, c-MYC and TRAIL), macrophage proliferation, and apoptosis in sepsis. The survival rates were measured in vivo. RESULTS BMSC-EVs was internalized by the RAW264.7 cells. BDR4 was verified as a target of miR-17, while the expression pattern of miR-17 was upregulated in BMSC-EVs. MiR-17 carried by BMSC-EVs inhibited LPS-induced inflammation and apoptosis of RAW264.7 cells, but improved the viability of RAW264.7 cells. Next, in vitro experiments supported that miR-17 inhibited LPS-induced inflammation in RAW264.7 cells through BRD4/EZH2/TRAIL axis. BRD4 overexpression reversed the effects of miR-17. Moreover, the therapeutic function of BMSC-EVs carried miR-17 was verified by in vivo experiments. CONCLUSIONS MiR-17 derived from BMSCs-EVs regulates BRD4-mediated EZH2/TRAIL axis to essentially inhibit LPS-induced macrophages inflammation.
Collapse
Affiliation(s)
- Yuan Su
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Xiaoxia Song
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Jinlong Teng
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Xinbei Zhou
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Zehua Dong
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Ping Li
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Yunbo Sun
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China.
| |
Collapse
|
22
|
Vodnala M, Choi EB, Fong YW. Low complexity domains, condensates, and stem cell pluripotency. World J Stem Cells 2021; 13:416-438. [PMID: 34136073 PMCID: PMC8176841 DOI: 10.4252/wjsc.v13.i5.416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Biological reactions require self-assembly of factors in the complex cellular milieu. Recent evidence indicates that intrinsically disordered, low-complexity sequence domains (LCDs) found in regulatory factors mediate diverse cellular processes from gene expression to DNA repair to signal transduction, by enriching specific biomolecules in membraneless compartments or hubs that may undergo liquid-liquid phase separation (LLPS). In this review, we discuss how embryonic stem cells take advantage of LCD-driven interactions to promote cell-specific transcription, DNA damage response, and DNA repair. We propose that LCD-mediated interactions play key roles in stem cell maintenance and safeguarding genome integrity.
Collapse
Affiliation(s)
- Munender Vodnala
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Eun-Bee Choi
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Yick W Fong
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
- Harvard Stem Cell Institute, Cambridge, MA 02138, United States.
| |
Collapse
|
23
|
Ji YJ, Shao Y, Zhang J, Zhang X, Qiang P. Bromodomain-containing protein 4 silencing by microRNA-765 produces anti-ovarian cancer cell activity. Aging (Albany NY) 2021; 13:8214-8227. [PMID: 33686960 PMCID: PMC8034896 DOI: 10.18632/aging.202632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Bromodomain-containing protein 4 (BRD4) overexpression promotes ovarian cancer progression, and represents an important therapeutic oncotarget. This current study identified microRNA-765 (miR-765) as a novel BRD4-targeting miRNA. We showed that miR-765 directly associated with and silenced BRD4. In primary ovarian cancer cells and established cell lines (SKOV3 and CaOV3), ectopic overexpression of miR-765 inhibited cancer cell proliferation, migration and invasion, and induced apoptosis activation. In contrast, miR-765 inhibition by its anti-sense induced BRD4 upregulation to promote ovarian cancer cell proliferation, migration and invasion. Significantly, miR-765 overexpression-induced anti-ovarian cancer cell activity was largely attenuated by restoring BRD4 expression through an UTR-null BRD4 construct. Moreover, CRISPR/Cas9-induced BRD4 knockout (KO)inhibited proliferation and activated apoptosis in ovarian cancer cells. BRD4 KO in ovarian cancer cells abolished the functional impact of miR-765. miR-765 expression levels were downregulated in human ovarian cancer tissues and cells, correlating with the upregulation of BRD4 mRNA. Collectively, BRD4 silencing by miR-765produces significant anti-ovarian cancer cell activity. miR-765 could be further tested for its anti-ovarian cancer potential.
