1
|
Xia X, Hu M, Zhou W, Jin Y, Yao X. Engineering cardiology with miniature hearts. Mater Today Bio 2025; 31:101505. [PMID: 39911371 PMCID: PMC11795835 DOI: 10.1016/j.mtbio.2025.101505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/28/2024] [Accepted: 01/18/2025] [Indexed: 02/07/2025] Open
Abstract
Cardiac organoids offer sophisticated 3D structures that emulate key aspects of human heart development and function. This review traces the evolution of cardiac organoid technology, from early stem cell differentiation protocols to advanced bioengineering approaches. We discuss the methodologies for creating cardiac organoids, including self-organization techniques, biomaterial-based scaffolds, 3D bioprinting, and organ-on-chip platforms, which have significantly enhanced the structural complexity and physiological relevance of in vitro cardiac models. We examine their applications in fundamental research and medical innovations, highlighting their potential to transform our understanding of cardiac biology and pathology. The integration of multiple cell types, vascularization strategies, and maturation protocols has led to more faithful representations of the adult human heart. However, challenges remain in achieving full functional maturity and scalability. We critically assess the current limitations and outline future directions for advancing cardiac organoid technology. By providing a comprehensive analysis of the field, this review aims to catalyze further innovation in cardiac tissue engineering and facilitate its translation to clinical applications.
Collapse
Affiliation(s)
- Xiaojun Xia
- Department of Cardiology, Center of Regenerative and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Miner Hu
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310000, China
| | - Wenyan Zhou
- School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Yunpeng Jin
- Department of Cardiology, Center of Regenerative and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xudong Yao
- Department of Cardiology, Center of Regenerative and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
2
|
Zhao J, Zhi Y, Ren H, Wang J, Zhao Y. Emerging biotechnologies for engineering liver organoids. Bioact Mater 2025; 45:1-18. [PMID: 39588483 PMCID: PMC11585797 DOI: 10.1016/j.bioactmat.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/02/2024] [Accepted: 11/02/2024] [Indexed: 11/27/2024] Open
Abstract
The engineering construction of the liver has attracted enormous attention. Organoids, as emerging miniature three-dimensional cultivation units, hold significant potential in the biomimetic simulation of liver structure and function. Despite notable successes, organoids still face limitations such as high variability and low maturity. To overcome these challenges, engineering strategies have been established to maintain organoid stability and enhance their efficacy, laying the groundwork for the development of advanced liver organoids. The present review comprehensively summarizes the construction of engineered liver organoids and their prospective applications in biomedicine. Initially, we briefly present the latest research progress on matrix materials that maintain the three-dimensional morphology of organoids. Next, we discuss the manipulative role of engineering technologies in organoid assembly. Additionally, we outline the impact of gene-level regulation on organoid growth and development. Further, we introduce the applications of liver organoids in disease modeling, drug screening and regenerative medicine. Lastly, we overview the current obstacles and forward-looking perspectives on the future of engineered liver organoids. We anticipate that ongoing innovations in engineered liver organoids will lead to significant advancements in medical applications.
Collapse
Affiliation(s)
- Junqi Zhao
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yue Zhi
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuanjin Zhao
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518038, China
| |
Collapse
|
3
|
Du Y, Yang Y, Zheng B, Zhang Q, Zhou S, Zhao L. Finding a needle in a haystack: functional screening for novel targets in cancer immunology and immunotherapies. Oncogene 2025; 44:409-426. [PMID: 39863748 PMCID: PMC11810799 DOI: 10.1038/s41388-025-03273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/06/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Genome-wide functional genetic screening has been widely used in the biomedicine field, which makes it possible to find a needle in a haystack at the genetic level. In cancer research, gene mutations are closely related to tumor development, metastasis, and recurrence, and the use of state-of-the-art powerful screening technologies, such as clustered regularly interspaced short palindromic repeat (CRISPR), to search for the most critical genes or coding products provides us with a new possibility to further refine the cancer mapping and provide new possibilities for the treatment of cancer patients. The use of CRISPR screening for the most critical genes or coding products has further refined the cancer atlas and provided new possibilities for the treatment of cancer patients. Immunotherapy, as a highly promising cancer treatment method, has been widely validated in the clinic, but it could only meet the needs of a small proportion of cancer patients. Finding new immunotherapy targets is the key to the future of tumor immunotherapy. Here, we revisit the application of functional screening in cancer immunology from different perspectives, from the selection of diverse in vitro and in vivo screening models to the screening of potential immune checkpoints and potentiating genes for CAR-T cells. The data will offer fresh therapeutic clues for cancer patients.
Collapse
Affiliation(s)
- Yi Du
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Yang Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Bohao Zheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| | - Linjie Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| |
Collapse
|
4
|
Hu Y, Peng Z, Qiu M, Xue L, Ren H, Wu X, Zhu X, Ding Y. Developing biotechnologies in organoids for liver cancer. BIOMEDICAL TECHNOLOGY 2025; 9:100067. [DOI: 10.1016/j.bmt.2024.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
5
|
Nissenbaum J, Segal E, Philip H, Cashman R, Golan-Lev T, Reubinoff BE, Turjeman A, Yanuka O, Lezmi E, Kopper O, Benvenisty N. Predicting tumour resistance to paclitaxel and carboplatin utilising genome-wide screening in haploid human embryonic stem cells. Cell Prolif 2025; 58:e13771. [PMID: 39523021 DOI: 10.1111/cpr.13771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Taxanes and platinum molecules, specifically paclitaxel and carboplatin, are widely used anticancer drugs that induce cell death and serve as first-line chemotherapy for various cancer types. Despite the efficient effect of both drugs on cancer cell proliferation, many tumours have innate resistance against paclitaxel and carboplatin, which leads to inefficient treatment and poor survival rates. Haploid human embryonic stem cells (hESCs) are a novel and robust platform for genetic screening. To gain a comprehensive view of genes that affect or regulate paclitaxel and carboplatin resistance, genome-wide loss-of-function screens in haploid hESCs were performed. Both paclitaxel and carboplatin screens have yielded selected plausible gene lists and pathways relevant to resistance prediction. The effects of mutations in selected genes on the resistance to the drugs were demonstrated. Based on the results, an algorithm that can predict resistance to paclitaxel or carboplatin was developed. Applying the algorithm to the DNA mutation profile of patients' tumours enabled the separation of sensitive versus resistant patients, thus, providing a prediction tool. As the anticancer drugs arsenal can offer alternatives in case of resistance to either paclitaxel or carboplatin, an early prediction can provide a significant advantage and should improve treatment. The algorithm assists this unmet need and helps predict whether a patient will respond to the treatment and may have an immediate clinically actionable application.
Collapse
Affiliation(s)
| | - Emanuel Segal
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
- Hadassah Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | | | - Tamar Golan-Lev
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Benjamin E Reubinoff
- Hadassah Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Adi Turjeman
- The Center for Genomic Technologies, The Hebrew University, Jerusalem, Israel
| | - Ofra Yanuka
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | | | | | - Nissim Benvenisty
- NewStem LTD, Jerusalem, Israel
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
6
|
Bohl B, Lei Y, Bewick GA, Hashemi P. Measurement of Real-Time Serotonin Dynamics from Human-Derived Gut Organoids. Anal Chem 2025. [PMID: 40007472 DOI: 10.1021/acs.analchem.4c06033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The importance of the gut in regulating the brain-body immune axis is becoming increasingly evident. Interestingly, the brain and gut share many common signaling molecules, with serotonin being one of the most notable. In fact, the gut is the primary source of serotonin in the body. However, studying serotonin dynamics in a human-specific context remains a challenge. Human stem cell-derived models provide a promising avenue for studying signal transmission in well-controlled, in vitro environments. In this study, we report the first fast-scan cyclic voltammetry (FSCV) measurements of serotonin signaling in a newly developed enterochromaffin cell (ECC)-enriched gut organoid model. First, we characterize the stem cell-derived gut organoids and confirm they are enriched with ECCs, the key cell type responsible for producing and releasing serotonin in the gut. We then optimize an in vitro buffer that maintains cell viability while supporting FSCV measurements. Using this system, we detect spontaneous release events, which increase in frequency and amplitude following stimulation with forskolin (FSK) and 3-isobutyl-1-methylxanthine (IBMX). Finally, we confirm the identity of the signal as serotonin using a selective serotonin reuptake inhibitor (SSRI), which significantly delayed the reuptake profile. Our study introduces the first real-time measurement of serotonin signaling in a human-derived gut model. We believe this system will be essential for future research on serotonin's role in the gut and for potential novel drug target identification.
Collapse
Affiliation(s)
- Bettina Bohl
- Department of Bioengineering, Imperial College London, South Kensington, London SW72AZ, United Kingdom
| | - Yuxian Lei
- Diabetes and Obesity Theme, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, United Kingdom
| | - Gavin A Bewick
- Diabetes and Obesity Theme, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, United Kingdom
- Diabetes Endocrinology and Obesity Clinical academic Partnership Kings Health Partners, London SE1 9RT, United Kingdom
| | - Parastoo Hashemi
- Department of Bioengineering, Imperial College London, South Kensington, London SW72AZ, United Kingdom
| |
Collapse
|
7
|
Wang D, Spoelstra WK, Lin L, Akkerman N, Krueger D, Dayton T, van Zon JS, Tans SJ, van Es JH, Clevers H. Interferon-responsive intestinal BEST4/CA7 + cells are targets of bacterial diarrheal toxins. Cell Stem Cell 2025:S1934-5909(25)00042-6. [PMID: 40010349 DOI: 10.1016/j.stem.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/25/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025]
Abstract
BEST4/CA7+ cells of the human intestine were recently identified by single-cell RNA sequencing. While their gene expression profile predicts a role in electrolyte balance, BEST4/CA7+ cell function has not been explored experimentally owing to the absence of BEST4/CA7+ cells in mice and the paucity of human in vitro models. Here, we establish a protocol that allows the emergence of BEST4/CA7+ cells in human intestinal organoids. Differentiation of BEST4/CA7+ cells requires activation of Notch signaling and the transcription factor SPIB. BEST4/CA7+ cell numbers strongly increase in response to the cytokine interferon-γ, supporting a role in immunity. Indeed, we demonstrate that BEST4/CA7+ cells generate robust CFTR-mediated fluid efflux when stimulated with bacterial diarrhea-causing toxins and find the norepinephrine-ADRA2A axis as a potential mechanism in blocking BEST4/CA7+ cell-mediated fluid secretion. Our observations identify a central role of BEST4/CA7+ cells in fluid homeostasis in response to bacterial infections.
