1
|
Fan Y, Feng R, Zhang X, Wang ZL, Xiong F, Zhang S, Zhong ZF, Yu H, Zhang QW, Zhang Z, Wang Y, Li G. Encoding and display technologies for combinatorial libraries in drug discovery: The coming of age from biology to therapy. Acta Pharm Sin B 2024; 14:3362-3384. [PMID: 39220863 PMCID: PMC11365444 DOI: 10.1016/j.apsb.2024.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 09/04/2024] Open
Abstract
Drug discovery is a sophisticated process that incorporates scientific innovations and cutting-edge technologies. Compared to traditional bioactivity-based screening methods, encoding and display technologies for combinatorial libraries have recently advanced from proof-of-principle experiments to promising tools for pharmaceutical hit discovery due to their high screening efficiency, throughput, and resource minimization. This review systematically summarizes the development history, typology, and prospective applications of encoding and displayed technologies, including phage display, ribosomal display, mRNA display, yeast cell display, one-bead one-compound, DNA-encoded, peptide nucleic acid-encoded, and new peptide-encoded technologies, and examples of preclinical and clinical translation. We discuss the progress of novel targeted therapeutic agents, covering a spectrum from small-molecule inhibitors and nonpeptidic macrocycles to linear, monocyclic, and bicyclic peptides, in addition to antibodies. We also address the pending challenges and future prospects of drug discovery, including the size of screening libraries, advantages and disadvantages of the technology, clinical translational potential, and market space. This review is intended to establish a comprehensive high-throughput drug discovery strategy for scientific researchers and clinical drug developers.
Collapse
Affiliation(s)
- Yu Fan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| | - Ruibing Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Xinya Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| | - Zhen-Liang Wang
- Geriatric Medicine, First People's Hospital of XinXiang and the Fifth Affiliated Hospital of Xinxiang Medical College, Xinxiang 453100, China
| | - Feng Xiong
- Shenzhen Innovation Center for Small Molecule Drug Discovery Co., Ltd., Shenzhen 518000, China
| | - Shuihua Zhang
- Shenzhen Innovation Center for Small Molecule Drug Discovery Co., Ltd., Shenzhen 518000, China
| | - Zhang-Feng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Hua Yu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Department of Pharmacy, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| |
Collapse
|
2
|
Puglioli S, Fabbri M, Comacchio C, Alvigini L, De Luca R, Oehler S, Gilardoni E, Bassi G, Cazzamalli S, Neri D, Favalli N. Permutational Encoding Strategy Accelerates HIT Validation from Single-Stranded DNA-Encoded Libraries. Bioconjug Chem 2024; 35:1033-1043. [PMID: 38963407 DOI: 10.1021/acs.bioconjchem.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
DNA-Encoded Libraries (DELs) allow the parallel screening of millions of compounds for various applications, including de novo discovery or affinity maturation campaigns. However, library construction and HIT resynthesis can be cumbersome, especially when library members present an unknown stereochemistry. We introduce a permutational encoding strategy suitable for the construction of highly pure single-stranded single-pharmacophore DELs, designed to distinguish isomers at the sequencing level (e.g., stereoisomers, regio-isomers, and peptide sequences). This approach was validated by synthesizing a mock 921,600-member 4-amino-proline single-stranded DEL ("DEL1"). While screening DEL1 against different targets, high-throughput sequencing results showed selective enrichment of the most potent stereoisomers, with enrichment factors that outperform conventional encoding strategies. The versatility of our methodology was additionally validated by encoding 24 scaffolds derived from different permutations of the amino acid sequence of a previously described cyclic peptide targeting Fibroblast Activation Protein (FAP-2286). The resulting library ("DEL2") was interrogated against human FAP, showing selective enrichment of five cyclic peptides. We observed a direct correlation between enrichment factors and on-DNA binding affinities. The presented encoding methodology accelerates drug discovery by facilitating library synthesis and streamlining HIT resynthesis while enhancing enrichment factors at the DEL sequencing level. This facilitates the identification of HIT candidates prior to medicinal chemistry and affinity maturation campaigns.
Collapse
Affiliation(s)
- Sara Puglioli
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Mosè Fabbri
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Claudia Comacchio
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Laura Alvigini
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Roberto De Luca
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Sebastian Oehler
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Ettore Gilardoni
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Gabriele Bassi
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Samuele Cazzamalli
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 1-5/10, Zürich CH-8093, Switzerland
- Philogen S.p.A., Via Bellaria, 35, Sovicille, SI IT-53018, Italy
| | - Nicholas Favalli
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| |
Collapse
|
3
|
Ye Y, Berry M, Bock WJ, Cheng K, Nair SK, Park CS, Patman RL, Sakata S, Tran-Dubé M, Donaldson JS, Yang G, Liu G. Construction of Isoquinolone Scaffolds on DNA via Rhodium(III)-Catalyzed C-H Activation. Org Lett 2024; 26:3338-3342. [PMID: 38608176 DOI: 10.1021/acs.orglett.4c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Isoquinolone is one of the most common heterocyclic core structures in countless natural products and many bioactive compounds. Here, a highly efficient approach to synthesize isoquinolone scaffolds on DNA via rhodium(III)-catalyzed C-H activation has been described. This chemistry transformation is robust and has shown good compatibility with DNA, which is suitable for DNA-encoded library synthesis.
Collapse
Affiliation(s)
- Yusong Ye
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan P. R. China
| | - Madeline Berry
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - William J Bock
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Kunpeng Cheng
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan P. R. China
| | - Sajiv K Nair
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Christiana S Park
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Ryan L Patman
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Sylvie Sakata
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Michelle Tran-Dubé
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Joyann S Donaldson
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Guanyu Yang
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan P. R. China
| | - Guansai Liu
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan P. R. China
| |
Collapse
|
4
|
Faris J, Adaligil E, Popovych N, Ono S, Takahashi M, Nguyen H, Plise E, Taechalertpaisarn J, Lee HW, Koehler MFT, Cunningham CN, Lokey RS. Membrane Permeability in a Large Macrocyclic Peptide Driven by a Saddle-Shaped Conformation. J Am Chem Soc 2024; 146:4582-4591. [PMID: 38330910 PMCID: PMC10885153 DOI: 10.1021/jacs.3c10949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
The effort to modulate challenging protein targets has stimulated interest in ligands that are larger and more complex than typical small-molecule drugs. While combinatorial techniques such as mRNA display routinely produce high-affinity macrocyclic peptides against classically undruggable targets, poor membrane permeability has limited their use toward primarily extracellular targets. Understanding the passive membrane permeability of macrocyclic peptides would, in principle, improve our ability to design libraries whose leads can be more readily optimized against intracellular targets. Here, we investigate the permeabilities of over 200 macrocyclic 10-mers using the thioether cyclization motif commonly found in mRNA display macrocycle libraries. We identified the optimal lipophilicity range for achieving permeability in thioether-cyclized 10-mer cyclic peptide-peptoid hybrid scaffolds and showed that permeability could be maintained upon extensive permutation in the backbone. In one case, changing a single amino acid from d-Pro to d-NMe-Ala, representing the loss of a single methylene group in the side chain, resulted in a highly permeable scaffold in which the low-dielectric conformation shifted from the canonical cross-beta geometry of the parent compounds into a novel saddle-shaped fold in which all four backbone NH groups were sequestered from the solvent. This work provides an example by which pre-existing physicochemical knowledge of a scaffold can benefit the design of macrocyclic peptide mRNA display libraries, pointing toward an approach for biasing libraries toward permeability by design. Moreover, the compounds described herein are a further demonstration that geometrically diverse, highly permeable scaffolds exist well beyond conventional drug-like chemical space.
Collapse
Affiliation(s)
- Justin
H. Faris
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| | - Emel Adaligil
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Nataliya Popovych
- Department
of Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, United States
| | - Satoshi Ono
- Innovative
Research Division, Mitsubishi Tanabe Pharma
Corporation, Kanagawa 227-0033, Japan
| | - Mifune Takahashi
- Department
of Drug Metabolism and Pharmacokinetics, Genentech, South
San Francisco, California 94080, United States
| | - Huy Nguyen
- Department
of Analytical Research, Genentech, South San Francisco, California 94080, United States
| | - Emile Plise
- Department
of Drug Metabolism and Pharmacokinetics, Genentech, South
San Francisco, California 94080, United States
| | - Jaru Taechalertpaisarn
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| | - Hsiau-Wei Lee
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| | - Michael F. T. Koehler
- Department
of Medicinal Chemistry, Genentech, South San Francisco, California 94080, United States
| | - Christian N. Cunningham
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - R. Scott Lokey
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| |
Collapse
|
5
|
Lee S, Kwon H, Jee EK, Kim J, Lee KJ, Kim J, Ko N, Lee E, Lim HS. Synthesis and Structural Characterization of Macrocyclic α-ABpeptoids and Their DNA-Encoded Library. Org Lett 2024; 26:1100-1104. [PMID: 38295374 DOI: 10.1021/acs.orglett.3c04387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The first synthesis of macrocyclic α-ABpeptoids with varying lengths is described. X-ray crystal structures reveal that cyclic trimer displays a chair-like conformation with a cct amide sequence and cyclic tetramer has a saddle-like structure with an uncommon cccc amide arrangement. The creation of a DNA-encoded combinatorial library of macrocyclic α-ABpeptoids is described.