Collapse
Affiliation(s)
- Yong-Jun Ji
- Obstetrics and Gynecology Department, Suzhou Ninth People's Hospital of Soochow University, Suzhou, China
| | - Yang Shao
- Obstetrics and Gynecology Department, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Jie Zhang
- Obstetrics and Gynecology Department, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Xu Zhang
- Obstetrics and Gynecology Department, Suzhou Ninth People's Hospital of Soochow University, Suzhou, China
| | - Ping Qiang
- Obstetrics and Gynecology Department, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| |
Collapse
|
24
|
Sun L, Fu X, Ma G, Hutchins AP. Chromatin and Epigenetic Rearrangements in Embryonic Stem Cell Fate Transitions. Front Cell Dev Biol 2021; 9:637309. [PMID: 33681220 PMCID: PMC7930395 DOI: 10.3389/fcell.2021.637309] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
A major event in embryonic development is the rearrangement of epigenetic information as the somatic genome is reprogrammed for a new round of organismal development. Epigenetic data are held in chemical modifications on DNA and histones, and there are dramatic and dynamic changes in these marks during embryogenesis. However, the mechanisms behind this intricate process and how it is regulating and responding to embryonic development remain unclear. As embryos develop from totipotency to pluripotency, they pass through several distinct stages that can be captured permanently or transiently in vitro. Pluripotent naïve cells resemble the early epiblast, primed cells resemble the late epiblast, and blastomere-like cells have been isolated, although fully totipotent cells remain elusive. Experiments using these in vitro model systems have led to insights into chromatin changes in embryonic development, which has informed exploration of pre-implantation embryos. Intriguingly, human and mouse cells rely on different signaling and epigenetic pathways, and it remains a mystery why this variation exists. In this review, we will summarize the chromatin rearrangements in early embryonic development, drawing from genomic data from in vitro cell lines, and human and mouse embryos.
Collapse
Affiliation(s)
| | | | | | - Andrew P. Hutchins
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
25
|
Metabolic Regulation of Epigenetic Modifications and Cell Differentiation in Cancer. Cancers (Basel) 2020; 12:cancers12123788. [PMID: 33339101 PMCID: PMC7765496 DOI: 10.3390/cancers12123788] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer cells change their metabolism to support a chaotic and uncontrolled growth. In addition to meeting the metabolic needs of the cell, these changes in metabolism also affect the patterns of gene activation, changing the identity of cancer cells. As a consequence, cancer cells become more aggressive and more resistant to treatments. In this article, we present a review of the literature on the interactions between metabolism and cell identity, and we explore the mechanisms by which metabolic changes affect gene regulation. This is important because recent therapies under active investigation target both metabolism and gene regulation. The interactions of these new therapies with existing chemotherapies are not known and need to be investigated. Abstract Metabolic reprogramming is a hallmark of cancer, with consistent rewiring of glucose, glutamine, and mitochondrial metabolism. While these metabolic alterations are adequate to meet the metabolic needs of cell growth and proliferation, the changes in critical metabolites have also consequences for the regulation of the cell differentiation state. Cancer evolution is characterized by progression towards a poorly differentiated, stem-like phenotype, and epigenetic modulation of the chromatin structure is an important prerequisite for the maintenance of an undifferentiated state by repression of lineage-specific genes. Epigenetic modifiers depend on intermediates of cellular metabolism both as substrates and as co-factors. Therefore, the metabolic reprogramming that occurs in cancer likely plays an important role in the process of the de-differentiation characteristic of the neoplastic process. Here, we review the epigenetic consequences of metabolic reprogramming in cancer, with particular focus on the role of mitochondrial intermediates and hypoxia in the regulation of cellular de-differentiation. We also discuss therapeutic implications.
Collapse
|
26
|
Metabolic Coordination of Cell Fate by α-Ketoglutarate-Dependent Dioxygenases. Trends Cell Biol 2020; 31:24-36. [PMID: 33092942 DOI: 10.1016/j.tcb.2020.09.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/20/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022]
Abstract
Cell fate determination requires faithful execution of gene expression programs, which are increasingly recognized to respond to metabolic inputs. In particular, the family of α-ketoglutarate (αKG)-dependent dioxygenases, which include several chromatin-modifying enzymes, are emerging as key mediators of metabolic control of cell fate. αKG-dependent dioxygenases consume the metabolite αKG (also known as 2-oxoglutarate) as an obligate cosubstrate and are inhibited by succinate, fumarate, and 2-hydroxyglutarate. Here, we review the role of these metabolites in the control of dioxygenase activity and cell fate programs. We discuss the biochemical and transcriptional mechanisms enabling these metabolites to control cell fate and review evidence that nutrient availability shapes tissue-specific fate programs via αKG-dependent dioxygenases.