Collapse
Affiliation(s)
- Daisong Wang
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht 3584 CT, the Netherlands
| | | | - Lin Lin
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht 3584 CT, the Netherlands; The Princess Máxima Center for Pediatric Oncology, Utrecht 3584 CS, the Netherlands
| | - Ninouk Akkerman
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht 3584 CT, the Netherlands
| | - Daniel Krueger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht 3584 CT, the Netherlands
| | - Talya Dayton
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht 3584 CT, the Netherlands
| | | | - Sander J Tans
- AMOLF, Amsterdam 1009 DB, the Netherlands; Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft 2629 HZ, the Netherlands
| | - Johan H van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht 3584 CT, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht 3584 CT, the Netherlands; The Princess Máxima Center for Pediatric Oncology, Utrecht 3584 CS, the Netherlands.
| |
Collapse
|
8
|
Artegiani B, Hendriks D. Organoids from pluripotent stem cells and human tissues: When two cultures meet each other. Dev Cell 2025; 60:493-511. [PMID: 39999776 DOI: 10.1016/j.devcel.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/13/2024] [Accepted: 01/10/2025] [Indexed: 02/27/2025]
Abstract
Human organoids are a widely used tool in cell biology to study homeostatic processes, disease, and development. The term organoids covers a plethora of model systems from different cellular origins that each have unique features and applications but bring their own challenges. This review discusses the basic principles underlying organoids generated from pluripotent stem cells (PSCs) as well as those derived from tissue stem cells (TSCs). We consider how well PSC- and TSC-organoids mimic the different intended organs in terms of cellular complexity, maturity, functionality, and the ongoing efforts to constitute predictive complex models of in vivo situations. We discuss the advantages and limitations associated with each system to answer different biological questions including in the field of cancer and developmental biology, and with respect to implementing emerging advanced technologies, such as (spatial) -omics analyses, CRISPR screens, and high-content imaging screens. We postulate how the two fields may move forward together, integrating advantages of one to the other.
Collapse
Affiliation(s)
| | - Delilah Hendriks
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
9
|
Müller M, May S, Hall H, Kendall TJ, McGarry L, Blukacz L, Nuciforo S, Georgakopoulou A, Jamieson T, Phinichkusolchit N, Dhayade S, Suzuki T, Huguet-Pradell J, Powley IR, Officer-Jones L, Pennie RL, Esteban-Fabró R, Gris-Oliver A, Pinyol R, Skalka GL, Leslie J, Hoare M, Sprangers J, Malviya G, Mackintosh A, Johnson E, McCain M, Halpin J, Kiourtis C, Nixon C, Clark G, Clark W, Shaw R, Hedley A, Drake TM, Tan EH, Neilson M, Murphy DJ, Lewis DY, Reeves HL, Le Quesne J, Mann DA, Carlin LM, Blyth K, Llovet JM, Heim MH, Sansom OJ, Miller CJ, Bird TG. Human-correlated genetic models identify precision therapy for liver cancer. Nature 2025:10.1038/s41586-025-08585-z. [PMID: 39972137 DOI: 10.1038/s41586-025-08585-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 01/02/2025] [Indexed: 02/21/2025]
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver cancer, is a leading cause of cancer-related mortality worldwide1,2. HCC occurs typically from a background of chronic liver disease, caused by a spectrum of predisposing conditions. Tumour development is driven by the expansion of clones that accumulate progressive driver mutations3, with hepatocytes the most likely cell of origin2. However, the landscape of driver mutations in HCC is broadly independent of the underlying aetiologies4. Despite an increasing range of systemic treatment options for advanced HCC, outcomes remain heterogeneous and typically poor. Emerging data suggest that drug efficacies depend on disease aetiology and genetic alterations5,6. Exploring subtypes in preclinical models with human relevance will therefore be essential to advance precision medicine in HCC7. Here we generated a suite of genetically driven immunocompetent in vivo and matched in vitro HCC models. Our models represent multiple features of human HCC, including clonal origin, histopathological appearance and metastasis. We integrated transcriptomic data from the mouse models with human HCC data and identified four common human-mouse subtype clusters. The subtype clusters had distinct transcriptomic characteristics that aligned with the human histopathology. In a proof-of-principle analysis, we verified response to standard-of-care treatment and used a linked in vitro-in vivo pipeline to identify a promising therapeutic candidate, cladribine, that has not previously been linked to HCC treatment. Cladribine acts in a highly effective subtype-specific manner in combination with standard-of-care therapy.
Collapse
Affiliation(s)
| | - Stephanie May
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Holly Hall
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Timothy J Kendall
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Lynn McGarry
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Lauriane Blukacz
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Sandro Nuciforo
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Anastasia Georgakopoulou
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Narisa Phinichkusolchit
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Júlia Huguet-Pradell
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Ian R Powley
- Cancer Research UK Scotland Institute, Glasgow, UK
| | | | | | - Roger Esteban-Fabró
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Albert Gris-Oliver
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Roser Pinyol
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | | | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew Hoare
- Early Cancer Institute, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | - Emma Johnson
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Misti McCain
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - John Halpin
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Christos Kiourtis
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Colin Nixon
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Graeme Clark
- Cancer Research UK Scotland Institute, Glasgow, UK
| | | | - Robin Shaw
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Ann Hedley
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Thomas M Drake
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Ee Hong Tan
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Matt Neilson
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Daniel J Murphy
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - David Y Lewis
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Helen L Reeves
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Liver Group, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - John Le Quesne
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Histopathology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
- Department of Gastroenterology and Hepatology, School of Medicine, Koç University, Istanbul, Turkey
| | - Leo M Carlin
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karen Blyth
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Josep M Llovet
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Markus H Heim
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
- University Digestive Health Care Center Basel-Clarunis, Basel, Switzerland
| | - Owen J Sansom
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Centre, Edinburgh, UK
- Cancer Research UK Scotland Centre, Glasgow, UK
| | - Crispin J Miller
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Thomas G Bird
- Cancer Research UK Scotland Institute, Glasgow, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, UK.
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK.
- Cancer Research UK Scotland Centre, Edinburgh, UK.
- Cancer Research UK Scotland Centre, Glasgow, UK.
| |
Collapse
|
10
|
Zou RQ, Dai YS, Liu F, Yang SQ, Hu HJ, Li FY. Hepatobiliary organoid research: the progress and applications. Front Pharmacol 2025; 16:1473863. [PMID: 40008122 PMCID: PMC11850396 DOI: 10.3389/fphar.2025.1473863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Organoid culture has emerged as a forefront technology in the life sciences field. As "in vitro micro-organs", organoids can faithfully recapitulate the organogenesis process, and conserve the key structure, physiological function and pathological state of the original tissue or organ. Consequently, it is widely used in basic and clinical studies, becoming important preclinical models for studying diseases and developing therapies. Here, we introduced the definition and advantages of organoids and described the development and advances in hepatobiliary organoids research. We focus on applying hepatobiliary organoids in benign and malignant diseases of the liver and biliary tract, drug research, and regenerative medicine to provide valuable reference information for the application of hepatobiliary organoids. Despite advances in research and treatment, hepatobiliary diseases including carcinoma, viral hepatitis, fatty liver and bile duct defects have still been conundrums of the hepatobiliary field. It is necessary and crucial to study disease mechanisms, establish efficient and accurate research models and find effective treatment strategies. The organoid culture technology shed new light on solving these issues. However, the technology is not yet mature, and many hurdles still exist that need to be overcome. The combination with new technologies such as CRISPR-HOT, organ-on-a-chip may inject new vitality into future development.
Collapse
Affiliation(s)
- Rui-Qi Zou
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Shi Dai
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Liu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Si-Qi Yang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai-Jie Hu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fu-Yu Li
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Philip R, Sharma A, Matellan L, Erpf AC, Hsu WH, Tkach JM, Wyatt HDM, Pelletier L. qTAG: an adaptable plasmid scaffold for CRISPR-based endogenous tagging. EMBO J 2025; 44:947-974. [PMID: 39668248 PMCID: PMC11790981 DOI: 10.1038/s44318-024-00337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024] Open
Abstract
Endogenous tagging enables the study of proteins within their native regulatory context, typically using CRISPR to insert tag sequences directly into the gene sequence. Here, we introduce qTAG, a collection of repair cassettes that makes endogenous tagging more accessible. The cassettes support N- and C-terminal tagging with commonly used selectable markers and feature restriction sites for easy modification. Lox sites also enable the removal of the marker gene after successful integration. We demonstrate the utility of qTAG with a range of diverse tags for applications in fluorescence imaging, proximity labeling, epitope tagging, and targeted protein degradation. The system includes novel tags like mStayGold, offering enhanced brightness and photostability for live-cell imaging of native protein dynamics. Additionally, we explore alternative cassette designs for conditional expression tagging, selectable knockout tagging, and safe-harbor expression. The plasmid collection is available through Addgene, featuring ready-to-use constructs for common subcellular markers and tagging cassettes to target genes of interest. The qTAG system will serve as an open resource for researchers to adapt and tailor their own experiments.
Collapse
Affiliation(s)
- Reuben Philip
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Amit Sharma
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Laura Matellan
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Anna C Erpf
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Wen-Hsin Hsu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Johnny M Tkach
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Haley D M Wyatt
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
12
|
Gong D, Mo J, Zhai M, Zhou F, Wang G, Ma S, Dai X, Deng X. Advances, challenges and future applications of liver organoids in experimental regenerative medicine. Front Med (Lausanne) 2025; 11:1521851. [PMID: 39927267 PMCID: PMC11804114 DOI: 10.3389/fmed.2024.1521851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/20/2024] [Indexed: 02/11/2025] Open
Abstract
The liver is a vital organ responsible for numerous metabolic processes in the human body, including the metabolism of drugs and nutrients. After liver damage, the organ can rapidly return to its original size if the causative factor is promptly eliminated. However, when the harmful stimulus persists, the liver's regenerative capacity becomes compromised. Substantial theoretical feasibility has been demonstrated at the levels of gene expression, molecular interactions, and intercellular dynamics, complemented by numerous successful animal studies. However, a robust model and carrier that closely resemble human physiology are still lacking for translating these theories into practice. The potential for liver regeneration has been a central focus of ongoing research. Over the past decade, the advent of organoid technology has provided improved models and materials for advancing research efforts. Liver organoid technology represents a novel in vitro culture system. After several years of refinement, human liver organoids can now accurately replicate the liver's morphological structure, nutrient and drug metabolism, gene expression, and secretory functions, providing a robust model for liver disease research. Regenerative medicine aims to replicate human organ or tissue functions to repair or replace damaged tissues, restore their structure or function, or stimulate the regeneration of tissues or organs within the body. Liver organoids possess the same structure and function as liver tissue, offering the potential to serve as a viable replacement for the liver, aligning with the goals of regenerative medicine. This review examines the role of liver organoids in regenerative medicine.