Collapse
Affiliation(s)
- Soobin Lee
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Hyunchul Kwon
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Eun-Kyoung Jee
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Jaelim Kim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Kang Ju Lee
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Jungyeon Kim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Nakeun Ko
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Eunsung Lee
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, South Korea
| | - Hyun-Suk Lim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, South Korea
- Camel Biosciences, Pohang 37673, South Korea
| |
Collapse
|
6
|
Chen P, Lou L, Sharma B, Li M, Xie C, Yang F, Wu Y, Xiao Q, Gao L. Recent Advances on PKM2 Inhibitors and Activators in Cancer Applications. Curr Med Chem 2024; 31:2955-2973. [PMID: 37455458 DOI: 10.2174/0929867331666230714144851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
Metabolic reprogramming of cells, from the normal mode of glucose metabolism named glycolysis, is a pivotal characteristic of impending cancerous cells. Pyruvate kinase M2 (PKM2), an important enzyme that catalyzes the final rate-limiting stage during glycolysis, is highly expressed in numerous types of tumors and aids in development of favorable conditions for the survival of tumor cells. Increasing evidence has suggested that PKM2 is one of promising targets for innovative drug discovery, especially for the developments of antitumor therapeutics. Herein, we systematically summarize the recent advancement on PKM2 modulators including inhibitors and activators in cancer applications. We also discussed the classifications of pyruvate kinases in mammals and the biological functions of PKM2 in this review. We do hope that this review would provide a comprehensive understanding of the current research on PKM2 modulators, which may benefit the development of more potent PKM2-related drug candidates to treat PKM2-associated diseases including cancers in future.
Collapse
Affiliation(s)
- Peng Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Liang Lou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Bigyan Sharma
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Mengchu Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Chengliang Xie
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Fen Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Yihang Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| |
Collapse
|
7
|
Puglioli S, Oehler S, Prati L, Scheuermann J, Bassi G, Cazzamalli S, Neri D, Favalli N. Impact of library input on the hit discovery rate in DNA-encoded chemical library selections. Chem Sci 2023; 14:12026-12033. [PMID: 37969600 PMCID: PMC10631129 DOI: 10.1039/d3sc03688j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/29/2023] [Indexed: 11/17/2023] Open
Abstract
DNA-encoded chemical libraries (DELs) are powerful drug discovery tools, enabling the parallel screening of millions of DNA-barcoded compounds. We investigated how the DEL input affects the hit discovery rate in DEL screenings. Evaluation of selection fingerprints revealed that the use of approximately 105 copies of each library member is required for the confident identification of nanomolar hits, using generally applicable methodologies.
Collapse
Affiliation(s)
- Sara Puglioli
- Philochem AG, R&D Department 8112 Otelfingen Switzerland
| | | | - Luca Prati
- Philochem AG, R&D Department 8112 Otelfingen Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Zürich Switzerland
| | - Gabriele Bassi
- Philochem AG, R&D Department 8112 Otelfingen Switzerland
| | | | - Dario Neri
- Philochem AG, R&D Department 8112 Otelfingen Switzerland
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Zürich Switzerland
| | | |
Collapse
|
8
|
Oehler S, Lucaroni L, Migliorini F, Elsayed A, Prati L, Puglioli S, Matasci M, Schira K, Scheuermann J, Yudin D, Jia M, Ban N, Bushnell D, Kornberg R, Cazzamalli S, Neri D, Favalli N, Bassi G. A DNA-encoded chemical library based on chiral 4-amino-proline enables stereospecific isozyme-selective protein recognition. Nat Chem 2023; 15:1431-1443. [PMID: 37400597 DOI: 10.1038/s41557-023-01257-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/26/2023] [Indexed: 07/05/2023]
Abstract
DNA-encoded chemical libraries (DELs) consist of large chemical compound collections individually linked to DNA barcodes, facilitating pooled construction and screening. However, screening campaigns often fail if the molecular arrangement of the building blocks is not conducive to an efficient interaction with a protein target. Here we postulated that the use of rigid, compact and stereo-defined central scaffolds for DEL synthesis may facilitate the discovery of very specific ligands capable of discriminating between closely related protein targets. We synthesized a DEL comprising 3,735,936 members, featuring the four stereoisomers of 4-aminopyrrolidine-2-carboxylic acid as central scaffolds. The library was screened in comparative selections against pharmaceutically relevant targets and their closely related protein isoforms. Hit validation results revealed a strong impact of stereochemistry, with large affinity differences between stereoisomers. We identified potent isozyme-selective ligands against multiple protein targets. Some of these hits, specific to tumour-associated antigens, demonstrated tumour-selective targeting in vitro and in vivo. Collectively, constructing DELs with stereo-defined elements contributed to high library productivity and ligand selectivity.
Collapse
Affiliation(s)
| | | | | | - Abdullah Elsayed
- Philochem AG, Otelfingen, Switzerland
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | | | | | | | - Kristina Schira
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Denis Yudin
- Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Min Jia
- Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Nenad Ban
- Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | | | - Roger Kornberg
- NeoTX Therapeutics LTD, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
| | | | - Dario Neri
- Philochem AG, Otelfingen, Switzerland
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
- Philogen SPA, Siena, Italy
| | | | | |
Collapse
|
9
|
Wong JYK, Ekanayake AI, Kharchenko S, Kirberger SE, Qiu R, Kelich P, Sarkar S, Li J, Fernandez KX, Alvizo-Paez ER, Miao J, Kalhor-Monfared S, John JD, Kang H, Choi H, Nuss JM, Vederas JC, Lin YS, Macauley MS, Vukovic L, Pomerantz WCK, Derda R. Genetically encoded discovery of perfluoroaryl macrocycles that bind to albumin and exhibit extended circulation in vivo. Nat Commun 2023; 14:5654. [PMID: 37704629 PMCID: PMC10499988 DOI: 10.1038/s41467-023-41427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 08/17/2023] [Indexed: 09/15/2023] Open
Abstract
Peptide-based therapeutics have gained attention as promising therapeutic modalities, however, their prevalent drawback is poor circulation half-life in vivo. In this paper, we report the selection of albumin-binding macrocyclic peptides from genetically encoded libraries of peptides modified by perfluoroaryl-cysteine SNAr chemistry, with decafluoro-diphenylsulfone (DFS). Testing of the binding of the selected peptides to albumin identified SICRFFC as the lead sequence. We replaced DFS with isosteric pentafluorophenyl sulfide (PFS) and the PFS-SICRFFCGG exhibited KD = 4-6 µM towards human serum albumin. When injected in mice, the concentration of the PFS-SICRFFCGG in plasma was indistinguishable from the reference peptide, SA-21. More importantly, a conjugate of PFS-SICRFFCGG and peptide apelin-17 analogue (N3-PEG6-NMe17A2) showed retention in circulation similar to SA-21; in contrast, apelin-17 analogue was cleared from the circulation after 2 min. The PFS-SICRFFC is the smallest known peptide macrocycle with a significant affinity for human albumin and substantial in vivo circulation half-life. It is a productive starting point for future development of compact macrocycles with extended half-life in vivo.
Collapse
Affiliation(s)
- Jeffrey Y K Wong
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Arunika I Ekanayake
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Serhii Kharchenko
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Steven E Kirberger
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ryan Qiu
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Payam Kelich
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Susmita Sarkar
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Jiaqian Li
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Edgar R Alvizo-Paez
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Jiayuan Miao
- Department of Chemistry, Tufts University, Medford, MA, 02155, USA
| | | | - J Dwyer John
- Ferring Research Institute, San Diego, CA, 92121, USA
| | - Hongsuk Kang
- Quantum Intelligence Corp., 31F, One IFC, 10 Gukjegeumyung-ro, Yeongdeungpo-gu-Seoul, Republic of Korea
| | - Hwanho Choi
- Quantum Intelligence Corp., 31F, One IFC, 10 Gukjegeumyung-ro, Yeongdeungpo-gu-Seoul, Republic of Korea
| | - John M Nuss
- Ferring Research Institute, San Diego, CA, 92121, USA
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, MA, 02155, USA
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Lela Vukovic
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, 79968, USA
| | | | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.
| |
Collapse
|
10
|
Torng W, Biancofiore I, Oehler S, Xu J, Xu J, Watson I, Masina B, Prati L, Favalli N, Bassi G, Neri D, Cazzamalli S, Feng JA. Deep Learning Approach for the Discovery of Tumor-Targeting Small Organic Ligands from DNA-Encoded Chemical Libraries. ACS OMEGA 2023; 8:25090-25100. [PMID: 37483198 PMCID: PMC10357458 DOI: 10.1021/acsomega.3c01775] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023]
Abstract
DNA-Encoded Chemical Libraries (DELs) have emerged as efficient and cost-effective ligand discovery tools, which enable the generation of protein-ligand interaction data of unprecedented size. In this article, we present an approach that combines DEL screening and instance-level deep learning modeling to identify tumor-targeting ligands against carbonic anhydrase IX (CAIX), a clinically validated marker of hypoxia and clear cell renal cell carcinoma. We present a new ligand identification and hit-to-lead strategy driven by machine learning models trained on DELs, which expand the scope of DEL-derived chemical motifs. CAIX-screening datasets obtained from three different DELs were used to train machine learning models for generating novel hits, dissimilar to elements present in the original DELs. Out of the 152 novel potential hits that were identified with our approach and screened in an in vitro enzymatic inhibition assay, 70% displayed submicromolar activities (IC50 < 1 μM). To generate lead compounds that are functionalized with anticancer payloads, analogues of top hits were prioritized for synthesis based on the predicted CAIX affinity and synthetic feasibility. Three lead candidates showed accumulation on the surface of CAIX-expressing tumor cells in cellular binding assays. The best compound displayed an in vitro KD of 5.7 nM and selectively targeted tumors in mice bearing human renal cell carcinoma lesions. Our results demonstrate the synergy between DEL and machine learning for the identification of novel hits and for the successful translation of lead candidates for in vivo targeting applications.