Collapse
|
27
|
Tao Z, Li X, Wang H, Chen G, Feng Z, Wu Y, Yin H, Zhao G, Deng Z, Zhao C, Li Y, Sun T, Zhou Y. BRD4 regulates self-renewal ability and tumorigenicity of glioma-initiating cells by enrichment in the Notch1 promoter region. Clin Transl Med 2020; 10:e181. [PMID: 33135348 PMCID: PMC7533052 DOI: 10.1002/ctm2.181] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 12/24/2022] Open
Abstract
Bromodomain and extraterminal domain (BET) family proteins are considered to be epigenetic readers that regulate gene expression by recognizing acetyl lysine residues on histones and nonhistone chromatin factors and have been classified as curative targets for a variety of cancers. Glioma-initiating cells (GICs), which commit self-renewal, perpetual proliferation, multidirectional differentiation, and vigorous tumorigenicity, sustain the peculiar genetic and epigenetic diversification in the GBM patients, thus, GICs result in tumor recurrence. Abundant evidence demonstrates that BET proteins regulate differentiation of stem cells. However, it endures ambiguous how individual BET proteins take part in GIC advancement, and how do small molecule inhibitors like I-BET151 target functional autonomous BET proteins. Here, we validated that BRD4, not BRD2 or BRD3, has value in targeted glioma therapy. We announce a signaling pathway concerning BRD4 and Notch1 that sustains the self-renewal of GICs. Moreover, in-depth mechanistic research showed that BRD4 was concentrated at the promoter region of Notch1 and may be involved in the process of tumor metabolism. Furthermore, in intracranial models, I-BET151 eliminated U87 GICs' tumorigenicity. The outcomes of this research could be conducive to design clinical trials for treatment of glioma based on BRD4.
Collapse
Affiliation(s)
- Zhennan Tao
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Xuetao Li
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Hao Wang
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Guangliang Chen
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Zibin Feng
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Yue Wu
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Haoran Yin
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Guozheng Zhao
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Zhitong Deng
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Chaohui Zhao
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Yanyan Li
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Ting Sun
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Youxin Zhou
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| |
Collapse
|
28
|
Global hyperactivation of enhancers stabilizes human and mouse naive pluripotency through inhibition of CDK8/19 Mediator kinases. Nat Cell Biol 2020; 22:1223-1238. [PMID: 32989249 DOI: 10.1038/s41556-020-0573-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
Pluripotent stem cells (PSCs) transition between cell states in vitro, reflecting developmental changes in the early embryo. PSCs can be stabilized in the naive state by blocking extracellular differentiation stimuli, particularly FGF-MEK signalling. Here, we report that multiple features of the naive state in human and mouse PSCs can be recapitulated without affecting FGF-MEK signalling or global DNA methylation. Mechanistically, chemical inhibition of CDK8 and CDK19 (hereafter CDK8/19) kinases removes their ability to repress the Mediator complex at enhancers. CDK8/19 inhibition therefore increases Mediator-driven recruitment of RNA polymerase II (RNA Pol II) to promoters and enhancers. This efficiently stabilizes the naive transcriptional program and confers resistance to enhancer perturbation by BRD4 inhibition. Moreover, naive pluripotency during embryonic development coincides with a reduction in CDK8/19. We conclude that global hyperactivation of enhancers drives naive pluripotency, and this can be achieved in vitro by inhibiting CDK8/19 kinase activity. These principles may apply to other contexts of cellular plasticity.
Collapse
|
29
|
Lynch CJ, Bernad R, Calvo I, Serrano M. Manipulating the Mediator complex to induce naïve pluripotency. Exp Cell Res 2020; 395:112215. [PMID: 32771524 PMCID: PMC7584500 DOI: 10.1016/j.yexcr.2020.112215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 08/01/2020] [Indexed: 12/26/2022]
Abstract
Human naïve pluripotent stem cells (PSCs) represent an optimal homogenous starting point for molecular interventions and differentiation strategies. This is in contrast to the standard primed PSCs which fluctuate in identity and are transcriptionally heterogeneous. However, despite many efforts, the maintenance and expansion of human naïve PSCs remains a challenge. Here, we discuss our recent strategy for the stabilization of human PSC in the naïve state based on the use of a single chemical inhibitor of the related kinases CDK8 and CDK19. These kinases phosphorylate and negatively regulate the multiprotein Mediator complex, which is critical for enhancer-driven recruitment of RNA Pol II. The net effect of CDK8/19 inhibition is a global stimulation of enhancers, which in turn reinforces transcriptional programs including those related to cellular identity. In the case of pluripotent cells, the presence of CDK8/19i efficiently stabilizes the naïve state. Importantly, in contrast to previous chemical methods to induced the naïve state based on the inhibition of the FGF-MEK-ERK pathway, CDK8/19i-naïve human PSCs are chromosomally stable and retain developmental potential after long-term expansion. We suggest this could be related to the fact that CDK8/19 inhibition does not induce DNA demethylation. These principles may apply to other fate decisions.