Collapse
Affiliation(s)
- Da Gong
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jiaye Mo
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
- Guangxi University of Chinese Medicine, Nanning, China
| | - Mei Zhai
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Fulin Zhou
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Guocai Wang
- Department of Physiology, School of Medicine and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Shaohua Ma
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Tsinghua University Shenzhen International Graduate School, Guangdong, China
| | - Xiaoyong Dai
- Department of Physiology, School of Medicine and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Tsinghua University Shenzhen International Graduate School, Guangdong, China
| | - Xuesong Deng
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
13
|
Wang Z, Zhao F, Lang H, Ren H, Zhang Q, Huang X, He C, Xu C, Tan C, Ma J, Duan S, Wang Z. Organoids in skin wound healing. BURNS & TRAUMA 2025; 13:tkae077. [PMID: 39759541 PMCID: PMC11697111 DOI: 10.1093/burnst/tkae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 01/07/2025]
Abstract
Stem cells (SCs) can self-replicate and differentiate into multiple lineages. Organoids, 3D cultures derived from SCs, can replicate the spatial structure and physiological characteristics of organs in vitro. Skin organoids can effectively simulate the physiological structure and function of skin tissue, reliably restoring the natural skin ecology in various in vitro environments. Skin organoids have been employed extensively in skin development and pathology research, offering valuable insights for drug screening. Moreover, they play crucial roles in skin regeneration and tissue repair. This in-depth review explores the construction and applications of skin organoids in wound healing, with a focus on their construction process, including skin appendage integration, and significant advancements in wound-healing research.
Collapse
Affiliation(s)
- Zitong Wang
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, No. 77 Puhe Road, Shenyang, Liaoning 110013, China
| | - Hongxin Lang
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, No. 77 Puhe Road, Shenyang, Liaoning 110013, China
| | - Haiyue Ren
- Department of Pathology, Wuhan Hospital of Traditional Chinese and Western Medicine (Wuhan No. 1 Hospital), No. 215 Zhongshan Street, Wuhan, Hubei 430022, China
| | - Qiqi Zhang
- Department of Pathology, Chengdu Third People's Hospital, No. 82 Qinglong Street, Chengdu, Sichuan 610031, China
| | - Xing Huang
- Department of Anaesthesiology, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yantaxi Road, Xi'an, Shanxi 710061, China
| | - Cai He
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Chengcheng Xu
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Chiyu Tan
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Jiajie Ma
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Shu Duan
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| |
Collapse
|
14
|
Michicich M, Traylor Z, McCoy C, Valerio DM, Wilson A, Schneider M, Davis S, Barabas A, Mann RJ, LePage DF, Jiang W, Drumm ML, Kelley TJ, Conlon RA, Hodges CA. A W1282X cystic fibrosis mouse allows the study of pharmacological and gene-editing therapeutics to restore CFTR function. J Cyst Fibros 2025; 24:164-174. [PMID: 39532588 PMCID: PMC11788034 DOI: 10.1016/j.jcf.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/28/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND People with cystic fibrosis carrying two nonsense alleles lack CFTR-specific treatment. Growing evidence supports the hypothesis that nonsense mutation identity affects therapeutic response, calling for mutation-specific CF models. We describe a novel W1282X mouse model and compare it to an existing G542X mouse. METHODS The W1282X mouse was created using CRISPR/Cas9 to edit mouse Cftr. In this model, Cftr transcription was assessed using qRT-PCR and CFTR function was measured in the airway by nasal potential difference and in the intestine by short circuit current. Growth, survival, and intestinal motility were examined as well. Correction of W1282X CFTR was assessed pharmacologically and by gene-editing using a forskolin-induced swelling (FIS) assay in small intestine-derived organoids. RESULTS Homozygous W1282X mice demonstrate decreased Cftr mRNA, little to no CFTR function, and reduced survival, growth, and intestinal motility. W1282X organoids treated with various combinations of pharmacologic correctors display a significantly different amount of CFTR function than that of organoids from G542X mice. Successful gene editing of W1282X to wildtype sequence in intestinal organoids was achieved leading to restoration of CFTR function. CONCLUSIONS The W1282X mouse model recapitulates common human manifestations of CF similar to other CFTR null mice. Despite the similarities between the congenic W1282X and G542X models, they differ meaningfully in their response to identical pharmacological treatments. This heterogeneity highlights the importance of studying therapeutics across genotypes.
Collapse
Affiliation(s)
- Margaret Michicich
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Zachary Traylor
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Caitlan McCoy
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Dana M Valerio
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Alma Wilson
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Molly Schneider
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Sakeena Davis
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Amanda Barabas
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Rachel J Mann
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - David F LePage
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Weihong Jiang
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Mitchell L Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Thomas J Kelley
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Ronald A Conlon
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Craig A Hodges
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States.
| |
Collapse
|
15
|
Andersson-Rolf A, Groot K, Korving J, Begthel H, Hanegraaf MAJ, VanInsberghe M, Salmén F, van den Brink S, Lopez-Iglesias C, Peters PJ, Krueger D, Beumer J, Geurts MH, Alemany A, Gehart H, Carlotti F, de Koning EJP, Chuva de Sousa Lopes SM, van Oudenaarden A, van Es JH, Clevers H. Long-term in vitro expansion of a human fetal pancreas stem cell that generates all three pancreatic cell lineages. Cell 2024; 187:7394-7413.e22. [PMID: 39626658 DOI: 10.1016/j.cell.2024.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/18/2024] [Accepted: 10/18/2024] [Indexed: 12/29/2024]
Abstract
The mammalian pancreas consists of three epithelial compartments: the acini and ducts of the exocrine pancreas and the endocrine islets of Langerhans. Murine studies indicate that these three compartments derive from a transient, common pancreatic progenitor. Here, we report derivation of 18 human fetal pancreas organoid (hfPO) lines from gestational weeks 8-17 (8-17 GWs) fetal pancreas samples. Four of these lines, derived from 15 to 16 GWs samples, generate acinar-, ductal-, and endocrine-lineage cells while expanding exponentially for >2 years under optimized culture conditions. Single-cell RNA sequencing identifies rare LGR5+ cells in fetal pancreas and in hfPOs as the root of the developmental hierarchy. These LGR5+ cells share multiple markers with adult gastrointestinal tract stem cells. Organoids derived from single LGR5+ organoid-derived cells recapitulate this tripotency in vitro. We describe a human fetal tripotent stem/progenitor cell capable of long-term expansion in vitro and of generating all three pancreatic cell lineages.
Collapse
Affiliation(s)
- Amanda Andersson-Rolf
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.
| | - Kelvin Groot
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Harry Begthel
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Maaike A J Hanegraaf
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Michael VanInsberghe
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Fredrik Salmén
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Stieneke van den Brink
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Carmen Lopez-Iglesias
- The Maastricht Multimodal Molecular Imaging Institute, 6229 ER Maastricht, the Netherlands
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute, 6229 ER Maastricht, the Netherlands
| | - Daniel Krueger
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Joep Beumer
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche innovation Centre, 4070 Basel, Switzerland
| | - Maarten H Geurts
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; Princess Maxima Centre for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | - Anna Alemany
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2333 ZA Leiden, the Netherlands
| | - Helmuth Gehart
- ETH Zurich, Institute of Molecular Health Sciences, 8093 Zürich, Schweiz
| | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Eelco J P de Koning
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | | | - Alexander van Oudenaarden
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Johan H van Es
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; Princess Maxima Centre for Pediatric Oncology, 3584 CS Utrecht, the Netherlands; Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche innovation Centre, 4070 Basel, Switzerland.
| |
Collapse
|
16
|
Shi Y, Han X, Zou S, Liu G. Nanomaterials in Organoids: From Interactions to Personalized Medicine. ACS NANO 2024; 18:33276-33292. [PMID: 39609736 DOI: 10.1021/acsnano.4c13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Organoids are three-dimensional models of microscopic organisms created through the self-organization of various types of stem cells. They are widely unitized in personalized medicine due to their capacity to replicate the structure and functionality of native organs. Meanwhile, nanotechnology has been integrated into diagnostic and therapeutic tools to manage an array of medical conditions, given its unique characteristics of nanoscale. Nanomaterials have demonstrated potential in developing innovative and effective organoids. With a focus on studying the interaction of nanomaterials and organoid technology in personalized medicine, this Review examines the role of nanomaterials in regulating the fate of stem cells to construct different types of organoids. It also explores the potential of nanotechnology to create 3D microenvironments for organoids. Finally, perspectives and challenges of applying nanotechnology for organoids development toward the translation of personalized medicine are discussed.
Collapse
Affiliation(s)
- Ying Shi
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xin Han
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Siyi Zou
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Guozhen Liu
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
17
|
Zhang Y, Meng R, Sha D, Gao H, Wang S, Zhou J, Wang X, Li F, Li X, Song W. Advances in the application of colorectal cancer organoids in precision medicine. Front Oncol 2024; 14:1506606. [PMID: 39697234 PMCID: PMC11653019 DOI: 10.3389/fonc.2024.1506606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Colorectal cancer (CRC) ranks among the most prevalent gastrointestinal tumors globally and poses a significant threat to human health. In recent years, tumor organoids have emerged as ideal models for clinical disease research owing to their ability to closely mimic the original tumor tissue and maintain a stable phenotypic structure. Organoid technology has found widespread application in basic tumor research, precision therapy, and new drug development, establishing itself as a reliable preclinical model in CRC research. This has significantly advanced individualized and precise tumor therapies. Additionally, the integration of single-cell technology has enhanced the precision of organoid studies, offering deeper insights into tumor heterogeneity and treatment response, thereby contributing to the development of personalized treatment approaches. This review outlines the evolution of colorectal cancer organoid technology and highlights its strengths in modeling colorectal malignancies. This review also summarizes the progress made in precision tumor medicine and addresses the challenges in organoid research, particularly when organoid research is combined with single-cell technology. Furthermore, this review explores the future potential of organoid technology in the standardization of culture techniques, high-throughput screening applications, and single-cell multi-omics integration, offering novel directions for future colorectal cancer research.
Collapse
Affiliation(s)
- Yanan Zhang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Oncology, Zibo Hospital of Traditional Chinese Medicine, Zibo, China
| | - Ruoyu Meng
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Dan Sha
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huiquan Gao
- Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shengxi Wang
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jun Zhou
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoshan Wang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Fuxia Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wei Song
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
18
|
Park K, Jeon MC, Lee D, Kim JI, Im SW. Genetic and epigenetic alterations in aging and rejuvenation of human. Mol Cells 2024; 47:100137. [PMID: 39433213 PMCID: PMC11625158 DOI: 10.1016/j.mocell.2024.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024] Open
Abstract
All the information essential for life is encoded within our genome and epigenome, which orchestrates diverse cellular states spatially and temporally. In particular, the epigenome interacts with internal and external stimuli, encoding and preserving cellular experiences, and it serves as the regulatory base of the transcriptome across diverse cell types. The emergence of single-cell transcriptomic and epigenomic data collection has revealed unique omics signatures in diverse tissues, highlighting cellular heterogeneity. Recent research has documented age-related epigenetic changes at the single-cell level, alongside the validation of cellular rejuvenation through partial reprogramming, which involves simultaneous epigenetic modifications. These dynamic shifts, primarily fueled by stem cell plasticity, have catalyzed significant interest and cross-disciplinary research endeavors. This review explores the genomic and epigenomic alterations with aging, elucidating their reciprocal interactions. Additionally, it seeks to discuss the evolving landscape of rejuvenation research, with a particular emphasis on dissecting stem cell behavior through the lens of single-cell analysis. Moreover, it proposes potential research methodologies for future studies.