Collapse
Affiliation(s)
- Wen Torng
- Google
Research, 1600 Amphitheatre
Parkway, Mountain View, California 94043, United States
| | | | - Sebastian Oehler
- R&D
Department, Philochem AG, Otelfingen, Zürich 8112, Switzerland
| | - Jin Xu
- Google
Research, 1600 Amphitheatre
Parkway, Mountain View, California 94043, United States
| | - Jessica Xu
- Google
Research, 1600 Amphitheatre
Parkway, Mountain View, California 94043, United States
| | - Ian Watson
- Google
Research, 1600 Amphitheatre
Parkway, Mountain View, California 94043, United States
| | - Brenno Masina
- R&D
Department, Philochem AG, Otelfingen, Zürich 8112, Switzerland
| | - Luca Prati
- R&D
Department, Philochem AG, Otelfingen, Zürich 8112, Switzerland
| | - Nicholas Favalli
- R&D
Department, Philochem AG, Otelfingen, Zürich 8112, Switzerland
| | - Gabriele Bassi
- R&D
Department, Philochem AG, Otelfingen, Zürich 8112, Switzerland
| | - Dario Neri
- R&D
Department, Philochem AG, Otelfingen, Zürich 8112, Switzerland
- Philogen
S.p.A., Siena 53100, Italy
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | | | - Jianwen A. Feng
- Google
Research, 1600 Amphitheatre
Parkway, Mountain View, California 94043, United States
| |
Collapse
|
11
|
Chai J, Arico-Muendel CC, Ding Y, Pollastri MP, Scott S, Mantell MA, Yao G. Synthesis of a DNA-Encoded Macrocyclic Library Utilizing Intramolecular Benzimidazole Formation. Bioconjug Chem 2023. [PMID: 37216465 DOI: 10.1021/acs.bioconjchem.3c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Macrocycles occupy chemical space "beyond the rule of five". They bridge traditional bioactive small molecule drugs and macromolecules and have the potential to modulate challenging targets such as PPI or proteases. Here we report an on-DNA macrocyclization reaction utilizing intramolecular benzimidazole formation. A 129-million-member macrocyclic library composed of a privileged benzimidazole core, a dipeptide sequence (natural or non-natural), and linkers of varying length and flexibility was designed and synthesized.
Collapse
Affiliation(s)
- Jing Chai
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Christopher C Arico-Muendel
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Yun Ding
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Michael P Pollastri
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Sarah Scott
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Mark A Mantell
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Gang Yao
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| |
Collapse
|
12
|
Cui M, Nguyen D, Gaillez MP, Heiden S, Lin W, Thompson M, Reddavide FV, Chen Q, Zhang Y. Trio-pharmacophore DNA-encoded chemical library for simultaneous selection of fragments and linkers. Nat Commun 2023; 14:1481. [PMID: 36932079 PMCID: PMC10023787 DOI: 10.1038/s41467-023-37071-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
The split-and-pool method has been widely used to synthesize chemical libraries of a large size for early drug discovery, albeit without the possibility of meaningful quality control. In contrast, a self-assembled DNA-encoded chemical library (DEL) allows us to construct an m x n-member library by mixing an m-member and an n-member pre-purified sub-library. Herein, we report a trio-pharmacophore DEL (T-DEL) of m x l x n members through assembling three pre-purified and validated sub-libraries. The middle sub-library is synthesized using DNA-templated synthesis with different reaction mechanisms and designed as a linkage connecting the fragments displayed on the flanking two sub-libraries. Despite assembling three fragments, the resulting compounds do not exceed the up-to-date standard of molecular weight regarding drug-likeness. We demonstrate the utility of T-DEL in linker optimization for known binding fragments against trypsin and carbonic anhydrase II and by de novo selections against matrix metalloprotease-2 and -9.
Collapse
Affiliation(s)
- Meiying Cui
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | | | - Michelle Patino Gaillez
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | | | - Weilin Lin
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | | | | | - Qinchang Chen
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, China.
- School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Yixin Zhang
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
13
|
Fang X, Liao H, Fan X, Wang Y, Wang H, Zhang G, Fang W, Li Y, Li Y. Incorporation of viridicatin alkaloid-like scaffolds into DNA-encoded chemical libraries. Org Biomol Chem 2023; 21:2162-2166. [PMID: 36799438 DOI: 10.1039/d2ob02278h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Viridicatin alkaloids as natural products have attracted great interest due to their unique core scaffold. To fully exploit their potential application in DNA-encoded chemical libraries that would facilitate drug discovery, we here describe an efficient on-DNA synthesis of viridicatin alkaloid-like scaffolds from isatins and DNA-tagged aldehydes. Promoted by benzenesulfonyl hydrazide, this reaction provided the corresponding DNA-conjugated viridicatin alkaloid-like products in moderate-to-excellent conversion yields, and DNA compatibility validated by enzymatic ligation and qPCR evaluation exhibited the feasible utility of this methodology in DEL synthesis. Cross substrate scope study, together with subsequent on-DNA chemical diversification, further showed the competence of this approach in focused natural product-like encoded library construction.
Collapse
Affiliation(s)
- Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.
| | - Huilin Liao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.
| | - Xiaohong Fan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China. .,Pharmaceutical Department of Chongqing Three Gorges Central Hospital, Chongqing University Three Gorges Hospital, 404100 Chongqing, P. R. China.
| | - Yiting Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.
| | - Huihong Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China. .,Pharmaceutical Department of Chongqing Three Gorges Central Hospital, Chongqing University Three Gorges Hospital, 404100 Chongqing, P. R. China.
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Wei Fang
- Pharmaceutical Department of Chongqing Three Gorges Central Hospital, Chongqing University Three Gorges Hospital, 404100 Chongqing, P. R. China.
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044 Chongqing, P. R. China.,Beijing National Laboratory for Molecular Sciences, 100190 Beijing, P. R. China
| |
Collapse
|
14
|
Lin W, Gandhi S, Bhattarai P, Kasa K, Kizil C, Zhang Y. Combining high throughput array synthesis and growth algorithm to discover TNF-α binders with new structures and properties. Eur J Med Chem 2023; 248:115078. [PMID: 36623330 DOI: 10.1016/j.ejmech.2022.115078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Identifying new chemical structures against protein targets of interest represents one of the major challenges in drug discovery. As the major experimental method, high throughput screenings are performed with existing chemical libraries, thus restricting its capability to explore high molecular diversity. Herein, we report the use of high throughput array synthesis technology, in combination with growth algorithm, to discover binders for proinflammatory cytokine TNF-α. After 6 iterations of Library design - Array synthesis - Screening (i-LAS), one identified compound T17 has shown a kd value of 14.8 μM, and can rescue L929 cells from TNF-α mediated cytotoxicity. Further engineering T17 in various forms of oligomers have led to low nM binders. More interestingly, through tuning the multi-valent interaction with TNF-α, the high affinity oligomers can be switched from inhibitors to activators, leading to the hypothesis of an oligomerization-induced receptor activation mechanism. The i-LAS technology has allowed us to discover new binder structures, which can be further engineered into molecules with novel properties.
Collapse
Affiliation(s)
- Weilin Lin
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - Shanil Gandhi
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Prabesh Bhattarai
- Department of Neurology and The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 650 W 168th St, New York, NY, 10032, USA
| | - Keida Kasa
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Caghan Kizil
- Department of Neurology and The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 650 W 168th St, New York, NY, 10032, USA.
| | - Yixin Zhang
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany; Cluster of Excellence "Physics of Life", Technische Universität Dresden, 01062, Dresden, Germany.
| |
Collapse
|
15
|
Nie Q, Sun J, Fang X, He X, Xiong F, Zhang G, Li Y, Li Y. Antimony salt-promoted cyclization facilitating on-DNA syntheses of dihydroquinazolinone derivatives and its applications. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Li X, Zhang J, Liu C, Sun J, Li Y, Zhang G, Li Y. Aryl diazonium intermediates enable mild DNA-compatible C-C bond formation for medicinally relevant combinatorial library synthesis. Chem Sci 2022; 13:13100-13109. [PMID: 36425486 PMCID: PMC9667928 DOI: 10.1039/d2sc04482j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/24/2022] [Indexed: 08/24/2023] Open
Abstract
Forging carbon-carbon (C-C) linkage in DNA-encoded combinatorial library synthesis represents a fundamental task for drug discovery, especially with broad substrate scope and exquisite functional group tolerance. Here we reported the palladium-catalyzed Suzuki-Miyaura, Heck and Hiyama type cross-coupling via DNA-conjugated aryl diazonium intermediates for DNA-encoded chemical library (DEL) synthesis. Starting from commodity arylamines, this synthetic route facilely delivers vast chemical diversity at a mild temperature and pH, thus circumventing damage to fragile functional groups. Given its orthogonality with traditional aryl halide-based cross-coupling, the aryl diazonium-centered strategy expands the compatible synthesis of complex C-C bond-connected scaffolds. In addition, DNA-tethered pharmaceutical compounds (e.g., HDAC inhibitor) are constructed without decomposition of susceptible bioactive warheads (e.g., hydroxamic acid), emphasizing the superiority of the aryl diazonium-based approach. Together with the convenient transformation into an aryl azide photo-crosslinker, aryl diazonium's DNA-compatible diversification synergistically demonstrated its competence to create medicinally relevant combinatorial libraries and investigate protein-ligand interactions in pharmaceutical research.