Collapse
Affiliation(s)
- Cian J Lynch
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Raquel Bernad
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Isabel Calvo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08010, Spain.
| |
Collapse
|
30
|
Zhang M, Lai Y, Krupalnik V, Guo P, Guo X, Zhou J, Xu Y, Yu Z, Liu L, Jiang A, Li W, Abdul MM, Ma G, Li N, Fu X, Lv Y, Jiang M, Tariq M, Kanwal S, Liu H, Xu X, Zhang H, Huang Y, Wang L, Chen S, Babarinde IA, Luo Z, Wang D, Zhou T, Ward C, He M, Ibañez DP, Li Y, Zhou J, Yuan J, Feng Y, Arumugam K, Di Vicino U, Bao X, Wu G, Schambach A, Wang H, Sun H, Gao F, Qin B, Hutchins AP, Doble BW, Hartmann C, Cosma MP, Qin Y, Xu GL, Chen R, Volpe G, Chen L, Hanna JH, Esteban MA. β-Catenin safeguards the ground state of mousepluripotency by strengthening the robustness of the transcriptional apparatus. SCIENCE ADVANCES 2020; 6:eaba1593. [PMID: 32832621 PMCID: PMC7439582 DOI: 10.1126/sciadv.aba1593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 06/05/2020] [Indexed: 05/12/2023]
Abstract
Mouse embryonic stem cells cultured with MEK (mitogen-activated protein kinase kinase) and GSK3 (glycogen synthase kinase 3) inhibitors (2i) more closely resemble the inner cell mass of preimplantation blastocysts than those cultured with SL [serum/leukemia inhibitory factor (LIF)]. The transcriptional mechanisms governing this pluripotent ground state are unresolved. Release of promoter-proximal paused RNA polymerase II (Pol2) is a multistep process necessary for pluripotency and cell cycle gene transcription in SL. We show that β-catenin, stabilized by GSK3 inhibition in medium with 2i, supplies transcriptional coregulators at pluripotency loci. This selectively strengthens pluripotency loci and renders them addicted to transcription initiation for productive gene body elongation in detriment to Pol2 pause release. By contrast, cell cycle genes are not bound by β-catenin, and proliferation/self-renewal remains tightly controlled by Pol2 pause release under 2i conditions. Our findings explain how pluripotency is reinforced in the ground state and also provide a general model for transcriptional resilience/adaptation upon network perturbation in other contexts.
Collapse
Affiliation(s)
- Meng Zhang
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Yiwei Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Vladislav Krupalnik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Pengcheng Guo
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiangpeng Guo
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Jianguo Zhou
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Yan Xu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhijun Yu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Longqi Liu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ao Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenjuan Li
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
- Guangzhou Medical University, Guangzhou 511436, China
| | - Mazid Md. Abdul
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Gang Ma
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Na Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Xiuling Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuan Lv
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Mengling Jiang
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Muqddas Tariq
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Shahzina Kanwal
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Hao Liu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Xueting Xu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Hui Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yinghua Huang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lulu Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Shuhan Chen
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Isaac A. Babarinde
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiwei Luo
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
- Guangzhou Medical University, Guangzhou 511436, China
| | - Dongye Wang
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Tiantian Zhou
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Carl Ward
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Minghui He
- Forevergen Biosciences Center, Guangzhou 510000, China
| | - David P. Ibañez
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Yunpan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Jiajian Zhou
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jie Yuan
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yayan Feng
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Karthik Arumugam
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Umberto Di Vicino
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Xichen Bao
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Guangming Wu
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Axel Schambach
- Hannover Medical School, Institute of Experimental Hematology, Hannover 30625, Germany
- Division of Hematology and Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fei Gao
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg DK1870C, Denmark
| | - Baoming Qin
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Andrew P. Hutchins
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bradley W. Doble
- Departments of Pediatrics and Child Health and Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Christine Hartmann
- Department of Bone and Skeletal Research, Institute of Musculoskeletal Medicine, Medical Faculty of the University of Münster, Münster D-48149, Germany
| | - Maria Pia Cosma
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08003, Spain
| | - Yan Qin
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guo-Liang Xu
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Laboratory of Metabolism and Epigenetics, Institutes of Biomedical Sciences, Medical College of Fudan University, Shanghai 200032, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Giacomo Volpe
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Liang Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Corresponding author. (M.A.E.); (J.H.H.); (L.C.)
| | - Jacob H. Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Corresponding author. (M.A.E.); (J.H.H.); (L.C.)
| | - Miguel A. Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Corresponding author. (M.A.E.); (J.H.H.); (L.C.)