Collapse
Affiliation(s)
- Kyunghyuk Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
| | - Min Chul Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Dakyung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.
| | - Sun-Wha Im
- Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Gangwon, Korea.
| |
Collapse
|
19
|
Niazi V, Parseh B. Organoid models of breast cancer in precision medicine and translational research. Mol Biol Rep 2024; 52:2. [PMID: 39570495 DOI: 10.1007/s11033-024-10101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
One of the most famous and heterogeneous cancers worldwide is breast cancer (BC). Owing to differences in the gene expression profiles and clinical features of distinct BC subtypes, different treatments are prescribed for patients. However, even with more thorough pathological evaluations of tumors than in the past, available treatments do not perform equally well for all individuals. Precision medicine is a new approach that considers the effects of patients' genes, lifestyle, and environment to choose the right treatment for an individual patient. As a powerful tool, the organoid culture system can maintain the morphological and genetic characteristics of patients' tumors. Evidence also shows that organoids have high predictive value for patient treatment. In this review, a variety of BC studies performed on organoid culture systems are evaluated. Additionally, the potential of using organoid models in BC translational research, especially in immunotherapy, drug screening, and precision medicine, has been reported.
Collapse
Affiliation(s)
- Vahid Niazi
- Stem Cell Research Center, Golestan University of Medical Science, Gorgan, Iran
- School of Advanced Technologies in Medicine, Golestan University of Medical Science, Shastkola Street, Gorgan, 4918936316, Iran
| | - Benyamin Parseh
- Stem Cell Research Center, Golestan University of Medical Science, Gorgan, Iran.
- School of Advanced Technologies in Medicine, Golestan University of Medical Science, Shastkola Street, Gorgan, 4918936316, Iran.
| |
Collapse
|
20
|
Li Z, You Y, Feng B, Chen J, Gao H, Li F. Construction methods and latest applications of kidney cancer organoids. Oncol Rev 2024; 18:1434981. [PMID: 39600908 PMCID: PMC11588466 DOI: 10.3389/or.2024.1434981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Renal cell carcinoma (RCC) is one of the deadliest malignant tumors. Despite significant advances in RCC treatment over the past decade, complete remission is rarely achieved. Consequently, there is an urgent need to explore and develop new therapies to improve the survival rates and quality of life for patients. In recent years, the development of tumor organoid technology has attracted widespread attention as it can more accurately simulate the spatial structure and physiological characteristics of tumors within the human body. In this review, we summarize the main methods currently used to construct kidney cancer organoids, as well as their various biological and clinical applications. Furthermore, combining organoids with other technologies, such as co-culture techniques and microfluidic technologies, can further develop organoids and address their limitations, creating more practical models. This approach summarizes the interactions between different tissues or organs during tumor progression. Finally, we also provide an outlook on the construction and application of kidney cancer organoids. These rapidly evolving kidney cancer organoids may soon become a focal point in the development of in vitro clinical models and therapeutic research for kidney cancer.
Collapse
Affiliation(s)
- Zhiqiang Li
- Medical College of Guangxi University, Nan Ning, Guang Xi, China
| | - Yanqiu You
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nan Ning, China
| | - Bingzheng Feng
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nan Ning, China
| | - Jibing Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nan Ning, China
| | - Hongjun Gao
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nan Ning, China
| | - Fujun Li
- Medical College of Guangxi University, Nan Ning, Guang Xi, China
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nan Ning, China
| |
Collapse
|
21
|
Tian Y, Zhong D, Shen R, Tan X, Zhu C, Li K, Yao Q, Li X, Zhang X, Cao X, Wang P, Zhu JK, Lu Y. Rapid and dynamic detection of endogenous proteins through in locus tagging in rice. PLANT COMMUNICATIONS 2024; 5:101040. [PMID: 39001607 PMCID: PMC11589287 DOI: 10.1016/j.xplc.2024.101040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/15/2024] [Accepted: 07/10/2024] [Indexed: 09/01/2024]
Abstract
Understanding the behavior of endogenous proteins is crucial for functional genomics, yet their dynamic characterization in plants presents substantial challenges. Whereas mammalian studies have leveraged in locus tagging with the luminescent HiBiT peptide and genome editing for rapid quantification of native proteins, this approach remains unexplored in plants. Here, we introduce the in locus HiBiT tagging of rice proteins and demonstrate its feasibility in plants. We found that although traditional HiBiT blotting works in rice, it failed to detect two of the three tagged proteins, a result attributable to low luminescence activity in plants. To overcome this limitation, we engaged in extensive optimization, culminating in a new luciferin substrate coupled with a refined reaction protocol that enhanced luminescence up to 6.9 fold. This innovation led to the development of TagBIT (tagging with HiBiT), a robust method for high-sensitivity protein characterization in plants. Our application of TagBIT to seven rice genes illustrates its versatility on endogenous proteins, enabling antibody-free protein blotting, real-time protein quantification via luminescence, in situ visualization using a cross-breeding strategy, and effective immunoprecipitation for analysis of protein interactions. The heritable nature of this system, confirmed across T1 to T3 generations, positions TagBIT as a powerful tool for protein study in plant biology.
Collapse
Affiliation(s)
- Yifu Tian
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China; Hainan Seed Industry Laboratory, Sanya, Hainan 572024, China
| | - Dating Zhong
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Rundong Shen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China; Hainan Seed Industry Laboratory, Sanya, Hainan 572024, China
| | - Xinhang Tan
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Chen Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kai Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Yao
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Xinbo Li
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China; Hainan Seed Industry Laboratory, Sanya, Hainan 572024, China
| | - Xuening Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Xuesong Cao
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Pengcheng Wang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jian-Kang Zhu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China; Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yuming Lu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
22
|
Murata M, Okada K, Takahashi M, Ueyama-Toba Y, Ito S, Mizuguchi H. Generation and application of CES1-knockout Tet-Off-regulated CYP3A4 and UGT1A1-expressing Caco-2 cells. Toxicol Lett 2024; 401:158-169. [PMID: 39383894 DOI: 10.1016/j.toxlet.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/07/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Caco-2 cells, a human colorectal adenocarcinoma cell line, are widely used to model small intestinal epithelial cells in the drug development process because they can predict drug absorption with high accuracy. However, Caco-2 cells have several issues. First, Caco-2 cells have little expression of cytochrome P450 3A4 (CYP3A4), which is a major drug-metabolizing enzyme in the human intestine. We previously developed Caco-2 cells whose expression of CYP3A4 can be controlled using doxycycline (Dox) (CYP3A4-Caco-2 cells) (Ichikawa et al., Sci. Rep, 2021). However, since the Tet-On system was used to regulate CYP3A4 expression in these cells, there was concern about drug-drug interactions. The second issue is that in the human small intestine, carboxylesterase 2 (CES2) is more highly expressed than carboxylesterase 1 (CES1), while in Caco-2 cells CES1 is more highly expressed. The third issue is the low level expression of uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1), a phase II drug-metabolizing enzyme. In this study, we used genome-editing technology to establish CES1-knockout Caco-2 cells whose CYP3A4 and UGT1A1 expression can be regulated by the Tet-Off system. These cell lines would be useful in pharmaceutical researches, including intestinal toxicological studies, as an in vitro model for orally administered drugs.
Collapse
Affiliation(s)
- Michika Murata
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kentaro Okada
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Masaki Takahashi
- GenoMembrane Co., Ltd., 2-3-18 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-0052, Japan
| | - Yukiko Ueyama-Toba
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Sumito Ito
- GenoMembrane Co., Ltd., 2-3-18 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-0052, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
23
|
Hosseini SA, Elahian F, Mirzaei SA. Innovative genetic scissor strategies and their applications in cancer treatment and prevention: CRISPR modules and challenges. Int J Biol Macromol 2024; 279:135239. [PMID: 39218175 DOI: 10.1016/j.ijbiomac.2024.135239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
There are lots of gene editing tools for targeting genome sequences. Some are almost known, and most are a complete mystery and undiscovered. CRISPR/Cas editing tools have brought about a major revolution in medicine. Researchers have shown that CRISPR can modify DNA much more accurately, economically and easily than previous methods. CRISPR has proven itself effective for the deletion, replacement and insertion of DNA fragments into cell types, tissues and organisms. Recently, combining CRISPR/Cas with factors (transcription factors/repressors, exonucleases, endonucleases, transposons, caspase, fluorescent proteins, oxidoreductive enzymes, DNA/RNA polymerases), and elements (aptamers, barcodes, fluorescent probes, Trigger) have provided genome, transcriptome, proteome and epigenome modification. These modules are being investigated for cancer prevention and therapy and this review focuses on such innovative combinations that hopefully will become a clinical reality in the near future.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
24
|
Beumer J, Geurts MH, Geurts V, Andersson-Rolf A, Akkerman N, Völlmy F, Krueger D, Busslinger GA, Martínez-Silgado A, Boot C, Yousef Yengej FA, Puschhof J, Van de Wetering WJ, Knoops K, López-Iglesias C, Peters PJ, Vivié JA, Mooijman D, van Es JH, Clevers H. Description and functional validation of human enteroendocrine cell sensors. Science 2024; 386:341-348. [PMID: 39418382 PMCID: PMC7616728 DOI: 10.1126/science.adl1460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
Enteroendocrine cells (EECs) are gut epithelial cells that respond to intestinal contents by secreting hormones, including the incretins glucagon-like peptide 1 (GLP-1) and gastric inhibitory protein (GIP), which regulate multiple physiological processes. Hormone release is controlled through metabolite-sensing proteins. Low expression, interspecies differences, and the existence of multiple EEC subtypes have posed challenges to the study of these sensors. We describe differentiation of stomach EECs to complement existing intestinal organoid protocols. CD200 emerged as a pan-EEC surface marker, allowing deep transcriptomic profiling from primary human tissue along the stomach-intestinal tract. We generated loss-of-function mutations in 22 receptors and subjected organoids to ligand-induced secretion experiments. We delineate the role of individual human EEC sensors in the secretion of hormones, including GLP-1. These represent potential pharmacological targets to influence appetite, bowel movement, insulin sensitivity, and mucosal immunity.