Collapse
Affiliation(s)
- Xianfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
| | - Juan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
| | - Changyang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
| | - Jie Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University 401331 Chongqing P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University 401331 Chongqing P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University 401331 Chongqing P. R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
17
|
Puglioli S, Schmidt E, Pellegrino C, Prati L, Oehler S, De Luca R, Galbiati A, Comacchio C, Nadal L, Scheuermann J, Manz MG, Neri D, Cazzamalli S, Bassi G, Favalli N. Selective tumor targeting enabled by picomolar fibroblast activation protein inhibitors isolated from a DNA-encoded affinity maturation library. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Gao Y, Sun Y, Zhao G, Zhang G, Li Y, Li Y. On-DNA Synthesis of Functionalized 4 H-Pyran Scaffolds for Focused DNA-Encoded Chemical Libraries. Org Lett 2022; 24:6664-6669. [PMID: 36053053 DOI: 10.1021/acs.orglett.2c02714] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The functionalized 4H-pyran scaffold has aroused synthetic attention because it is widely found in many interesting pharmacologically relevant compounds. We here disclose its incorporation into DNA-encoded chemical libraries, combining this scaffold with the merits of scaffold architecture in drug design. Under the optimized DNA-compatible conditions, functionalized 4H-pyrans were efficiently formed with a broad substrate scope. Among the 4H-pyrans formed, the axial structure features rotational restriction, and the spirocyclic structure provides rigidity and three-dimensionality. These efforts open the door for the construction of DNA-encoded chemical libraries with more consideration for this structural architecture.
Collapse
Affiliation(s)
- Yuting Gao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yang Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
19
|
Cui M, Zhao X, Reddavide FV, Gaillez MP, Heiden S, Mannocci L, Thompson M, Zhang Y. Nonlinear manipulation and analysis of large DNA datasets. Nucleic Acids Res 2022; 50:8974-8985. [PMID: 35947747 PMCID: PMC9410889 DOI: 10.1093/nar/gkac672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 06/18/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Information processing functions are essential for organisms to perceive and react to their complex environment, and for humans to analyze and rationalize them. While our brain is extraordinary at processing complex information, winner-take-all, as a type of biased competition is one of the simplest models of lateral inhibition and competition among biological neurons. It has been implemented as DNA-based neural networks, for example, to mimic pattern recognition. However, the utility of DNA-based computation in information processing for real biotechnological applications remains to be demonstrated. In this paper, a biased competition method for nonlinear manipulation and analysis of mixtures of DNA sequences was developed. Unlike conventional biological experiments, selected species were not directly subjected to analysis. Instead, parallel computation among a myriad of different DNA sequences was carried out to reduce the information entropy. The method could be used for various oligonucleotide-encoded libraries, as we have demonstrated its application in decoding and data analysis for selection experiments with DNA-encoded chemical libraries against protein targets.
Collapse
Affiliation(s)
| | | | | | - Michelle Patino Gaillez
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | | | | | | | - Yixin Zhang
- To whom correspondence should be addressed. Tel: +49 351 463 43040;
| |
Collapse
|
20
|
Dakhel S, Galbiati A, Migliorini F, Comacchio C, Oehler S, Prati L, Scheuermann J, Cazzamalli S, Neri D, Bassi G, Favalli N. Isolation of a Natural Killer Group 2D Small-Molecule Ligand from DNA-Encoded Chemical Libraries. ChemMedChem 2022; 17:e202200350. [PMID: 35929380 DOI: 10.1002/cmdc.202200350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Indexed: 11/11/2022]
Abstract
Natural Killer Group 2D (NKG2D) is a homo-dimeric transmembrane protein which is typically expressed on the surface of natural killer (NK) cells, natural killer T (NKT) cells, gamma delta T (γδT) cells, activated CD8 positive T-cells and activated macrophages. Bispecific molecules, capable of bridging NKG2D with a target protein expressed on the surface of tumor cells, may be used to redirect the cytotoxic activity of NK-cells towards antigen-positive malignanT-cells. In this work, we report the discovery of a novel NKG2D small molecule binder [K D = (410±60) nM], isolated from a DNA-Encoded Chemical Library (DEL). The discovery of small organic NKG2D ligands may facilitate the generation of fully synthetic bispecific adaptors, which may serve as an alternative to bispecific antibody products and which may benefit from better tumor targeting properties.
Collapse
Affiliation(s)
| | | | | | | | | | - Luca Prati
- Philogen SpA, R&D (Philochem), SWITZERLAND
| | - Jörg Scheuermann
- ETH Zürich: Eidgenossische Technische Hochschule Zurich, chemistry and applied biosciences, SWITZERLAND
| | | | | | | | - Nicholas Favalli
- Philogen SpA, R&D (Philochem), Libernstrasse 3, 8112, Otelfingen, SWITZERLAND
| |
Collapse
|
21
|
Habeshian S, Merz ML, Sangouard G, Mothukuri GK, Schüttel M, Bognár Z, Díaz-Perlas C, Vesin J, Bortoli Chapalay J, Turcatti G, Cendron L, Angelini A, Heinis C. Synthesis and direct assay of large macrocycle diversities by combinatorial late-stage modification at picomole scale. Nat Commun 2022; 13:3823. [PMID: 35780129 PMCID: PMC9250534 DOI: 10.1038/s41467-022-31428-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022] Open
Abstract
Macrocycles have excellent potential as therapeutics due to their ability to bind challenging targets. However, generating macrocycles against new targets is hindered by a lack of large macrocycle libraries for high-throughput screening. To overcome this, we herein established a combinatorial approach by tethering a myriad of chemical fragments to peripheral groups of structurally diverse macrocyclic scaffolds in a combinatorial fashion, all at a picomole scale in nanoliter volumes using acoustic droplet ejection technology. In a proof-of-concept, we generate a target-tailored library of 19,968 macrocycles by conjugating 104 carboxylic-acid fragments to 192 macrocyclic scaffolds. The high reaction efficiency and small number of side products of the acylation reactions allowed direct assay without purification and thus a large throughput. In screens, we identify nanomolar inhibitors against thrombin (Ki = 44 ± 1 nM) and the MDM2:p53 protein-protein interaction (Kd MDM2 = 43 ± 18 nM). The increased efficiency of macrocycle synthesis and screening and general applicability of this approach unlocks possibilities for generating leads against any protein target. Macrocycles have potential as therapeutics, but their libraries are currently not large enough for high-throughput screening. Here, the authors show a combinatorial approach to generate a library of almost 20’000 macrocycles by conjugating carboxylic-acid fragments to macrocyclic scaffolds, identifying nanomolar inhibitors against thrombin and binders of MDM2.
Collapse
Affiliation(s)
- Sevan Habeshian
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Manuel Leonardo Merz
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Gontran Sangouard
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Ganesh Kumar Mothukuri
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Mischa Schüttel
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Zsolt Bognár
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Cristina Díaz-Perlas
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Jonathan Vesin
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julien Bortoli Chapalay
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laura Cendron
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, Venice, 30172, Italy.,European Centre for Living Technologies (ECLT), Ca' Bottacin, Dorsoduro 3911, Calle Crosera, Venice, 30124, Italy
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
22
|
Wang S, Shi X, Li J, Huang Q, Ji Q, Yao Y, Wang T, Liu L, Ye M, Deng Y, Ma P, Xu H, Yang G. A Small Molecule Selected from a DNA-Encoded Library of Natural Products That Binds to TNF-α and Attenuates Inflammation In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201258. [PMID: 35596609 PMCID: PMC9313502 DOI: 10.1002/advs.202201258] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/24/2022] [Indexed: 05/06/2023]
Abstract
Tumor necrosis factor α (TNF-α) inhibitors have shown great success in the treatment of autoimmune diseases. However, to date, approved drugs targeting TNF-α are restricted to biological macromolecules, largely due to the difficulties in using small molecules for pharmaceutical intervention of protein-protein interactions. Herein the power of a natural product-enriched DNA-encoded library (nDEL) is exploited to identify small molecules that interfere with the protein-protein interaction between TNF-α and the cognate receptor. Initially, to select molecules capable of binding to TNF-α , "late-stage" DNA modification method is applied to construct an nDEL library consisted of 400 sterically diverse natural products and pharmaceutically active chemicals. Several natural products, including kaempferol, identified not only show direct interaction with TNF-α, but also lead to the blockage of TNF-α/TNFR1 interaction. Significantly, kaempferol attenuates the TNF-α signaling in cells and reduces the 12-O-tetradecanoylphorbol-13-acetateinduced ear inflammation in mice. Structure-activity-relationship analyses demonstrate the importance of substitution groups at C-3, C-7, and C-4' of kaempferol. The nDEL hit, kaempferol, represents a novel chemical scaffold capable of specifically recognizing TNF-α and blocking its signal transduction, a promising starting point for the development of a small molecule TNF-α inhibitor for use in the clinical setting.
Collapse
Affiliation(s)
- Shuyue Wang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210P. R. China
- Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Xiaojie Shi
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Jie Li
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Qianping Huang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210P. R. China
- Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Qun Ji
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Ying Yao
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210P. R. China
- Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Tao Wang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210P. R. China
- Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100871P. R. China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduSichuan611137P. R. China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
- Shanghai Key Laboratory of Orthopedic ImplantsDepartment of Orthopedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| |
Collapse
|
23
|
Melsen PRA, Yoshisada R, Jongkees SAK. Opportunities for Expanding Encoded Chemical Diversification and Improving Hit Enrichment in mRNA-Displayed Peptide Libraries. Chembiochem 2022; 23:e202100685. [PMID: 35100479 PMCID: PMC9306583 DOI: 10.1002/cbic.202100685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Indexed: 11/07/2022]
Abstract
DNA-encoded small-molecule libraries and mRNA displayed peptide libraries both use numerically large pools of oligonucleotide-tagged molecules to identify potential hits for protein targets. They differ dramatically, however, in the 'drug-likeness' of the molecules that each can be used to discover. We give here an overview of the two techniques, comparing some advantages and disadvantages of each, and suggest areas where particularly mRNA display can benefit from adopting advances developed with DNA-encoded small molecule libraries. We outline cases where chemical modification of the peptide library has already been used in mRNA display, and survey opportunities to expand this using examples from DNA-encoded small molecule libraries. We also propose potential opportunities for encoding such reactions within the mRNA/cDNA tag of an mRNA-displayed peptide library to allow a more diversity-oriented approach to library modification. Finally, we outline alternate approaches for enriching target-binding hits from a pooled and tagged library, and close by detailing several examples of how an adjusted mRNA-display based approach could be used to discover new 'drug-like' modified small peptides.