| |
Collapse
|
31
|
Histone Acetyltransferase MOF Blocks Acquisition of Quiescence in Ground-State ESCs through Activating Fatty Acid Oxidation. Cell Stem Cell 2020; 27:441-458.e10. [PMID: 32610040 DOI: 10.1016/j.stem.2020.06.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/26/2020] [Accepted: 06/07/2020] [Indexed: 02/08/2023]
Abstract
Self-renewing embryonic stem cells (ESCs) respond to environmental cues by exiting pluripotency or entering a quiescent state. The molecular basis underlying this fate choice remains unclear. Here, we show that histone acetyltransferase MOF plays a critical role in this process through directly activating fatty acid oxidation (FAO) in the ground-state ESCs. We further show that the ground-state ESCs particularly rely on elevated FAO for oxidative phosphorylation (OXPHOS) and energy production. Mof deletion or FAO inhibition induces bona fide quiescent ground-state ESCs with an intact core pluripotency network and transcriptome signatures akin to the diapaused epiblasts in vivo. Mechanistically, MOF/FAO inhibition acts through reducing mitochondrial respiration (i.e., OXPHOS), which in turn triggers reversible pluripotent quiescence specifically in the ground-state ESCs. The inhibition of FAO/OXPHOS also induces quiescence in naive human ESCs. Our study suggests a general function of the MOF/FAO/OXPHOS axis in regulating cell fate determination in stem cells.
Collapse
|
32
|
He Q, Hong M, He J, Chen W, Zhao M, Zhao W. Isoform-specific involvement of Brpf1 in expansion of adult hematopoietic stem and progenitor cells. J Mol Cell Biol 2020; 12:359-371. [PMID: 31565729 PMCID: PMC7288741 DOI: 10.1093/jmcb/mjz092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/16/2019] [Accepted: 07/30/2019] [Indexed: 12/27/2022] Open
Abstract
Bromodomain-containing proteins are known readers of histone acetylation that regulate chromatin structure and transcription. Although the functions of bromodomain-containing proteins in development, homeostasis, and disease states have been well studied, their role in self-renewal of hematopoietic stem and progenitor cells (HSPCs) remains poorly understood. Here, we performed a chemical screen using nine bromodomain inhibitors and found that the bromodomain and PHD finger-containing protein 1 (Brpf1) inhibitor OF-1 enhanced the expansion of Lin-Sca-1+c-Kit+ HSPCs ex vivo without skewing their lineage differentiation potential. Importantly, our results also revealed distinct functions of Brpf1 isoforms in HSPCs. Brpf1b promoted the expansion of HSPCs. By contrast, Brpf1a is the most abundant isoform in adult HSPCs but enhanced HSPC quiescence and decreased the HSPC expansion. Furthermore, inhibition of Brpf1a by OF-1 promoted histone acetylation and chromatin accessibility leading to increased expression of self-renewal-related genes (e.g. Mn1). The phenotypes produced by OF-1 treatment can be rescued by suppression of Mn1 in HSPCs. Our findings demonstrate that this novel bromodomain inhibitor OF-1 can promote the clinical application of HSPCs in transplantation.
Collapse
Affiliation(s)
- Qiuping He
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Mengzhi Hong
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Jincan He
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Weixin Chen
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Meng Zhao
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Wei Zhao
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
33
|
Romero MA, Mumford PW, Roberson PA, Osburn SC, Parry HA, Kavazis AN, Gladden LB, Schwartz TS, Baker BA, Toedebusch RG, Childs TE, Booth FW, Roberts MD. Five months of voluntary wheel running downregulates skeletal muscle LINE-1 gene expression in rats. Am J Physiol Cell Physiol 2019; 317:C1313-C1323. [PMID: 31618076 DOI: 10.1152/ajpcell.00301.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transposable elements (TEs) are mobile DNA and constitute approximately half of the human genome. LINE-1 (L1) is the only active autonomous TE in the mammalian genome and has been implicated in a number of diseases as well as aging. We have previously reported that skeletal muscle L1 expression is lower following acute and chronic exercise training in humans. Herein, we used a rodent model of voluntary wheel running to determine whether long-term exercise training affects markers of skeletal muscle L1 regulation. Selectively bred high-running female Wistar rats (n = 11 per group) were either given access to a running wheel (EX) or not (SED) at 5 wk of age, and these conditions were maintained until 27 wk of age. Thereafter, mixed gastrocnemius tissue was harvested and analyzed for L1 mRNA expression and DNA content along with other L1 regulation markers. We observed significantly (P < 0.05) lower L1 mRNA expression, higher L1 DNA methylation, and less L1 DNA in accessible chromatin regions in EX versus SED rats. We followed these experiments with 3-h in vitro drug treatments in L6 myotubes to mimic transient exercise-specific signaling events. The AMP-activated protein kinase (AMPK) agonist 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR; 4 mM) significantly decreased L1 mRNA expression in L6 myotubes. However, this effect was not facilitated through increased L1 DNA methylation. Collectively, these data suggest that long-term voluntary wheel running downregulates skeletal muscle L1 mRNA, and this may occur through chromatin modifications. Enhanced AMPK signaling with repetitive exercise bouts may also decrease L1 mRNA expression, although the mechanism of action remains unknown.