Collapse
Affiliation(s)
- Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
- Institute of Human Biology, Roche Pharma Research and Early Development, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Maarten H. Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Veerle Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Amanda Andersson-Rolf
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Ninouk Akkerman
- Institute of Human Biology, Roche Pharma Research and Early Development, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Franziska Völlmy
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Daniel Krueger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Georg A. Busslinger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Adriana Martínez-Silgado
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Charelle Boot
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Fjodor A. Yousef Yengej
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CXUtrecht, the Netherlands
| | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Wiline J. Van de Wetering
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ERMaastricht, the Netherlands
| | - Kevin Knoops
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ERMaastricht, the Netherlands
| | - Carmen López-Iglesias
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ERMaastricht, the Netherlands
| | - Peter J. Peters
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ERMaastricht, the Netherlands
| | | | - Dylan Mooijman
- Single Cell Discoveries BV, 3584 BWUtrecht, The Netherlands
| | - Johan H. van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| |
Collapse
|
25
|
Huang L, Bernink JH, Giladi A, Krueger D, van Son GJF, Geurts MH, Busslinger G, Lin L, Begthel H, Zandvliet M, Buskens CJ, Bemelman WA, López-Iglesias C, Peters PJ, Clevers H. Tuft cells act as regenerative stem cells in the human intestine. Nature 2024; 634:929-935. [PMID: 39358509 PMCID: PMC11499303 DOI: 10.1038/s41586-024-07952-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/15/2024] [Indexed: 10/04/2024]
Abstract
In mice, intestinal tuft cells have been described as a long-lived, postmitotic cell type. Two distinct subsets have been identified: tuft-1 and tuft-2 (ref. 1). By combining analysis of primary human intestinal resection material and intestinal organoids, we identify four distinct human tuft cell states, two of which overlap with their murine counterparts. We show that tuft cell development depends on the presence of Wnt ligands, and that tuft cell numbers rapidly increase on interleukin-4 (IL-4) and IL-13 exposure, as reported previously in mice2-4. This occurs through proliferation of pre-existing tuft cells, rather than through increased de novo generation from stem cells. Indeed, proliferative tuft cells occur in vivo both in fetal and in adult human intestine. Single mature proliferating tuft cells can form organoids that contain all intestinal epithelial cell types. Unlike stem and progenitor cells, human tuft cells survive irradiation damage and retain the ability to generate all other epithelial cell types. Accordingly, organoids engineered to lack tuft cells fail to recover from radiation-induced damage. Thus, tuft cells represent a damage-induced reserve intestinal stem cell pool in humans.
Collapse
Affiliation(s)
- Lulu Huang
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Jochem H Bernink
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands.
- Amsterdam University Medical Center, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands.
| | - Amir Giladi
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Daniel Krueger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gijs J F van Son
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Maarten H Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Georg Busslinger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lin Lin
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maurice Zandvliet
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Christianne J Buskens
- Amsterdam University Medical Center, University of Amsterdam, Department of Surgery, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Willem A Bemelman
- Amsterdam University Medical Center, University of Amsterdam, Department of Surgery, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Carmen López-Iglesias
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands.
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands.
- The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
- Pharma, Research and Early Development of F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
26
|
Li J, Zhou M, Xie J, Chen J, Yang M, Ye C, Cheng S, Liu M, Li R, Tan R. Organoid modeling meets cancers of female reproductive tract. Cell Death Discov 2024; 10:410. [PMID: 39333482 PMCID: PMC11437045 DOI: 10.1038/s41420-024-02186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Diseases of the female reproductive system, especially malignant tumors, pose a serious threat to women's health worldwide. One of the key factors limiting research progress in this area is the lack of representative models. Organoid technology, especially tumor organoids, has been increasingly applied in the study of female reproductive system tumors due to their high heterogeneity, close resemblance to the physiological state, easy acquisition and cultivation advantages. They play a significant role in understanding the origin and causes of tumors, drug screening, and personalized treatment and more. This article reviews the organoid models for the female reproductive system, focusing on the cancer research advancements. It discusses the methods for constructing tumor organoids of the female reproductive tract and summarizes the limitations of current research. The aim is to offer a reference for future development and application of these organoid models, contributing to the advancement of anti-tumor drugs and treatment strategies for female reproductive tract cancer patients.
Collapse
Affiliation(s)
- Jiao Li
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Mengting Zhou
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Xie
- Information Technology Center, West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Jiani Chen
- Chongqing Medical University, Chongqing, China
| | - Mengni Yang
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changjun Ye
- Rehabilitation Department, Changgeng Yining Hospital, Wenzhou, China
| | - Shihu Cheng
- Geriatric Department, Changgeng Yining Hospital, Wenzhou, China
| | - Miao Liu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Rui Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| |
Collapse
|
27
|
Papp D, Korcsmaros T, Hautefort I. Revolutionizing immune research with organoid-based co-culture and chip systems. Clin Exp Immunol 2024; 218:40-54. [PMID: 38280212 PMCID: PMC11404127 DOI: 10.1093/cei/uxae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/05/2023] [Accepted: 01/24/2024] [Indexed: 01/29/2024] Open
Abstract
The intertwined interactions various immune cells have with epithelial cells in our body require sophisticated experimental approaches to be studied. Due to the limitations of immortalized cell lines and animal models, there is an increasing demand for human in vitro model systems to investigate the microenvironment of immune cells in normal and in pathological conditions. Organoids, which are self-renewing, 3D cellular structures that are derived from stem cells, have started to provide gap-filling tissue modelling solutions. In this review, we first demonstrate with some of the available examples how organoid-based immune cell co-culture experiments can advance disease modelling of cancer, inflammatory bowel disease, and tissue regeneration. Then, we argue that to achieve both complexity and scale, organ-on-chip models combined with cutting-edge microfluidics-based technologies can provide more precise manipulation and readouts. Finally, we discuss how genome editing techniques and the use of patient-derived organoids and immune cells can improve disease modelling and facilitate precision medicine. To achieve maximum impact and efficiency, these efforts should be supported by novel infrastructures such as organoid biobanks, organoid facilities, as well as drug screening and host-microbe interaction testing platforms. All these together or in combination can allow researchers to shed more detailed, and often patient-specific, light on the crosstalk between immune cells and epithelial cells in health and disease.
Collapse
Affiliation(s)
- Diana Papp
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- NIHR Imperial BRC Organoid Facility, Imperial College London, London, UK
| | - Tamas Korcsmaros
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- NIHR Imperial BRC Organoid Facility, Imperial College London, London, UK
- Food, Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Isabelle Hautefort
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- NIHR Imperial BRC Organoid Facility, Imperial College London, London, UK
- Food, Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| |
Collapse
|
28
|
Luo X, Gong Y, Gong Z, Fan K, Suo T, Liu H, Ni X, Ni X, Abudureyimu M, Liu H. Liver and bile duct organoids and tumoroids. Biomed Pharmacother 2024; 178:117104. [PMID: 39024834 DOI: 10.1016/j.biopha.2024.117104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024] Open
Abstract
Organoids refer to 3D cultures established to recapitulate histology, pathology, architecture, and genetic traits of various organs and tissues in the body, thereby replacing 2D cell cultures, xenograft, and animal models. Organoids form a 3D in vitro mimic of original tissues like the liver and are derived from embryonic or adult tissue stem cells. Liver and bile duct tumor organoids, also called, tumoroids capture genetic diversity, cellular, and pathophysiological properties of original tumors. Moreover, co-culture techniques along with genetic modulation of organoids allow for using tumoroids in liver and bile duct cancer research and drug screening/testing. Therefore, tumoroids are promising platforms for studying liver and bile duct cancer, which paves the way for the new era of personalized therapies. In the current review, we aimed to discuss liver and bile duct organoids with special emphasis on tumoroids and their applications, advantages, and shortcomings.
Collapse
Affiliation(s)
- Xuanming Luo
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China; Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Yuda Gong
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Zijun Gong
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Kun Fan
- Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Tao Suo
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Han Liu
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Xiaoling Ni
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Xiaojian Ni
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Miyesaier Abudureyimu
- Cardiovascular Department, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.
| | - Houbao Liu
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China; Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Huang S, Mei Z, Wan A, Zhao M, Qi X. Application and prospect of organoid technology in breast cancer. Front Immunol 2024; 15:1413858. [PMID: 39253075 PMCID: PMC11381393 DOI: 10.3389/fimmu.2024.1413858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Breast cancer is the most common malignant tumor in women. Due to the high heterogeneity of breast cancer cells, traditional in vitro research models still have major limitations. Therefore, it is urgent to establish an experimental model that can accurately simulate the characteristics of human breast cancer. Breast cancer organoid technology emerged as the times required, that is, to construct tissue analogs with organ characteristics by using a patient's tumor tissue through 3D culture in vitro. Since the breast cancer organoid can fully preserve the histology and genetic characteristics of the original tumor, it provides a reliable model for preclinical drug screening, establishment of breast cancer organoid biobanks, research into the mechanisms of tumor development, and determination of cancer targets. It has promoted personalized treatment for clinical breast cancer patients. This article mainly focuses on recent research progress and applications of organoid technology in breast cancer, discussing the current limitations and prospects of breast cancer organoid technology.
Collapse
Affiliation(s)
- Shanlin Huang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zifan Mei
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| | - Andi Wan
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| | - Min Zhao
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
30
|
Qu B, Mu Q, Bi H, Chen Y, Wang Q, Ma X, Lu L. Interpretation of the past, present, and future of organoid technology: an updated bibliometric analysis from 2009 to 2024. Front Cell Dev Biol 2024; 12:1433111. [PMID: 39193361 PMCID: PMC11347291 DOI: 10.3389/fcell.2024.1433111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Organoid technology has been developed rapidly in the past decade, which involves the exploration of the mechanism of development, regeneration and various diseases, and intersects among multiple disciplines. Thousands of literature on 3D-culture or organoids have been published in the research areas of cell biology tissue engineering, nanoscience, oncology and so on, resulting in it being challenging for researchers to timely summarize these studies. Bibliometric statistics is a helpful way to help researchers clarify the above issues efficiently and manage the whole landscape systematically. In our study, all original articles on organoids were included in the Web of Science database from January 2009 to May 2024, and related information was collected and analyzed using Excel software, "bibliometrix" packages of the R software, VOSviewer and CiteSpace. As results, a total of 6222 papers were included to classify the status quo of the organoids and predict future research areas. Our findings highlight a growing trend in publications related to organoids, with the United States and Netherlands leading in this field. The University of California System, Harvard University, Utrecht University and Utrecht University Medical Center have emerged as pivotal contributors and the key authors in the field include Clevers, H, Beekman, JM and Spence JR. Our results also revealed that the research hotspots and trends of organoids mainly focused on clinical treatment, drug screening, and the application of materials and technologies such as "hydrogel" and "microfluidic technology" in organoids. Next, we had an in-depth interpretation of the development process of organoid research area, including the emergence of technology, the translation from bench to bedsides, the profiles of the most widely studied types of organoids, the application of materials and technologies, and the emerging organoid-immune co-cultures trends. Furthermore, we also discussed the pitfalls, challenges and prospects of organoid technology. In conclusion, this study provides readers straightforward and convenient access to the organoid research field.