Collapse
Affiliation(s)
- Paddy R. A. Melsen
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Ryoji Yoshisada
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Seino A. K. Jongkees
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| |
Collapse
|
24
|
Lim KS, Reidenbach AG, Hua BK, Mason JW, Gerry CJ, Clemons PA, Coley CW. Machine Learning on DNA-Encoded Library Count Data Using an Uncertainty-Aware Probabilistic Loss Function. J Chem Inf Model 2022; 62:2316-2331. [PMID: 35535861 PMCID: PMC10830332 DOI: 10.1021/acs.jcim.2c00041] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA-encoded library (DEL) screening and quantitative structure-activity relationship (QSAR) modeling are two techniques used in drug discovery to find novel small molecules that bind a protein target. Applying QSAR modeling to DEL selection data can facilitate the selection of compounds for off-DNA synthesis and evaluation. Such a combined approach has been done recently by training binary classifiers to learn DEL enrichments of aggregated "disynthons" in order to accommodate the sparse and noisy nature of DEL data. However, a binary classification model cannot distinguish between different levels of enrichment, and information is potentially lost during disynthon aggregation. Here, we demonstrate a regression approach to learning DEL enrichments of individual molecules, using a custom negative-log-likelihood loss function that effectively denoises DEL data and introduces opportunities for visualization of learned structure-activity relationships. Our approach explicitly models the Poisson statistics of the sequencing process used in the DEL experimental workflow under a frequentist view. We illustrate this approach on a DEL dataset of 108,528 compounds screened against carbonic anhydrase (CAIX), and a dataset of 5,655,000 compounds screened against soluble epoxide hydrolase (sEH) and SIRT2. Due to the treatment of uncertainty in the data through the negative-log-likelihood loss used during training, the models can ignore low-confidence outliers. While our approach does not demonstrate a benefit for extrapolation to novel structures, we expect our denoising and visualization pipeline to be useful in identifying structure-activity trends and highly enriched pharmacophores in DEL data. Further, this approach to uncertainty-aware regression modeling is applicable to other sparse or noisy datasets where the nature of stochasticity is known or can be modeled; in particular, the Poisson enrichment ratio metric we use can apply to other settings that compare sequencing count data between two experimental conditions.
Collapse
Affiliation(s)
- Katherine S Lim
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrew G Reidenbach
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Bruce K Hua
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Jeremy W Mason
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Christopher J Gerry
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Paul A Clemons
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Connor W Coley
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
25
|
Ahmed AAM, Mekky AEM, Sanad SMH. Effective synthesis of new benzo-fused macrocyclic and heteromacrocyclic bis(Schiff bases). JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02409-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Shen Y, Yang G, Huang W, Shaginian A, Lin Q, Wan J, Li J, Deng Y, Liu G. Photoredox Deaminative Alkylation in DNA-Encoded Library Synthesis. Org Lett 2022; 24:2650-2654. [PMID: 35362987 DOI: 10.1021/acs.orglett.2c00697] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, we report an on-DNA photoredox-mediated deaminative alkylation method for diversifying DNA-tagged acrylamide substrate with amine-derived radicals. The radicals can be conveniently generated from sterically hindered primary amines, and the deaminative alkylation can tolerate a broad array of radical precursors. Furthermore, the methodology is applicable to Boc-protected diamines, free amino acids, and aryl halides, which bear functional groups enabling additional rounds of diversification. The method is believed to offer a high potential for constructing DNA-encoded libraries, as was demonstrated by the production of a mock library in a 2 × 3 matrix format and confirmation of DNA stability by UPLC-MS and qPCR experiments.
Collapse
Affiliation(s)
- Yurong Shen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, P.R. China
| | - Guanyu Yang
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| | - Wei Huang
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| | - Alex Shaginian
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| | - Qian Lin
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| | - Jinqiao Wan
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| | - Jin Li
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, P.R. China
| | - Guansai Liu
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| |
Collapse
|
27
|
Li Y, Zhao G, Fan X, Li Y, Zhang G. Switchable DNA-Encoded Chemical Library: Interconversion between Double- and Single-Stranded DNA Formats. Chembiochem 2022; 23:e202200025. [PMID: 35352452 DOI: 10.1002/cbic.202200025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/10/2022] [Indexed: 11/07/2022]
Abstract
DNA-Encoded Chemical Library (DEL) has attracted substantial attention due to the infinite possibility for hit discovery in both pharmaceutical companies and academia. The encoding method is the initial step of DEL construction and one of the cornerstones of DEL applications. Classified by the DNA format, the existing DEL encoding strategies could be categorized into single-stranded DNA-based strategies and double-stranded DNA-based strategies. The two DEL formats have their unique advantages but are usually incompatible with each other. To address this issue, we proposed the concept of interconversion between double- and single-stranded DEL based on the "reversible covalent headpiece (RCHP)" design, which combined maximum robustness of synthesis with extraordinary flexibility of applications in distinct setups. Future opportunities in this field were also proposed to advance DEL technology to a comprehensive drug discovery platform.
Collapse
Affiliation(s)
- Yizhou Li
- Chongqing University, School of Pharmaceutical Sciences, Chongqing College Town, Shapingba, 401331, Chongqing, CHINA
| | - Guixian Zhao
- Chongqing University, School of Pharmaceutical Sciences, CHINA
| | - Xiaohong Fan
- Chongqing University, School of Pharmaceutical Sciences, CHINA
| | - Yangfeng Li
- Chongqing University, School of Pharmaceutical Sciences, CHINA
| | - Gong Zhang
- Chongqing University, School of Pharmaceutical Science, CHINA
| |
Collapse
|
28
|
Yang S, Zhao G, Gao Y, Sun Y, Zhang G, Fan X, Li Y, Li Y. In-solution direct oxidative coupling for the integration of sulfur/selenium into DNA-encoded chemical libraries. Chem Sci 2022; 13:2604-2613. [PMID: 35340849 PMCID: PMC8890091 DOI: 10.1039/d1sc06268a] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/29/2022] [Indexed: 12/27/2022] Open
Abstract
Sulfur/selenium-containing electron-rich arenes (ERAs) exist in a wide range of both approved and investigational drugs with diverse pharmacological activities. These unique chemical structures and bioactive properties, if combined with the emerging DNA-encoded chemical library (DEL) technique, would facilitate drug and chemical probe discovery. However, it remains challenging, as there is no general DNA-compatible synthetic methodology available for the formation of C-S and C-Se bonds in aqueous solution. Herein, an in-solution direct oxidative coupling procedure that could efficiently integrate sulfur/selenium into the ERA under mild conditions is presented. This method features simple DNA-conjugated electron-rich arenes with a broad substrate scope and a transition-metal free process. Furthermore, this synthetic methodology, examined by a scale-up reaction test and late-stage precise modification in a mock peptide-like DEL synthesis, will enable its utility for the synthesis of sulfur/selenium-containing DNA-encoded libraries and the discovery of bioactive agents.
Collapse
Affiliation(s)
- Shilian Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Yuting Gao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Yang Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Xiaohong Fan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Pharmaceutical Department of Chongqing Three Gorges Central Hospital, Chongqing University Chongqing 404100 P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University Chongqing 400044 P. R. China
| |
Collapse
|
29
|
Stanojlovic V, Müller A, Moazzam A, Hinterholzer A, Ożga K, Berlicki Ł, Schubert M, Cabrele C. A Conformationally Stable Acyclic β-Hairpin Scaffold Tolerating the Incorporation of Poorly β-Sheet-Prone Amino Acids. Chembiochem 2022; 23:e202100604. [PMID: 34856053 PMCID: PMC9299858 DOI: 10.1002/cbic.202100604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Indexed: 11/09/2022]
Abstract
The β-hairpin is a structural element of native proteins, but it is also a useful artificial scaffold for finding lead compounds to convert into peptidomimetics or non-peptide structures for drug discovery. Since linear peptides are synthetically more easily accessible than cyclic ones, but are structurally less well-defined, we propose XWXWXpPXK(/R)X(R) as an acyclic but still rigid β-hairpin scaffold that is robust enough to accommodate different types of side chains, regardless of the secondary-structure propensity of the X residues. The high conformational stability of the scaffold results from tight contacts between cross-strand cationic and aromatic side chains, combined with the strong tendency of the d-Pro-l-Pro dipeptide to induce a type II' β-turn. To demonstrate the robustness of the scaffold, we elucidated the NMR structures and performed molecular dynamics (MD) simulations of a series of peptides displaying mainly non-β-branched, poorly β-sheet-prone residues at the X positions. Both the NMR and MD data confirm that our acyclic β-hairpin scaffold is highly versatile as regards the amino-acid composition of the β-sheet face opposite to the cationic-aromatic one.