Collapse
Affiliation(s)
| | | | | | | | - Hailey A Parry
- School of Kinesiology, Auburn University, Auburn, Alabama
| | | | | | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - Brent A Baker
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Ryan G Toedebusch
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Thomas E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama.,Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, Alabama
| |
Collapse
|
34
|
Gökbuget D, Blelloch R. Epigenetic control of transcriptional regulation in pluripotency and early differentiation. Development 2019; 146:dev164772. [PMID: 31554624 PMCID: PMC6803368 DOI: 10.1242/dev.164772] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pluripotent stem cells give rise to all cells of the adult organism, making them an invaluable tool in regenerative medicine. In response to differentiation cues, they can activate markedly distinct lineage-specific gene networks while turning off or rewiring pluripotency networks. Recent innovations in chromatin and nuclear structure analyses combined with classical genetics have led to novel insights into the transcriptional and epigenetic mechanisms underlying these networks. Here, we review these findings in relation to their impact on the maintenance of and exit from pluripotency and highlight the many factors that drive these processes, including histone modifying enzymes, DNA methylation and demethylation, nucleosome remodeling complexes and transcription factor-mediated enhancer switching.
Collapse
Affiliation(s)
- Deniz Gökbuget
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Urology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Urology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
35
|
Kumar B, Elsässer SJ. Quantitative Multiplexed ChIP Reveals Global Alterations that Shape Promoter Bivalency in Ground State Embryonic Stem Cells. Cell Rep 2019; 28:3274-3284.e5. [PMID: 31533047 PMCID: PMC6859498 DOI: 10.1016/j.celrep.2019.08.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/18/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023] Open
Abstract
To understand the epigenomic foundation of naive pluripotency, we implement a quantitative multiplexed chromatin immunoprecipitation sequencing (ChIP-seq) method comparing mouse embryonic stem cells (ESCs) grown in 2i versus 2i/serum and serum conditions. MINUTE-ChIP has a large linear dynamic range for accurately quantifying relative differences in genome-wide histone modification patterns across multiple pooled samples. We find compelling evidence for a broad H3 lysine 27 trimethylation (H3K27me3) hypermethylation of the genome, while bivalent promoters stably retain high H3K27me3 levels in 2i. We show that DNA hypomethylation, as observed in 2i, is a contributor to genome-wide gain of H3K27me3, while active demethylation by JMJD3/UTX counteracts further accumulation of H3K27me3. In parallel, we find hypomethylation of H3 lysine 4 trimethylation (H3K4me3), particularly at bivalent promoters, to be a characteristic of the 2i ground state. Serum stimulates H3K4me3 independent of GSK-3b and ERK signaling, suggesting that low H3K4me3 and high H3K27me3 levels at bivalent promoters are a product of two independent mechanisms that safeguard naive pluripotency.
Collapse
Affiliation(s)
- Banushree Kumar
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden; Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Simon J Elsässer
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden; Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
36
|
MacDougall MS, Clarke R, Merrill BJ. Intracellular Ca 2+ Homeostasis and Nuclear Export Mediate Exit from Naive Pluripotency. Cell Stem Cell 2019; 25:210-224.e6. [PMID: 31104942 PMCID: PMC6685429 DOI: 10.1016/j.stem.2019.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 02/07/2019] [Accepted: 04/18/2019] [Indexed: 12/28/2022]
Abstract
Progression through states of pluripotency is required for cells in early mammalian embryos to transition away from heightened self-renewal and toward competency for lineage specification. Here, we use a CRISPR mutagenesis screen in mouse embryonic stem cells (ESCs) to identify unexpected roles for nuclear export and intracellular Ca2+ homeostasis during the exit out of the naive state of pluripotency. Mutation of a plasma membrane Ca2+ pump encoded by Atp2b1 increased intracellular Ca2+ such that it overcame effects of intracellular Ca2+ reduction, which is required for naive exit. Persistent self-renewal of ESCs was supported both in Atp2b1-/-Tcf7l1-/- double-knockout ESCs passaged in defined media alone (no LIF or inhibitors) and in wild-type cells passaged in media containing only calcitonin and a GSK3 inhibitor. These new findings suggest a central role for intracellular Ca2+ in safeguarding naive pluripotency.