Collapse
Affiliation(s)
- Baozhen Qu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Qiang Mu
- The First Department of Breast Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Huanhuan Bi
- College of Medicine, Qingdao University, Qingdao, China
| | - Yuxian Chen
- College of Medicine, Qingdao University, Qingdao, China
| | - Qitang Wang
- The First Department of Breast Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Xuezhen Ma
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Linlin Lu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| |
Collapse
|
31
|
Darmasaputra GS, Geerlings CC, Chuva de Sousa Lopes SM, Clevers H, Galli M. Binucleated human hepatocytes arise through late cytokinetic regression during endomitosis M phase. J Cell Biol 2024; 223:e202403020. [PMID: 38727809 PMCID: PMC11090133 DOI: 10.1083/jcb.202403020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/15/2024] Open
Abstract
Binucleated polyploid cells are common in many animal tissues, where they arise by endomitosis, a non-canonical cell cycle in which cells enter M phase but do not undergo cytokinesis. Different steps of cytokinesis have been shown to be inhibited during endomitosis M phase in rodents, but it is currently unknown how human cells undergo endomitosis. In this study, we use fetal-derived human hepatocyte organoids (Hep-Orgs) to investigate how human hepatocytes initiate and execute endomitosis. We find that cells in endomitosis M phase have normal mitotic timings, but lose membrane anchorage to the midbody during cytokinesis, which is associated with the loss of four cortical anchoring proteins, RacGAP1, Anillin, SEPT9, and citron kinase (CIT-K). Moreover, reduction of WNT activity increases the percentage of binucleated cells in Hep-Orgs, an effect that is dependent on the atypical E2F proteins, E2F7 and E2F8. Together, we have elucidated how hepatocytes undergo endomitosis in human Hep-Orgs, providing new insights into the mechanisms of endomitosis in mammals.
Collapse
Affiliation(s)
- Gabriella S. Darmasaputra
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, Netherlands
| | - Cindy C. Geerlings
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Matilde Galli
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
32
|
Zhang K, Wan P, Wang L, Wang Z, Tan F, Li J, Ma X, Cen J, Yuan X, Liu Y, Sun Z, Cheng X, Liu Y, Liu X, Hu J, Zhong G, Li D, Xia Q, Hui L. Efficient expansion and CRISPR-Cas9-mediated gene correction of patient-derived hepatocytes for treatment of inherited liver diseases. Cell Stem Cell 2024; 31:1187-1202.e8. [PMID: 38772378 DOI: 10.1016/j.stem.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
Cell-based ex vivo gene therapy in solid organs, especially the liver, has proven technically challenging. Here, we report a feasible strategy for the clinical application of hepatocyte therapy. We first generated high-quality autologous hepatocytes through the large-scale expansion of patient-derived hepatocytes. Moreover, the proliferating patient-derived hepatocytes, together with the AAV2.7m8 variant identified through screening, enabled CRISPR-Cas9-mediated targeted integration efficiently, achieving functional correction of pathogenic mutations in FAH or OTC. Importantly, these edited hepatocytes repopulated the injured mouse liver at high repopulation levels and underwent maturation, successfully treating mice with tyrosinemia following transplantation. Our study combines ex vivo large-scale cell expansion and gene editing in patient-derived transplantable hepatocytes, which holds potential for treating human liver diseases.
Collapse
Affiliation(s)
- Kun Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Ping Wan
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhen Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fangzhi Tan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Jie Li
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Xiaolong Ma
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin Cen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang Yuan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yang Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing 100871, China
| | - Zhen Sun
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xi Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanhua Liu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuhao Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing 100871, China
| | - Jiazhi Hu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing 100871, China
| | - Guisheng Zhong
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China.
| | - Lijian Hui
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
33
|
Polak R, Zhang ET, Kuo CJ. Cancer organoids 2.0: modelling the complexity of the tumour immune microenvironment. Nat Rev Cancer 2024; 24:523-539. [PMID: 38977835 DOI: 10.1038/s41568-024-00706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 07/10/2024]
Abstract
The development of neoplasia involves a complex and continuous interplay between malignantly transformed cells and the tumour microenvironment (TME). Cancer immunotherapies targeting the immune TME have been increasingly validated in clinical trials but response rates vary substantially between tumour histologies and are often transient, idiosyncratic and confounded by resistance. Faithful experimental models of the patient-specific tumour immune microenvironment, capable of recapitulating tumour biology and immunotherapy effects, would greatly improve patient selection, target identification and definition of resistance mechanisms for immuno-oncology therapeutics. In this Review, we discuss currently available and rapidly evolving 3D tumour organoid models that capture important immune features of the TME. We highlight diverse opportunities for organoid-based investigations of tumour immunity, drug development and precision medicine.
Collapse
Affiliation(s)
- Roel Polak
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Elisa T Zhang
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
34
|
Yang H, Niu S, Guo M, Xue Y. Applications of 3D organoids in toxicological studies: a comprehensive analysis based on bibliometrics and advances in toxicological mechanisms. Arch Toxicol 2024; 98:2309-2330. [PMID: 38806717 DOI: 10.1007/s00204-024-03777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
A mechanism exploration is an important part of toxicological studies. However, traditional cell and animal models can no longer meet the current needs for in-depth studies of toxicological mechanisms. The three-dimensional (3D) organoid derived from human embryonic stem cells (hESC) or induced pluripotent stem cells (hiPSC) is an ideal experimental model for the study of toxicological effects and mechanisms, which further recapitulates the human tissue microenvironment and provides a reliable method for studying complex cell-cell interactions. This article provides a comprehensive overview of the state of the 3D organoid technology in toxicological studies, including a bibliometric analysis of the existing literature and an exploration of the latest advances in toxicological mechanisms. The use of 3D organoids in toxicology research is growing rapidly, with applications in disease modeling, organ-on-chips, and drug toxicity screening being emphasized, but academic communications among countries/regions, institutions, and research scholars need to be further strengthened. Attempts to study the toxicological mechanisms of exogenous chemicals such as heavy metals, nanoparticles, drugs and organic pollutants are also increasing. It can be expected that 3D organoids can be better applied to the safety evaluation of exogenous chemicals by establishing a standardized methodology.
Collapse
Affiliation(s)
- Haitao Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Menghao Guo
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
35
|
Bayat M, Nahand JS. Let's make it personal: CRISPR tools in manipulating cell death pathways for cancer treatment. Cell Biol Toxicol 2024; 40:61. [PMID: 39075259 PMCID: PMC11286699 DOI: 10.1007/s10565-024-09907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
Advancements in the CRISPR technology, a game-changer in experimental research, have revolutionized various fields of life sciences and more profoundly, cancer research. Cell death pathways are among the most deregulated in cancer cells and are considered as critical aspects in cancer development. Through decades, our knowledge of the mechanisms orchestrating programmed cellular death has increased substantially, attributed to the revolution of cutting-edge technologies. The heroic appearance of CRISPR systems have expanded the available screening platform and genome engineering toolbox to detect mutations and create precise genome edits. In that context, the precise ability of this system for identification and targeting of mutations in cell death signaling pathways that result in cancer development and therapy resistance is an auspicious choice to transform and accelerate the individualized cancer therapy. The concept of personalized cancer therapy stands on the identification of molecular characterization of the individual tumor and its microenvironment in order to provide a precise treatment with the highest possible outcome and minimum toxicity. This study explored the potential of CRISPR technology in precision cancer treatment by identifying and targeting specific cell death pathways. It showed the promise of CRISPR in finding key components and mutations involved in programmed cell death, making it a potential tool for targeted cancer therapy. However, this study also highlighted the challenges and limitations that need to be addressed in future research to fully realize the potential of CRISPR in cancer treatment.
Collapse
Affiliation(s)
- Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 15731, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 15731, Iran.
| |
Collapse
|
36
|
Zhang Y, Yan S, Mei Z, Zhang H, Ding C, Zhang S, Wei S. Exploring the Cocktail Factor Approach to Generate Salivary Gland Progenitors through Co-Culture Techniques. Tissue Eng Regen Med 2024; 21:749-759. [PMID: 38466363 PMCID: PMC11187051 DOI: 10.1007/s13770-024-00632-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND The derivation of salivary gland (SG) progenitors from pluripotent stem cells (PSCs) presents significant potential for developmental biology and regenerative medicine. However, the existing protocols for inducing SG include limited factors, making it challenging to mimic the in vivo microenvironment of embryonic SGs. METHODS We reported a cocktail factor approach to promote the differentiation of mouse embryonic stem cell (mESC)-derived oral epithelium (OE) into SG progenitors through a three-dimensional co-culture method. Upon confirming that the embryonic SG can promote the differentiation of mESC-derived OE, we performed RNA sequence analysis to identify factors involved in the differentiation of SG progenitors. RESULTS Our findings highlight several efficient pathways related to SG development, with frequent appearances of four factors: IFN-γ, TGF-β2, EGF, and IGF-1. The combined treatment using these cocktail factors increased the expression of key SG progenitor markers, including Sox9, Sox10, Krt5, and Krt14. However, absence of any one of these cocktail factors did not facilitate differentiation. Notably, aggregates treated with the cocktail factor formed SG epithelial-like structures and pre-bud-like structures on the surface. CONCLUSION In conclusion, this study offers a novel approach to developing a differentiation protocol that closely mimics the in vivo microenvironment of embryonic SGs. This provides a foundation for generating PSC-derived organoids with near-physiological cell behaviors and structures.
Collapse
Affiliation(s)
- Yifei Zhang
- Central Laboratory and Department of Oral and Maxillofacial Surgery School and Hospital of Stomatology, Peking University, Beijing, 100081, China
| | - Shuang Yan
- Central Laboratory and Department of Oral and Maxillofacial Surgery School and Hospital of Stomatology, Peking University, Beijing, 100081, China
| | - Zi Mei
- Central Laboratory and Department of Oral and Maxillofacial Surgery School and Hospital of Stomatology, Peking University, Beijing, 100081, China
| | - He Zhang
- Central Laboratory and Department of Oral and Maxillofacial Surgery School and Hospital of Stomatology, Peking University, Beijing, 100081, China
| | - Chong Ding
- Central Laboratory and Department of Oral and Maxillofacial Surgery School and Hospital of Stomatology, Peking University, Beijing, 100081, China
| | - Siqi Zhang
- Central Laboratory and Department of Oral and Maxillofacial Surgery School and Hospital of Stomatology, Peking University, Beijing, 100081, China.
| | - Shicheng Wei
- Central Laboratory and Department of Oral and Maxillofacial Surgery School and Hospital of Stomatology, Peking University, Beijing, 100081, China.