Collapse
Affiliation(s)
- Vesna Stanojlovic
- Department of BiosciencesUniversity of SalzburgHellbrunnerstrasse 345020SalzburgAustria
| | - Anna Müller
- Department of BiosciencesUniversity of SalzburgHellbrunnerstrasse 345020SalzburgAustria
| | - Ali Moazzam
- Department of BiosciencesUniversity of SalzburgHellbrunnerstrasse 345020SalzburgAustria
- School of ChemistryCollege of ScienceUniversity of TehranP.O. Box 14155–6619TehranIran
| | - Arthur Hinterholzer
- Department of BiosciencesUniversity of SalzburgHellbrunnerstrasse 345020SalzburgAustria
| | - Katarzyna Ożga
- Department of Bioorganic ChemistryFaculty of ChemistryWrocław University of Science and TechnologyWybrzeże Wyspiańskiego 2750-370WrocławPoland
| | - Łukasz Berlicki
- Department of Bioorganic ChemistryFaculty of ChemistryWrocław University of Science and TechnologyWybrzeże Wyspiańskiego 2750-370WrocławPoland
| | - Mario Schubert
- Department of BiosciencesUniversity of SalzburgHellbrunnerstrasse 345020SalzburgAustria
| | - Chiara Cabrele
- Department of BiosciencesUniversity of SalzburgHellbrunnerstrasse 345020SalzburgAustria
| |
Collapse
|
30
|
Zhong S, Fang X, Wang Y, Zhang G, Li Y, Li Y. DNA-Compatible Diversification of Indole π-Activated Alcohols via a Direct Dehydrative Coupling Strategy. Org Lett 2022; 24:1022-1026. [PMID: 35050627 DOI: 10.1021/acs.orglett.1c04169] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Indole-based diversification is highly desired in the DNA-encoded chemical library construction. Herein, we present a general strategy for on-DNA synthesis of diverse C3-functionalized indole derivatives via indole π-activated alcohol formation followed by direct dehydrative coupling. Highly efficient bond linkages of C-C, C-N, and C-S were achieved to fuse building blocks that are widely commercially available. DNA-encoding compatibility of the method has been further demonstrated to pave an avenue for application in constructing indole-focused three-dimensional libraries.
Collapse
Affiliation(s)
- Shuting Zhong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yiting Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
31
|
Vummidi BR, Farrera-Soler L, Daguer JP, Dockerill M, Barluenga S, Winssinger N. A mating mechanism to generate diversity for the Darwinian selection of DNA-encoded synthetic molecules. Nat Chem 2022; 14:141-152. [PMID: 34873299 DOI: 10.1038/s41557-021-00829-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/30/2021] [Indexed: 12/18/2022]
Abstract
DNA-encoded library technologies enable the screening of synthetic molecules but have thus far not tapped into the power of Darwinian selection with iterative cycles of selection, amplification and diversification. Here we report a simple strategy to rapidly assemble libraries of conformationally constrained peptides that are paired in a combinatorial fashion (suprabodies). We demonstrate that the pairing can be shuffled after each amplification cycle in a process similar to DNA shuffling or mating to regenerate diversity. Using simulations, we show the benefits of this recombination in yielding a more accurate correlation of selection fitness with affinity after multiple rounds of selection, particularly if the starting library is heterogeneous in the concentration of its members. The method was validated with selections against streptavidin and applied to the discovery of PD-L1 binders. We further demonstrate that the binding of self-assembled suprabodies can be recapitulated by smaller (∼7 kDa) synthetic products that maintain the conformational constraint of the peptides.
Collapse
Affiliation(s)
- Balayeshwanth R Vummidi
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Lluc Farrera-Soler
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Jean-Pierre Daguer
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Millicent Dockerill
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Sofia Barluenga
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
32
|
Plais L, Lessing A, Keller M, Martinelli A, Oehler S, Bassi G, Neri D, Scheuermann J. Universal encoding of next generation DNA-encoded chemical libraries. Chem Sci 2022; 13:967-974. [PMID: 35211261 PMCID: PMC8790773 DOI: 10.1039/d1sc05721a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022] Open
Abstract
DNA-encoded chemical libraries (DELs) are useful tools for the discovery of small molecule ligands to protein targets of pharmaceutical interest. Compared with single-pharmacophore DELs, dual-pharmacophore DELs simultaneously display two chemical moieties on both DNA strands, and allow for the construction of highly diverse and pure libraries, with a potential for targeting larger protein surfaces. Although methods for the encoding of simple, fragment-like dual-display libraries have been established, more complex libraries require a different encoding strategy. Here, we present a robust and convenient "large encoding design" (LED), which facilitates the PCR-amplification of multiple codes distributed among two partially complementary DNA strands. We experimentally implemented multiple coding regions and we compared the new DNA encoding scheme with previously reported dual-display DEL modalities in terms of amplifiability and performance in test selections against two target proteins. With the LED methodology in place, we foresee the construction and screening of DELs of unprecedented sizes and designs.
Collapse
Affiliation(s)
- Louise Plais
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Alice Lessing
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Michelle Keller
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Adriano Martinelli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Sebastian Oehler
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Gabriele Bassi
- Philochem AG Libernstrasse 3 CH-8112 Otelfingen Switzerland
| | - Dario Neri
- Philochem AG Libernstrasse 3 CH-8112 Otelfingen Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| |
Collapse
|
33
|
Nie Q, Fang X, Liu C, Zhang G, Fan X, Li Y, Li Y. DNA-Compatible ortho-Phthalaldehyde (OPA)-Mediated 2-Substituted Isoindole Core Formation and Applications. J Org Chem 2022; 87:2551-2558. [DOI: 10.1021/acs.joc.1c02496] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Qigui Nie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
| | - Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
| | - Changyang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
| | - Xiaohong Fan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
- Pharmaceutical Department of Chongqing Three Gorges Central Hospital, Chongqing University Three Gorges Hospital, Chongqing 404100, People’s Republic of China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People’s Republic of China
| |
Collapse
|
34
|
Gao Y, Zhao G, He P, Zhang G, Li Y, Li Y. DNA-Compatible Synthesis of α,β-Epoxyketones for DNA-Encoded Chemical Libraries. Bioconjug Chem 2022; 33:105-110. [PMID: 34927428 DOI: 10.1021/acs.bioconjchem.1c00567] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As a powerful platform in drug discovery, the DNA-encoded chemical library technique enables the generation of numerous chemical members with high structural diversity. Epoxides widely exist in a variety of approved drugs and clinical candidates, eliciting multiple pharmaceutical activities. Herein, we report a non-oxidative DNA-compatible synthesis of di-/trisubstituted α,β-epoxyketones by implementing aldehydes and α-chlorinated ketones as abundant building blocks. This methodology was demonstrated to cover a broad substrate scope with medium-to-excellent conversions. Further structural diversification and transformation were also successfully explored to fully leverage α,β-epoxyketone moiety.
Collapse
Affiliation(s)
- Yuting Gao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331, Chongqing, P. R. China
| | - Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331, Chongqing, P. R. China
| | - Pengyang He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331, Chongqing, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331, Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331, Chongqing, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331, Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331, Chongqing, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331, Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331, Chongqing, P. R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044, Chongqing, P. R. China
| |
Collapse
|
35
|
Gao Y, Sun Y, Fang X, Zhao G, Li X, Zhang G, Li Y, Li Y. Development of on-DNA vinyl sulfone synthesis for DNA-encoded chemical libraries. Org Chem Front 2022. [DOI: 10.1039/d2qo00881e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We present the development of an efficient synthetic route to generate a DNA-compatible vinyl sulfone functional group, and the subsequent chemical transformations demonstrated the feasibility of our method in DEL construction.
Collapse
Affiliation(s)
- Yuting Gao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yang Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Xufeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044 Chongqing, P. R. China
- Beijing National Laboratory for Molecular Sciences, 100190 Beijing, P. R. China
| |
Collapse
|
36
|
Bassi G, Favalli N, Pellegrino C, Onda Y, Scheuermann J, Cazzamalli S, Manz MG, Neri D. Specific Inhibitor of Placental Alkaline Phosphatase Isolated from a DNA-Encoded Chemical Library Targets Tumor of the Female Reproductive Tract. J Med Chem 2021; 64:15799-15809. [PMID: 34709820 DOI: 10.1021/acs.jmedchem.1c01103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Placental alkaline phosphatase (PLAP) is an abundant surface antigen in the malignancies of the female reproductive tract. Nevertheless, the discovery of PLAP-specific small organic ligands for targeting applications has been hindered by ligand cross-reactivity with the ubiquitous tissue non-specific alkaline phosphatase (TNAP). In this study, we used DNA-encoded chemical libraries to discover a potent (IC50 = 32 nM) and selective PLAP inhibitor, with no detectable inhibition of TNAP activity. Subsequently, the PLAP ligand was conjugated to fluorescein; it specifically bound to PLAP-positive tumors in vitro and targeted cervical cancer in vivo in a mouse model of the disease. Ultimately, the fluorescent derivative of the PLAP inhibitor functioned as a bispecific engager redirecting the killing of chimeric antigen receptor-T cells specific to fluorescein on PLAP-positive tumor cells.
Collapse
Affiliation(s)
- Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Nicholas Favalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Christian Pellegrino
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland.,Department of Medical Oncology and Hematology, University Hospital Zürich and University of Zürich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Yuichi Onda
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | | | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zürich and University of Zürich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| |
Collapse
|
37
|
Zhang J, Li X, Wei H, Li Y, Zhang G, Li Y. Sequential DNA-Encoded Building Block Fusion for the Construction of Polysubstituted Pyrazoline Core Libraries. Org Lett 2021; 23:8429-8433. [PMID: 34652930 DOI: 10.1021/acs.orglett.1c03145] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The construction of chemical libraries containing polysubstituted pyrazoline scaffolds is highly desirable for the discovery of novel chemical ligands for biological targets. Herein, we report a sequential DNA-encoded synthesis strategy for polysubstituted pyrazoline heterocycles, which fuses a broad panel of aldehydes, aryl amines, and alkenes as building blocks. Furthermore, mock library synthesis and selection demonstrated the ability of the method to produce DNA-encoded focused libraries with highly functionalized pyrazoline cores.