Collapse
Affiliation(s)
- Matthew S MacDougall
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Ryan Clarke
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Bradley J Merrill
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA; Genome Editing Core, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
37
|
Vardhana SA, Arnold PK, Rosen BP, Chen Y, Carey BW, Huangfu D, Carmona-Fontaine C, Thompson CB, Finley LW. Glutamine independence is a selectable feature of pluripotent stem cells. Nat Metab 2019; 1:676-687. [PMID: 31511848 PMCID: PMC6737941 DOI: 10.1038/s42255-019-0082-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Most rapidly proliferating mammalian cells rely on the oxidation of exogenous glutamine to support cell proliferation. We previously found that culture of mouse embryonic stem cells (ESCs) in the presence of inhibitors against MEK and GSK3β to maintain pluripotency reduces cellular reliance on glutamine for tricarboxylic acid (TCA) cycle anaplerosis, enabling ESCs to proliferate in the absence of exogenous glutamine. Here we show that reduced dependence on exogenous glutamine is a generalizable feature of pluripotent stem cells. Enhancing self-renewal, through either overexpression of pluripotency-associated transcription factors or altered signal transduction, decreases the utilization of glutamine-derived carbons in the TCA cycle. As a result, cells with the highest potential for self-renewal can be enriched by transient culture in glutamine-deficient media. During pluripotent cell culture or reprogramming to pluripotency, transient glutamine withdrawal selectively leads to the elimination of non-pluripotent cells. These data reveal that reduced dependence on glutamine anaplerosis is an inherent feature of self-renewing pluripotent stem cells and reveal a simple, non-invasive mechanism to select for mouse and human pluripotent stem cells within a heterogeneous population during both ESC passage and induced pluripotent cell reprogramming.
Collapse
Affiliation(s)
- Santosha A. Vardhana
- Cancer Biology and Genetics Program, Memorial Sloan
Kettering Cancer Center, New York, New York, USA
- Center for Epigenetics Research, Memorial Sloan Kettering
Cancer Center, New York, New York, USA
| | - Paige K. Arnold
- Center for Epigenetics Research, Memorial Sloan Kettering
Cancer Center, New York, New York, USA
- Cell Biology Program, Memorial Sloan Kettering Cancer
Center, New York, New York, USA
- Louis V. Gerstner, Jr., Graduate School of Biomedical
Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Bess P. Rosen
- Developmental Biology Program, Memorial Sloan Kettering
Cancer Center, New York, New York, USA
| | - Yanyang Chen
- Center for Epigenetics Research, Memorial Sloan Kettering
Cancer Center, New York, New York, USA
- Cell Biology Program, Memorial Sloan Kettering Cancer
Center, New York, New York, USA
| | - Bryce W. Carey
- Laboratory of Chromatin Biology and Epigenetics, The
Rockefeller University, New York, New York, USA
| | - Danwei Huangfu
- Developmental Biology Program, Memorial Sloan Kettering
Cancer Center, New York, New York, USA
| | - Carlos Carmona-Fontaine
- Center for Genomics & Systems Biology, Department of
Biology, New York University, New York, New York, USA
| | - Craig B. Thompson
- Cancer Biology and Genetics Program, Memorial Sloan
Kettering Cancer Center, New York, New York, USA
- Center for Epigenetics Research, Memorial Sloan Kettering
Cancer Center, New York, New York, USA
| | - Lydia W.S. Finley
- Center for Epigenetics Research, Memorial Sloan Kettering
Cancer Center, New York, New York, USA
- Cell Biology Program, Memorial Sloan Kettering Cancer
Center, New York, New York, USA
- Correspondence should be addressed to L.W.S.F.
()
| |
Collapse
|
38
|
Cornacchia D, Zhang C, Zimmer B, Chung SY, Fan Y, Soliman MA, Tchieu J, Chambers SM, Shah H, Paull D, Konrad C, Vincendeau M, Noggle SA, Manfredi G, Finley LWS, Cross JR, Betel D, Studer L. Lipid Deprivation Induces a Stable, Naive-to-Primed Intermediate State of Pluripotency in Human PSCs. Cell Stem Cell 2019; 25:120-136.e10. [PMID: 31155483 DOI: 10.1016/j.stem.2019.05.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/21/2018] [Accepted: 04/30/2019] [Indexed: 12/22/2022]
Abstract
Current challenges in capturing naive human pluripotent stem cells (hPSCs) suggest that the factors regulating human naive versus primed pluripotency remain incompletely defined. Here we demonstrate that the widely used Essential 8 minimal medium (E8) captures hPSCs at a naive-to-primed intermediate state of pluripotency expressing several naive-like developmental, bioenergetic, and epigenomic features despite providing primed-state-sustaining growth factor conditions. Transcriptionally, E8 hPSCs are marked by activated lipid biosynthesis and suppressed MAPK/TGF-β gene expression, resulting in endogenous ERK inhibition. These features are dependent on lipid-free culture conditions and are lost upon lipid exposure, whereas short-term pharmacological ERK inhibition restores naive-to-primed intermediate traits even in the presence of lipids. Finally, we identify de novo lipogenesis as a common transcriptional signature of E8 hPSCs and the pre-implantation human epiblast in vivo. These findings implicate exogenous lipid availability in regulating human pluripotency and define E8 hPSCs as a stable, naive-to-primed intermediate (NPI) pluripotent state.