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China.
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
37
|
Wang Q, Guo F, Zhang Q, Hu T, Jin Y, Yang Y, Ma Y. Organoids in gastrointestinal diseases: from bench to clinic. MedComm (Beijing) 2024; 5:e574. [PMID: 38948115 PMCID: PMC11214594 DOI: 10.1002/mco2.574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 07/02/2024] Open
Abstract
The etiology of gastrointestinal (GI) diseases is intricate and multifactorial, encompassing complex interactions between genetic predisposition and gut microbiota. The cell fate change, immune function regulation, and microenvironment composition in diseased tissues are governed by microorganisms and mutated genes either independently or through synergistic interactions. A comprehensive understanding of GI disease etiology is imperative for developing precise prevention and treatment strategies. However, the existing models used for studying the microenvironment in GI diseases-whether cancer cell lines or mouse models-exhibit significant limitations, which leads to the prosperity of organoids models. This review first describes the development history of organoids models, followed by a detailed demonstration of organoids application from bench to clinic. As for bench utilization, we present a layer-by-layer elucidation of organoid simulation on host-microbial interactions, as well as the application in molecular mechanism analysis. As for clinical adhibition, we provide a generalized interpretation of organoid application in GI disease simulation from inflammatory disorders to malignancy diseases, as well as in GI disease treatment including drug screening, immunotherapy, and microbial-targeting and screening treatment. This review draws a comprehensive and systematical depiction of organoids models, providing a novel insight into the utilization of organoids models from bench to clinic.
Collapse
Affiliation(s)
- Qinying Wang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Fanying Guo
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qinyuan Zhang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - TingTing Hu
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - YuTao Jin
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yongzhi Yang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yanlei Ma
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
38
|
Liu Y, Wang D, Luan Y, Tao B, Li Q, Feng Q, Zhou H, Mu J, Yu J. The application of organoids in colorectal diseases. Front Pharmacol 2024; 15:1412489. [PMID: 38983913 PMCID: PMC11231380 DOI: 10.3389/fphar.2024.1412489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Intestinal organoids are a three-dimensional cell culture model derived from colon or pluripotent stem cells. Intestinal organoids constructed in vitro strongly mimic the colon epithelium in cell composition, tissue architecture, and specific functions, replicating the colon epithelium in an in vitro culture environment. As an emerging biomedical technology, organoid technology has unique advantages over traditional two-dimensional culture in preserving parental gene expression and mutation, cell function, and biological characteristics. It has shown great potential in the research and treatment of colorectal diseases. Organoid technology has been widely applied in research on colorectal topics, including intestinal tumors, inflammatory bowel disease, infectious diarrhea, and intestinal injury regeneration. This review focuses on the application of organoid technology in colorectal diseases, including the basic principles and preparation methods of organoids, and explores the pathogenesis of and personalized treatment plans for various colorectal diseases to provide a valuable reference for organoid technology development and application.
Collapse
Affiliation(s)
- Yanxin Liu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yanhong Luan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Boqiang Tao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Jianfeng Mu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Jinhai Yu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
39
|
Love JR, Karthaus WR. Next-Generation Modeling of Cancer Using Organoids. Cold Spring Harb Perspect Med 2024; 14:a041380. [PMID: 37734867 PMCID: PMC11146310 DOI: 10.1101/cshperspect.a041380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
In the last decade, organoid technology has become a cornerstone in cancer research. Organoids are long-term primary cell cultures, usually of epithelial origin, grown in a three-dimensional (3D) protein matrix and a fully defined medium. Organoids can be derived from many organs and cancer types and sites, encompassing both murine and human tissues. Importantly, they can be established from various stages during tumor evolution and recapitulate with high accuracy patient genomics and phenotypes in vitro, offering a platform for personalized medicine. Additionally, organoids are remarkably amendable for experimental manipulation. Taken together, these features make organoids a powerful tool with applications in basic cancer research and personalized medicine. Here, we will discuss the origins of organoid culture, applications in cancer research, and how cancer organoids can synergize with other models of cancer to drive basic discoveries as well as to translate these toward clinical solutions.
Collapse
Affiliation(s)
- Jillian R Love
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Wouter R Karthaus
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
40
|
Guan Y, Peltz G. Hepatic organoids move from adolescence to maturity. Liver Int 2024; 44:1290-1297. [PMID: 38451053 DOI: 10.1111/liv.15893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/08/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Since organoids were developed 15 years ago, they are now in their adolescence as a research tool. The ability to generate 'tissue in a dish' has created enormous opportunities for biomedical research. We examine the contributions that hepatic organoids have made to three areas of liver research: as a source of cells and tissue for basic research, for drug discovery and drug safety testing, and for understanding disease pathobiology. We discuss the features that enable hepatic organoids to provide useful models for human liver diseases and identify four types of advances that will enable them to become a mature (i.e., adult) research tool over the next 5 years. During this period, advances in single-cell RNA sequencing and CRISPR technologies coupled with improved hepatic organoid methodology, which enables them to have a wider range of cell types that are present in liver and to be grown in microwells, will generate discoveries that will dramatically advance our understanding of liver development and the pathogenesis of liver diseases. It will generate also new approaches for treating liver fibrosis, which remains a major public health problem with few treatment options.
Collapse
Affiliation(s)
- Yuan Guan
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Gary Peltz
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
41
|
Hendriks D, Artegiani B, Margaritis T, Zoutendijk I, Chuva de Sousa Lopes S, Clevers H. Mapping of mitogen and metabolic sensitivity in organoids defines requirements for human hepatocyte growth. Nat Commun 2024; 15:4034. [PMID: 38740814 DOI: 10.1038/s41467-024-48550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Mechanisms underlying human hepatocyte growth in development and regeneration are incompletely understood. In vitro, human fetal hepatocytes (FH) can be robustly grown as organoids, while adult primary human hepatocyte (PHH) organoids remain difficult to expand, suggesting different growth requirements between fetal and adult hepatocytes. Here, we characterize hepatocyte organoid outgrowth using temporal transcriptomic and phenotypic approaches. FHs initiate reciprocal transcriptional programs involving increased proliferation and repressed lipid metabolism upon initiation of organoid growth. We exploit these insights to design maturation conditions for FH organoids, resulting in acquisition of mature hepatocyte morphological traits and increased expression of functional markers. During PHH organoid outgrowth in the same culture condition as for FHs, the adult transcriptomes initially mimic the fetal transcriptomic signatures, but PHHs rapidly acquire disbalanced proliferation-lipid metabolism dynamics, resulting in steatosis and halted organoid growth. IL6 supplementation, as emerged from the fetal dataset, and simultaneous activation of the metabolic regulator FXR, prevents steatosis and promotes PHH proliferation, resulting in improved expansion of the derived organoids. Single-cell RNA sequencing analyses reveal preservation of their fetal and adult hepatocyte identities in the respective organoid cultures. Our findings uncover mitogen requirements and metabolic differences determining proliferation of hepatocytes changing from development to adulthood.
Collapse
Affiliation(s)
- Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| | - Benedetta Artegiani
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| | | | - Iris Zoutendijk
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- University Medical Center Utrecht, Utrecht, The Netherlands.
- Pharma Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
42
|
Zhou G, Pang S, Li Y, Gao J. Progress in the generation of spinal cord organoids over the past decade and future perspectives. Neural Regen Res 2024; 19:1013-1019. [PMID: 37862203 PMCID: PMC10749595 DOI: 10.4103/1673-5374.385280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/25/2023] [Accepted: 08/01/2023] [Indexed: 10/22/2023] Open
Abstract
Spinal cord organoids are three-dimensional tissues derived from stem cells that recapitulate the primary morphological and functional characteristics of the spinal cord in vivo. As emerging bioengineering methods have led to the optimization of cell culture protocols, spinal cord organoids technology has made remarkable advancements in the past decade. Our literature search found that current spinal cord organoids do not only dynamically simulate neural tube formation but also exhibit diverse cytoarchitecture along the dorsal-ventral and rostral-caudal axes. Moreover, fused organoids that integrate motor neurons and other regionally specific organoids exhibit intricate neural circuits that allows for functional assessment. These qualities make spinal cord organoids valuable tools for disease modeling, drug screening, and tissue regeneration. By utilizing this emergent technology, researchers have made significant progress in investigating the pathogenesis and potential therapeutic targets of spinal cord diseases. However, at present, spinal cord organoid technology remains in its infancy and has not been widely applied in translational medicine. Establishment of the next generation of spinal cord organoids will depend on good manufacturing practice standards and needs to focus on diverse cell phenotypes and electrophysiological functionality evaluation.
Collapse
Affiliation(s)
- Gang Zhou
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Siyuan Pang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongning Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of International Medical Service, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
43
|
Lim S, J F van Son G, Wisma Eka Yanti NL, Andersson-Rolf A, Willemsen S, Korving J, Lee HG, Begthel H, Clevers H. Derivation of functional thymic epithelial organoid lines from adult murine thymus. Cell Rep 2024; 43:114019. [PMID: 38551965 DOI: 10.1016/j.celrep.2024.114019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/13/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
Thymic epithelial cells (TECs) orchestrate T cell development by imposing positive and negative selection on thymocytes. Current studies on TEC biology are hampered by the absence of long-term ex vivo culture platforms, while the cells driving TEC self-renewal remain to be identified. Here, we generate long-term (>2 years) expandable 3D TEC organoids from the adult mouse thymus. For further analysis, we generated single and double FoxN1-P2A-Clover, Aire-P2A-tdTomato, and Cldn4-P2A-tdTomato reporter lines by CRISPR knockin. Single-cell analyses of expanding clonal organoids reveal cells with bipotent stem/progenitor phenotypes. These clonal organoids can be induced to express Foxn1 and to generate functional cortical- and Aire-expressing medullary-like TECs upon RANK ligand + retinoic acid treatment. TEC organoids support T cell development from immature thymocytes in vitro as well as in vivo upon transplantation into athymic nude mice. This organoid-based platform allows in vitro study of TEC biology and offers a potential strategy for ex vivo T cell development.