Collapse
Affiliation(s)
- Juan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Xianfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Haimei Wei
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
38
|
Fair RJ, Walsh RT, Hupp CD. The expanding reaction toolkit for DNA-encoded libraries. Bioorg Med Chem Lett 2021; 51:128339. [PMID: 34478840 DOI: 10.1016/j.bmcl.2021.128339] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022]
Abstract
Over the past decade, DNA-encoded libraries (DELs) have emerged as a leading platform for small molecule drug discovery among pharmaceutical companies, biotech companies and academic drug hunters alike. This revolutionary technology has tremendous potential that is yet to be fully realized, as the exploration of therapeutically relevant chemical space is fueled by the ever-expanding repertoire of DNA-compatible reactions used to construct the libraries. Advances in direct coupling reactions, like photo-catalytic cross couplings, unique cyclizations such as the formation of 1,2,4-oxadiazoles, and new functional group transformations are valuable contributions to the DEL reaction toolkit, and indicate where future reaction development efforts should focus in order to maximize the productivity of DELs.
Collapse
Affiliation(s)
| | - Ryan T Walsh
- X-Chem Inc., 100 Beaver Street, Waltham, MA 02453, USA
| | | |
Collapse
|
39
|
Ahmed AAM, Mekky AEM, Sanad SMH. Effective synthesis of new benzo‐fused macrocyclic and thiamacrocyclic dilactams and related pyrazolo‐fused macrocycles. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ahmed A. M. Ahmed
- Chemistry Department, Faculty of Science Cairo University Giza Egypt
- Common First Year Deanship Jouf University Sakaka Saudi Arabia
| | - Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science Cairo University Giza Egypt
| | | |
Collapse
|
40
|
Sangouard G, Zorzi A, Wu Y, Ehret E, Schüttel M, Kale S, Díaz-Perlas C, Vesin J, Bortoli Chapalay J, Turcatti G, Heinis C. Picomole-Scale Synthesis and Screening of Macrocyclic Compound Libraries by Acoustic Liquid Transfer. Angew Chem Int Ed Engl 2021; 60:21702-21707. [PMID: 34268864 DOI: 10.1002/anie.202107815] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 11/07/2022]
Abstract
Macrocyclic compounds are an attractive class of therapeutic ligands against challenging targets, such as protein-protein interactions. However, the development of macrocycles as drugs is hindered by the lack of large combinatorial macrocyclic libraries, which are cumbersome, expensive, and time consuming to make, screen, and deconvolute. Here, we established a strategy for synthesizing and screening combinatorial libraries on a picomolar scale by using acoustic droplet ejection to combine building blocks at nanoliter volumes, which reduced the reaction volumes, reagent consumption, and synthesis time. As a proof-of-concept, we assembled a 2700-member target-focused macrocyclic library that we could subsequently assay in the same microtiter synthesis plates, saving the need for additional transfers and deconvolution schemes. We screened the library against the MDM2-p53 protein-protein interaction and generated micromolar and sub-micromolar inhibitors. Our approach based on acoustic liquid transfer provides a general strategy for the development of macrocycle ligands.
Collapse
Affiliation(s)
- Gontran Sangouard
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Alessandro Zorzi
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Yuteng Wu
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Edouard Ehret
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Mischa Schüttel
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sangram Kale
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Cristina Díaz-Perlas
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Jonathan Vesin
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Julien Bortoli Chapalay
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
41
|
Sangouard G, Zorzi A, Wu Y, Ehret E, Schüttel M, Kale S, Díaz‐Perlas C, Vesin J, Bortoli Chapalay J, Turcatti G, Heinis C. Picomole‐Scale Synthesis and Screening of Macrocyclic Compound Libraries by Acoustic Liquid Transfer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gontran Sangouard
- Institute of Chemical Sciences and Engineering School of Basic Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Alessandro Zorzi
- Institute of Chemical Sciences and Engineering School of Basic Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Yuteng Wu
- Institute of Chemical Sciences and Engineering School of Basic Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Edouard Ehret
- Institute of Chemical Sciences and Engineering School of Basic Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Mischa Schüttel
- Institute of Chemical Sciences and Engineering School of Basic Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Sangram Kale
- Institute of Chemical Sciences and Engineering School of Basic Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Cristina Díaz‐Perlas
- Institute of Chemical Sciences and Engineering School of Basic Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Jonathan Vesin
- Biomolecular Screening Facility School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Julien Bortoli Chapalay
- Biomolecular Screening Facility School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering School of Basic Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
42
|
Second-generation DNA-encoded multiple display on a constant macrocyclic scaffold enabled by an orthogonal protecting group strategy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.09.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Abstract
INTRODUCTION Undruggable targets refer to clinically meaningful therapeutic targets that are 'difficult to drug' or 'yet to be drugged' via traditional approaches. Featuring characteristics of lacking defined ligand-binding pockets, non-catalytic protein-protein interaction functional modes and less-investigated 3D structures, these undruggable targets have been targeted with novel therapeutic entities developed with the progress of unconventional drug discovery approaches, such as targeted degradation molecules and display technologies. AREA COVERED This review first presents the concept of 'undruggable' exemplified by RAS and other targets. Next, detailed strategies are illustrated in two aspects: innovation of therapeutic entities and development of unconventional drug discovery technologies. Finally, case studies covering typical undruggable targets (Bcl-2, p53, and RAS) are depicted to further demonstrate the feasibility of the strategies and entities above. EXPERT OPINION Targeting the undruggable expands the scope of therapeutically reachable targets. Consequently, it represents the drug discovery frontier. Biomedical studies are capable of dissecting disease mechanisms, thus broadening the list of undruggable targets. Encouraged by the recent approval of the KRAS inhibitor Sotorasib, we believe that merging multiple discovery approaches and exploiting various novel therapeutic entities would pave the way for dealing with more 'undruggable' targets in the future.
Collapse
Affiliation(s)
- Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China
| | - Juan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China
| | - Yuting Gao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
44
|
Gironda-Martínez A, Donckele EJ, Samain F, Neri D. DNA-Encoded Chemical Libraries: A Comprehensive Review with Succesful Stories and Future Challenges. ACS Pharmacol Transl Sci 2021; 4:1265-1279. [PMID: 34423264 PMCID: PMC8369695 DOI: 10.1021/acsptsci.1c00118] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 12/27/2022]
Abstract
DNA-encoded chemical libraries (DELs) represent a versatile and powerful technology platform for the discovery of small-molecule ligands to protein targets of biological and pharmaceutical interest. DELs are collections of molecules, individually coupled to distinctive DNA tags serving as amplifiable identification barcodes. Thanks to advances in DNA-compatible reactions, selection methodologies, next-generation sequencing, and data analysis, DEL technology allows the construction and screening of libraries of unprecedented size, which has led to the discovery of highly potent ligands, some of which have progressed to clinical trials. In this Review, we present an overview of diverse approaches for the generation and screening of DEL molecular repertoires. Recent success stories are described, detailing how novel ligands were isolated from DEL screening campaigns and were further optimized by medicinal chemistry. The goal of the Review is to capture some of the most recent developments in the field, while also elaborating on future challenges to further improve DEL technology as a therapeutic discovery platform.
Collapse
Affiliation(s)
| | | | - Florent Samain
- Philochem
AG, Libernstrasse 3, CH-8112 Otelfingen, Switzerland
| | - Dario Neri
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology, CH-8093 Zürich, Switzerland
- Philogen
S.p.A, 53100 Siena, Italy
| |
Collapse
|
45
|
Wong JYK, Mukherjee R, Miao J, Bilyk O, Triana V, Miskolzie M, Henninot A, Dwyer JJ, Kharchenko S, Iampolska A, Volochnyuk DM, Lin YS, Postovit LM, Derda R. Genetically-encoded discovery of proteolytically stable bicyclic inhibitors for morphogen NODAL. Chem Sci 2021; 12:9694-9703. [PMID: 34349940 PMCID: PMC8294009 DOI: 10.1039/d1sc01916c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
In this manuscript, we developed a two-fold symmetric linchpin (TSL) that converts readily available phage-displayed peptides libraries made of 20 common amino acids to genetically-encoded libraries of bicyclic peptides displayed on phage. TSL combines an aldehyde-reactive group and two thiol-reactive groups; it bridges two side chains of cysteine [C] with an N-terminal aldehyde group derived from the N-terminal serine [S], yielding a novel bicyclic topology that lacks a free N-terminus. Phage display libraries of SX1CX2X3X4X5X6X7C sequences, where X is any amino acid but Cys, were converted to a library of bicyclic TSL-[S]X1[C]X2X3X4X5X6X7[C] peptides in 45 ± 15% yield. Using this library and protein morphogen NODAL as a target, we discovered bicyclic macrocycles that specifically antagonize NODAL-induced signaling in cancer cells. At a 10 μM concentration, two discovered bicyclic peptides completely suppressed NODAL-induced phosphorylation of SMAD2 in P19 embryonic carcinoma cells. The TSL-[S]Y[C]KRAHKN[C] bicycle inhibited NODAL-induced proliferation of NODAL-TYK-nu ovarian carcinoma cells with apparent IC50 of 1 μM. The same bicycle at 10 μM concentration did not affect the growth of the control TYK-nu cells. TSL-bicycles remained stable over the course of the 72 hour-long assays in a serum-rich cell-culture medium. We further observed general stability in mouse serum and in a mixture of proteases (Pronase™) for 21 diverse bicyclic macrocycles of different ring sizes, amino acid sequences, and cross-linker geometries. TSL-constrained peptides to expand the previously reported repertoire of phage-displayed bicyclic architectures formed by cross-linking Cys side chains. We anticipate that it will aid the discovery of proteolytically stable bicyclic inhibitors for a variety of protein targets.