Collapse
Affiliation(s)
- Daniela Cornacchia
- Developmental Biology, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chao Zhang
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Bastian Zimmer
- Developmental Biology, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sun Young Chung
- Developmental Biology, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yujie Fan
- Developmental Biology, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - Mohamed A Soliman
- Developmental Biology, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medicine, New York, NY 10065, USA
| | - Jason Tchieu
- Developmental Biology, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stuart M Chambers
- Developmental Biology, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hardik Shah
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel Paull
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Csaba Konrad
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Michelle Vincendeau
- Developmental Biology, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Scott A Noggle
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lydia W S Finley
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Doron Betel
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lorenz Studer
- Developmental Biology, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
39
|
Gatchalian J, Malik S, Ho J, Lee DS, Kelso TWR, Shokhirev MN, Dixon JR, Hargreaves DC. A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells. Nat Commun 2018; 9:5139. [PMID: 30510198 PMCID: PMC6277444 DOI: 10.1038/s41467-018-07528-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
Abstract
The role of individual subunits in the targeting and function of the mammalian BRG1-associated factors (BAF) complex in embryonic stem cell (ESC) pluripotency maintenance has not yet been elucidated. Here we find that the Bromodomain containing protein 9 (BRD9) and Glioma tumor suppressor candidate region gene 1 (GLTSCR1) or its paralog GLTSCR1-like (GLTSCR1L) define a smaller, non-canonical BAF complex (GBAF complex) in mouse ESCs that is distinct from the canonical ESC BAF complex (esBAF). GBAF and esBAF complexes are targeted to different genomic features, with GBAF co-localizing with key regulators of naive pluripotency, which is consistent with its specific function in maintaining naive pluripotency gene expression. BRD9 interacts with BRD4 in a bromodomain-dependent fashion, which leads to the recruitment of GBAF complexes to chromatin, explaining the functional similarity between these epigenetic regulators. Together, our results highlight the biological importance of BAF complex heterogeneity in maintaining the transcriptional network of pluripotency. The BAF complex is a multi-subunit chromatin remodeling complex that plays important roles in transcription regulation. Here the authors provide evidence that BRD9 and GLTSCR1/BICRA or its paralog GLTSCR1-like/BICRAL define a non-canonical BAF complex that regulates naive pluripotency in mouse embryonic stem cells.
Collapse
Affiliation(s)
- Jovylyn Gatchalian
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Shivani Malik
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Josephine Ho
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Dong-Sung Lee
- Peptide Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Timothy W R Kelso
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Jesse R Dixon
- Peptide Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Diana C Hargreaves
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
40
|
Schvartzman JM, Thompson CB, Finley LWS. Metabolic regulation of chromatin modifications and gene expression. J Cell Biol 2018; 217:2247-2259. [PMID: 29760106 PMCID: PMC6028552 DOI: 10.1083/jcb.201803061] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Schvartzman et al. review how alterations in the levels of specific metabolites in mammalian cells result in chromatin modifications that influence gene expression. Dynamic regulation of gene expression in response to changing local conditions is critical for the survival of all organisms. In metazoans, coherent regulation of gene expression programs underlies the development of functionally distinct cell lineages. The cooperation between transcription factors and the chromatin landscape enables precise control of gene expression in response to cell-intrinsic and cell-extrinsic signals. Many of the chemical modifications that decorate DNA and histones are adducts derived from intermediates of cellular metabolic pathways. In addition, several of the enzymes that can remove these marks use metabolites as part of their enzymatic reaction. These observations have led to the hypothesis that fluctuations in metabolite levels influence the deposition and removal of chromatin modifications. In this review, we consider the emerging evidence that cellular metabolic activity contributes to gene expression and cell fate decisions through metabolite-dependent effects on chromatin organization.
Collapse
Affiliation(s)
- Juan Manuel Schvartzman
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY.,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY.,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lydia W S Finley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY .,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
41
|
Atlasi Y, Stunnenberg HG. Brd4-independence in ground state pluripotency. Nat Cell Biol 2018; 20:513-515. [PMID: 29662177 DOI: 10.1038/s41556-018-0099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yaser Atlasi
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|