Collapse
Affiliation(s)
- Sangho Lim
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Gijs J F van Son
- Oncode Institute, Utrecht, the Netherlands; The Princess Máxima Center for Pediatric Oncology, Utrecht 3584 CS, the Netherlands
| | - Ni Luh Wisma Eka Yanti
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Amanda Andersson-Rolf
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Sam Willemsen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Hong-Gyun Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Utrecht, the Netherlands; The Princess Máxima Center for Pediatric Oncology, Utrecht 3584 CS, the Netherlands.
| |
Collapse
|
44
|
Yang H, Li J, Wang Z, Khutsishvili D, Tang J, Zhu Y, Cai Y, Dai X, Ma S. Bridging the organoid translational gap: integrating standardization and micropatterning for drug screening in clinical and pharmaceutical medicine. LIFE MEDICINE 2024; 3:lnae016. [PMID: 39872665 PMCID: PMC11748978 DOI: 10.1093/lifemedi/lnae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/12/2024] [Indexed: 01/30/2025]
Abstract
Synthetic organ models such as organoids and organ-on-a-chip have been receiving recognition from administrative agencies. Despite the proven success of organoids in predicting drug efficacy on laboratory scales, their translational advances have not fully satisfied the expectations for both clinical implementation and commercial applications. The transition from laboratory settings to clinical applications continues to encounter challenges. Employing engineering methodologies to facilitate the bridging of this gap for organoids represents one of the key directions for future advancement. The main measures to bridge the gap include environmental and phenotypic recapitulation, 3D patterning, matrix engineering, and multi-modality information acquisition and processing. Pilot whole-process clinical/pharmaceutical applications with fast and standardized organoid models will continuously offer convincing frontline optimization clues and driving forces to the organoid community, which is a promising path to translational organoid technologies.
Collapse
Affiliation(s)
- Haowei Yang
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
| | - Jiawei Li
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
| | - Zitian Wang
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Davit Khutsishvili
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Jiyuan Tang
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Yu Zhu
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou 510530, China
| | - Yongde Cai
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Xiaoyong Dai
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Shaohua Ma
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
45
|
Chen X, Du J, Yun S, Xue C, Yao Y, Rao S. Recent advances in CRISPR-Cas9-based genome insertion technologies. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102138. [PMID: 38379727 PMCID: PMC10878794 DOI: 10.1016/j.omtn.2024.102138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Programmable genome insertion (or knock-in) is vital for both fundamental and translational research. The continuously expanding number of CRISPR-based genome insertion strategies demonstrates the ongoing development in this field. Common methods for site-specific genome insertion rely on cellular double-strand breaks repair pathways, such as homology-directed repair, non-homologous end-joining, and microhomology-mediated end joining. Recent advancements have further expanded the toolbox of programmable genome insertion techniques, including prime editing, integrase coupled with programmable nuclease, and CRISPR-associated transposon. These tools possess their own capabilities and limitations, promoting tremendous efforts to enhance editing efficiency, broaden targeting scope and improve editing specificity. In this review, we first summarize recent advances in programmable genome insertion techniques. We then elaborate on the cons and pros of each technique to assist researchers in making informed choices when using these tools. Finally, we identify opportunities for future improvements and applications in basic research and therapeutics.
Collapse
Affiliation(s)
- Xinwen Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Jingjing Du
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Shaowei Yun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Chaoyou Xue
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Yao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Shuquan Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
46
|
Ma X, Wang Q, Li G, Li H, Xu S, Pang D. Cancer organoids: A platform in basic and translational research. Genes Dis 2024; 11:614-632. [PMID: 37692477 PMCID: PMC10491878 DOI: 10.1016/j.gendis.2023.02.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 02/16/2023] [Indexed: 09/12/2023] Open
Abstract
An accumulation of previous work has established organoids as good preclinical models of human tumors, facilitating translation from basic research to clinical practice. They are changing the paradigm of preclinical cancer research because they can recapitulate the heterogeneity and pathophysiology of human cancers and more closely approximate the complex tissue environment and structure found in clinical tumors than in vitro cell lines and animal models. However, the potential applications of cancer organoids remain to be comprehensively summarized. In the review, we firstly describe what is currently known about cancer organoid culture and then discuss in depth the basic mechanisms, including tumorigenesis and tumor metastasis, and describe recent advances in patient-derived tumor organoids (PDOs) for drug screening and immunological studies. Finally, the present challenges faced by organoid technology in clinical practice and its prospects are discussed. This review highlights that organoids may offer a novel therapeutic strategy for cancer research.
Collapse
Affiliation(s)
- Xin Ma
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Qin Wang
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Guozheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Hui Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
| |
Collapse
|
47
|
Xiu Z, Yang Q, Xie F, Han F, He W, Liao W. Revolutionizing digestive system tumor organoids research: Exploring the potential of tumor organoids. J Tissue Eng 2024; 15:20417314241255470. [PMID: 38808253 PMCID: PMC11131411 DOI: 10.1177/20417314241255470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Digestive system tumors are the leading cause of cancer-related deaths worldwide. Despite ongoing research, our understanding of their mechanisms and treatment remain inadequate. One promising tool for clinical applications is the use of gastrointestinal tract tumor organoids, which serve as an important in vitro model. Tumor organoids exhibit a genotype similar to the patient's tumor and effectively mimic various biological processes, including tissue renewal, stem cell, and ecological niche functions, and tissue response to drugs, mutations, or injury. As such, they are valuable for drug screening, developing novel drugs, assessing patient outcomes, and supporting immunotherapy. In addition, innovative materials and techniques can be used to optimize tumor organoid culture systems. Several applications of digestive system tumor organoids have been described and have shown promising results in related aspects. In this review, we discuss the current progress, limitations, and prospects of this model for digestive system tumors.
Collapse
Affiliation(s)
- Zhian Xiu
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fusheng Xie
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Feng Han
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Weiwei He
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Weifang Liao
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| |
Collapse
|
48
|
Li K, Ren K, Du S, Gao X, Yu J. Development of Liver Cancer Organoids: Reproducing Tumor Microenvironment and Advancing Research for Liver Cancer Treatment. Technol Cancer Res Treat 2024; 23:15330338241285097. [PMID: 39363866 PMCID: PMC11456184 DOI: 10.1177/15330338241285097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
Liver cancer a leading cause of cancer-related deaths worldwide, yet understanding of its development mechanism remains limited, and treatment barriers present substantial challenges. Owing to the heterogeneity of tumors, traditional 2D culture models are inadequate for capturing the complexity and diversity of tumor biology and understanding of the disease. Organoids have garnered considerable attention because of their ability to self-renew and develop functional structures in vitro that closely resemble those of human organs. This review explores the history of liver organoids, their cellular origins, techniques of constructing tumor microenvironments that recapitulate liver cancer organoids, and the biological and clinical applications of liver and liver cancer organoids and explores the current challenges related to liver cancer organoid applications and potentially valuable solutions, with the aim of facilitating the construction of in vitro clinical models of liver cancer therapeutic research.
Collapse
Affiliation(s)
- Kangkang Li
- Department of Hepato-Biliary-Pancreatic Surgery, Fuyang Hospital Affiliataed Bengbu Medical College, Fuyang, Anhui province, China, 236000
| | - Kuiwu Ren
- Department of Hepato-Biliary-Pancreatic Surgery, Fuyang Hospital Affiliataed Bengbu Medical College, Fuyang, Anhui province, China, 236000
| | - Sen Du
- Department of Hepato-Biliary-Pancreatic Surgery, Fuyang Hospital Affiliataed Bengbu Medical College, Fuyang, Anhui province, China, 236000
| | - Xiang Gao
- Department of Hepato-Biliary-Pancreatic Surgery, Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui province, China, 236000
| | - Jiangtao Yu
- Department of Hepato-Biliary-Pancreatic Surgery, Fuyang Hospital Affiliataed Bengbu Medical College, Fuyang, Anhui province, China, 236000
- Department of Hepato-Biliary-Pancreatic Surgery, Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui province, China, 236000
| |
Collapse
|
49
|
Fujimura Y, Sakai I, Shioka I, Takata N, Hashimoto A, Funatomi T, Okuda S. Machine learning-based estimation of spatial gene expression pattern during ESC-derived retinal organoid development. Sci Rep 2023; 13:22781. [PMID: 38123631 PMCID: PMC10733327 DOI: 10.1038/s41598-023-49758-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Organoids, which can reproduce the complex tissue structures found in embryos, are revolutionizing basic research and regenerative medicine. In order to use organoids for research and medicine, it is necessary to assess the composition and arrangement of cell types within the organoid, i.e., spatial gene expression. However, current methods are invasive and require gene editing and immunostaining. In this study, we developed a non-invasive estimation method of spatial gene expression patterns using machine learning. A deep learning model with an encoder-decoder architecture was trained on paired datasets of phase-contrast and fluorescence images, and was applied to a retinal organoid derived from mouse embryonic stem cells, focusing on the master gene Rax (also called Rx), crucial for eye field development. This method successfully estimated spatially plausible fluorescent patterns with appropriate intensities, enabling the non-invasive, quantitative estimation of spatial gene expression patterns within each tissue. Thus, this method could lead to new avenues for evaluating spatial gene expression patterns across a wide range of biology and medicine fields.
Collapse
Affiliation(s)
- Yuki Fujimura
- Division of Information Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Itsuki Sakai
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kakumamachi, Kanazawa, 920-1192, Japan
| | - Itsuki Shioka
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kakumamachi, Kanazawa, 920-1192, Japan
| | - Nozomu Takata
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA
| | | | - Takuya Funatomi
- Division of Information Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| | - Satoru Okuda
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kakumamachi, Kanazawa, 920-1192, Japan.
- Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
50
|
Pagliaro A, Finger R, Zoutendijk I, Bunschuh S, Clevers H, Hendriks D, Artegiani B. Temporal morphogen gradient-driven neural induction shapes single expanded neuroepithelium brain organoids with enhanced cortical identity. Nat Commun 2023; 14:7361. [PMID: 38016960 PMCID: PMC10684874 DOI: 10.1038/s41467-023-43141-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
Pluripotent stem cell (PSC)-derived human brain organoids enable the study of human brain development in vitro. Typically, the fate of PSCs is guided into subsequent specification steps through static medium switches. In vivo, morphogen gradients are critical for proper brain development and determine cell specification, and associated defects result in neurodevelopmental disorders. Here, we show that initiating neural induction in a temporal stepwise gradient guides the generation of brain organoids composed of a single, self-organized apical-out neuroepithelium, termed ENOs (expanded neuroepithelium organoids). This is at odds with standard brain organoid protocols in which multiple and independent neuroepithelium units (rosettes) are formed. We find that a prolonged, decreasing gradient of TGF-β signaling is a determining factor in ENO formation and allows for an extended phase of neuroepithelium expansion. In-depth characterization reveals that ENOs display improved cellular morphology and tissue architectural features that resemble in vivo human brain development, including expanded germinal zones. Consequently, cortical specification is enhanced in ENOs. ENOs constitute a platform to study the early events of human cortical development and allow interrogation of the complex relationship between tissue architecture and cellular states in shaping the developing human brain.
Collapse
Affiliation(s)
- Anna Pagliaro
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Roxy Finger
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Iris Zoutendijk
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Saskia Bunschuh
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Hans Clevers
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Pharma, Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Delilah Hendriks
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| | - Benedetta Artegiani
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|