Collapse
Affiliation(s)
- Jeffrey Y-K Wong
- Department of Chemistry, University of Alberta Edmonton AB T6G 2G2 Canada
| | - Raja Mukherjee
- Department of Chemistry, University of Alberta Edmonton AB T6G 2G2 Canada
| | - Jiayuan Miao
- Department of Chemistry, Tufts University Medford MA 02155 USA
| | - Olena Bilyk
- Department of Experimental Oncology, University of Alberta Edmonton AB T6G 2G2 Canada
| | - Vivian Triana
- Department of Chemistry, University of Alberta Edmonton AB T6G 2G2 Canada
| | - Mark Miskolzie
- Department of Chemistry, University of Alberta Edmonton AB T6G 2G2 Canada
| | | | - John J Dwyer
- Ferring Research Institute San Diego California 92121 USA
| | | | - Anna Iampolska
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
| | | | - Yu-Shan Lin
- Department of Chemistry, Tufts University Medford MA 02155 USA
| | - Lynne-Marie Postovit
- Department of Experimental Oncology, University of Alberta Edmonton AB T6G 2G2 Canada
| | - Ratmir Derda
- Department of Chemistry, University of Alberta Edmonton AB T6G 2G2 Canada
| |
Collapse
|
46
|
McLoughlin NM, Kuepper A, Neubacher S, Grossmann TN. Synergistic DNA- and Protein-Based Recognition Promote an RNA-Templated Bio-orthogonal Reaction. Chemistry 2021; 27:10477-10483. [PMID: 33914384 PMCID: PMC8362040 DOI: 10.1002/chem.202101103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 12/28/2022]
Abstract
Biomolecular assemblies composed of proteins and oligonucleotides play a central role in biological processes. While in nature, oligonucleotides and proteins usually assemble via non-covalent interactions, synthetic conjugates have been developed which covalently link both modalities. The resulting peptide-oligonucleotide conjugates have facilitated novel biological applications as well as the design of functional supramolecular systems and materials. However, despite the importance of concerted protein/oligonucleotide recognition in nature, conjugation approaches have barely utilized the synergistic recognition abilities of such complexes. Herein, the structure-based design of peptide-DNA conjugates that bind RNA through Watson-Crick base pairing combined with peptide-mediated major groove recognition is reported. Two distinct conjugate families with tunable binding characteristics have been designed to adjacently bind a particular RNA sequence. In the resulting ternary complex, their peptide elements are located in proximity, a feature that was used to enable an RNA-templated click reaction. The introduced structure-based design approach opens the door to novel functional biomolecular assemblies.
Collapse
Affiliation(s)
- Niall M. McLoughlin
- Department of Chemistry and Pharmaceutical SciencesVrije Universiteit AmsterdamAmsterdam1081 HZThe Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS)Vrije Universiteit AmsterdamAmsterdam1081 HZThe Netherlands
| | - Arne Kuepper
- Chemical Genomics Centre of the Max Planck SocietyDortmund44227Germany
| | - Saskia Neubacher
- Department of Chemistry and Pharmaceutical SciencesVrije Universiteit AmsterdamAmsterdam1081 HZThe Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS)Vrije Universiteit AmsterdamAmsterdam1081 HZThe Netherlands
| | - Tom N. Grossmann
- Department of Chemistry and Pharmaceutical SciencesVrije Universiteit AmsterdamAmsterdam1081 HZThe Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS)Vrije Universiteit AmsterdamAmsterdam1081 HZThe Netherlands
- Chemical Genomics Centre of the Max Planck SocietyDortmund44227Germany
| |
Collapse
|
47
|
Abstract
Click chemistry, proposed nearly 20 years ago, promised access to novel chemical space by empowering combinatorial library synthesis with a "few good reactions". These click reactions fulfilled key criteria (broad scope, quantitative yield, abundant starting material, mild reaction conditions, and high chemoselectivity), keeping the focus on molecules that would be easy to make, yet structurally diverse. This philosophy bears a striking resemblance to DNA-encoded library (DEL) technology, the now-dominant combinatorial chemistry paradigm. This review highlights the similarities between click and DEL reaction design and deployment in combinatorial library settings, providing a framework for the design of new DEL synthesis technologies to enable next-generation drug discovery.
Collapse
Affiliation(s)
- Patrick R Fitzgerald
- Skaggs Doctoral Program in the Chemical and Biological Sciences, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Brian M Paegel
- Departments of Pharmaceutical Sciences, Chemistry, & Biomedical Engineering, University of California, Irvine, 101 Theory Suite 100, Irvine, California 92617, United States
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
48
|
Favalli N, Bassi G, Pellegrino C, Millul J, De Luca R, Cazzamalli S, Yang S, Trenner A, Mozaffari NL, Myburgh R, Moroglu M, Conway SJ, Sartori AA, Manz MG, Lerner RA, Vogt PK, Scheuermann J, Neri D. Stereo- and regiodefined DNA-encoded chemical libraries enable efficient tumour-targeting applications. Nat Chem 2021; 13:540-548. [PMID: 33833446 PMCID: PMC8405038 DOI: 10.1038/s41557-021-00660-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 02/10/2021] [Indexed: 02/01/2023]
Abstract
The encoding of chemical compounds with amplifiable DNA tags facilitates the discovery of small-molecule ligands for proteins. To investigate the impact of stereo- and regiochemistry on ligand discovery, we synthesized a DNA-encoded library of 670,752 derivatives based on 2-azido-3-iodophenylpropionic acids. The library was selected against multiple proteins and yielded specific ligands. The selection fingerprints obtained for a set of protein targets of pharmaceutical relevance clearly showed the preferential enrichment of ortho-, meta- or para-regioisomers, which was experimentally verified by affinity measurements in the absence of DNA. The discovered ligands included novel selective enzyme inhibitors and binders to tumour-associated antigens, which enabled conditional chimeric antigen receptor T-cell activation and tumour targeting.
Collapse
Affiliation(s)
- Nicholas Favalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Christian Pellegrino
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | | | | | | | - Su Yang
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Anika Trenner
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Nour L Mozaffari
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Renier Myburgh
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Mustafa Moroglu
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Stuart J Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Richard A Lerner
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, USA
| | - Peter K Vogt
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland.
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland.
| |
Collapse
|
49
|
Lenci E, Baldini L, Trabocchi A. Diversity-oriented synthesis as a tool to expand the chemical space of DNA-encoded libraries. Bioorg Med Chem 2021; 41:116218. [PMID: 34030087 DOI: 10.1016/j.bmc.2021.116218] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022]
Abstract
DNA-encoded libraries (DEL) represent a powerful technology for generating compound collections for drug discovery campaigns, that have allowed for the selection of many hit compounds over last three decades. However, the application of split-and-pool combinatorial methodologies, as well as the limitation imposed by DNA-compatible chemistry, has often brought to a limited exploration of the chemical space, with an over-representation of flat aromatic or peptide-like structures, whereas a higher scaffold complexity is generally associated with a more successful biological activity of the library. In this context, the application of Diversity-Oriented Synthesis, capable of creating sp3-rich molecular entities even starting from simple flat building blocks, can represent an efficient strategy to significantly broaden the chemical space explored by DELs. In this review, we present selected examples of DNA-compatible complexity-generating reactions that can be applied for the generation of DNA-encoded DOS libraries, including: (i) multicomponent reactions; (ii) C-H/C-X functionalization; (iii) tandem approaches; (iv) cycloadditions; (v) reactions introducing privileged elements. Also, selected case studies on the generation of DELs with high scaffold diversity are discussed, reporting their application in drug discovery programs.
Collapse
Affiliation(s)
- Elena Lenci
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Baldini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Andrea Trabocchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy; Interdepartmental Center for Preclinical Development of Molecular Imaging (CISPIM), University of Florence, Viale Morgagni 85, 50134 Florence, Italy.
| |
Collapse
|
50
|
Liu W, Huang W, Lin Q, Tsai MH, Zhang R, Fan L, Scott JD, Liu G, Wan J. Development of DNA-compatible hydroxycarbonylation reactions using chloroform as a source of carbon monoxide. Bioorg Med Chem 2021; 38:116118. [PMID: 33839592 DOI: 10.1016/j.bmc.2021.116118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022]
Abstract
A robust palladium-catalyzed hydroxycarbonylation of aryl halides on DNA has been developed. Instead of Mo(CO)6 as a source of carbon monoxide as previously described in the literature, chloroform was used as a surrogate in this report for the purpose of avoiding to use a large excess of molybdenum reagent which is not totally soluble in aqueous reaction mixtures.
Collapse
Affiliation(s)
- Wentao Liu
- HitGen Inc., Building 6, No. 8 Huigu 1(st) East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, PR China
| | - Wei Huang
- HitGen Inc., Building 6, No. 8 Huigu 1(st) East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, PR China
| | - Qian Lin
- HitGen Inc., Building 6, No. 8 Huigu 1(st) East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, PR China
| | - Mei-Hsuan Tsai
- HitGen Inc., Building 6, No. 8 Huigu 1(st) East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, PR China
| | - Rui Zhang
- New Jersey Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, United States
| | - Lijun Fan
- New Jersey Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, United States.
| | - Jack D Scott
- New Jersey Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, United States.
| | - Guansai Liu
- HitGen Inc., Building 6, No. 8 Huigu 1(st) East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, PR China.
| | - Jinqiao Wan
- HitGen Inc., Building 6, No. 8 Huigu 1(st) East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, PR China.
| |
Collapse
|