1
|
Du D, Liu P, Tian G, Xu H, Wang X, Liu S, Fan F, Wang S, Wang C, Zeng C, Shu C. Robust oxygen adsorbent mediated oxygen redox reactions for high performance lithium-oxygen battery. J Colloid Interface Sci 2025; 678:570-577. [PMID: 39265329 DOI: 10.1016/j.jcis.2024.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
Lithium-oxygen batteries (LOBs) have been widely studied because of their ultra-high energy density (∼3500 Wh kg-1). However, the reversibility and stability of LOBs are greatly limited by the sluggish kinetics of oxygen reduction/evolution reactions (ORR/OER) and severely parasitic reactions on oxygen electrodes. Electrolyte in LOBs plays an important role in the transport of reactive oxygen species and Li+, which greatly affects the kinetics and reversibility of the charging and discharging processes of batteries. In this work, perfluorooctane (PFO) is used as the additive in 1.0 M LiTFSI/TEGDEM electrolyte for LOBs to regulate the kinetics of oxygen electrode reactions. Due to the strong adsorption ability of PE toward oxygen, the oxygen concentration inside the electrolyte is greatly increased after the addition of PE. In addition, the PE-added electrolyte also exhibits superior electrochemical stability and is capable of triggering solution-mediated Li2O2 growth pathway during the discharge process of the LOBs. Therefore, with the increased oxygen concentration and the optimized electrode/electrolyte interface, the ORR/OER kinetics on the oxygen electrode is significantly promoted, which enables the LOBs with excellent energy efficiency and cycling life. This work provides a new idea for the design of oxygen-rich and high-performance electrolyte for lithium-oxygen batteries.
Collapse
Affiliation(s)
- Dayue Du
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China; State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Pengfei Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China
| | - Guilei Tian
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China
| | - Haoyang Xu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China
| | - Xinxiang Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China
| | - Sheng Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China
| | - Fengxia Fan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China
| | - Shuhan Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China
| | - Chuan Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China
| | - Chenrui Zeng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China
| | - Chaozhu Shu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China; State Key Laboratory of Geo-Hazard Prevention and Geo-Environment Protection, Chengdu University of Technology, Chengdu, China.
| |
Collapse
|
2
|
Wang J, Li Z, Zhang Y, Lu M, Wang X, Xie Q, Li Q, Qu B. Lithiation: A Pathway to Strengthen Sodiophilic Metal Interlayer of 3D Metallic Skeleton for High-Performance Sodium Metal Anodes. J Phys Chem Lett 2024; 15:8853-8860. [PMID: 39167725 DOI: 10.1021/acs.jpclett.4c02065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Constructing a three-dimensional (3D) skeleton with a sodiophilic-modified layer (SML) has been proven to be an effective strategy to alleviate excessive volumetric deformation and continuous dendrite growth for sodium (Na) metal anodes. However, the weak binding force and violent reaction between the SML and the 3D skeleton lead to numerous cracks/defects and even pulverization of the SML during repeated Na plating/stripping. Herein, a lithiation pathway is presented to construct a sodiophilic Li-Sn alloy layer onto a 3D copper mesh to strengthen the SML for stable Na metal anodes. The lithiation 3D skeleton exhibits superior sodiophilicity, higher charge-transfer efficiency, and lower ion-diffusion barrier, contributing to the homogenization of ion-electronic flux and Na deposition. Simultaneously, the dense Li-Sn alloy is more stable than the monometal Sn-layer, which effectively prevents damage to the SML and enhances the stability of the SML. As a result, the asymmetrical cell exhibits great performance with a negligible nucleation overpotential and a high average Coulombic efficiency of 99.4%. Moreover, the full cell assembled with Na3V2(PO4)3 cathode delivers superior capacity retention of 91.3% after 1000 cycles at a current of 3C.
Collapse
Affiliation(s)
- Jin Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Materials, Xiamen University, Xiamen 361005, China
| | - Zhipeng Li
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yiming Zhang
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| | - Miao Lu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xinghui Wang
- College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou 350108, China
| | - Qingshui Xie
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Materials, Xiamen University, Xiamen 361005, China
| | - Qian Li
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| | - Baihua Qu
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| |
Collapse
|
3
|
Gao ML, Wang QY, Liao YL, Chen WR, Huang ZY, Zhuang XX, Zhang XP. Piperidine-based ionic liquid additive with electrostatic shielding and redox activity enabling advanced lithium-oxygen batteries. Chem Commun (Camb) 2024; 60:9058-9061. [PMID: 39101215 DOI: 10.1039/d4cc02983f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Here, we propose a piperidine-based ionic liquid additive. The electrostatic shielding effect of the piperidine cation (PP13+) effectively inhibits the growth of lithium dendrites. Simultaneously, the redox activity of the bromine anion synergistically reduces the overpotential. This approach significantly improves the cycling performance of lithium-oxygen batteries.
Collapse
Affiliation(s)
- Meng-Lin Gao
- School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Qian-Yan Wang
- School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Ya-Ling Liao
- School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Wei-Rong Chen
- School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Zhong-Yu Huang
- School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Xin-Xin Zhuang
- School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Xiao-Ping Zhang
- School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China.
- Tianfu Yongxing Laboratory, China
| |
Collapse
|
4
|
Cao J, Zhao F, Guan W, Yang X, Zhao Q, Gao L, Ren X, Wu G, Liu A. Additives for Aqueous Zinc-Ion Batteries: Recent Progress, Mechanism Analysis, and Future Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400221. [PMID: 38586921 DOI: 10.1002/smll.202400221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/21/2024] [Indexed: 04/09/2024]
Abstract
Aqueous zinc-ion batteries (ZIBs) stand out as a promising next-generation electrochemical energy storage technology, offering notable advantages such as high specific capacity, enhanced safety, and cost-effectiveness. However, the application of aqueous electrolytes introduces challenges: Zn dendrite formation and parasitic reactions at the anode, as well as dissolution, electrostatic interaction, and by-product formation at the cathode. In addressing these electrode-centric problems, additive engineering has emerged as an effective strategy. This review delves into the latest advancements in electrolyte additives for ZIBs, emphasizing their role in resolving the existing issues. Key focus areas include improving morphology and reducing side reactions during battery cycling using synergistic effects of modulating anode interface regulation, zinc facet control, and restructuring of hydrogen bonds and solvation sheaths. Special attention is given to the efficacy of amino acids and zwitterions due to their multifunction to improve the cycling performance of batteries concerning cycle stability and lifespan. Additionally, the recent additive advancements are studied for low-temperature and extreme weather applications meticulously. This review concludes with a holistic look at the future of additive engineering, underscoring its critical role in advancing ZIB performance amidst the complexities and challenges of electrolyte additives.
Collapse
Affiliation(s)
- Jianghui Cao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
- Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Fang Zhao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Weixin Guan
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Xiaoxuan Yang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Qidong Zhao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Liguo Gao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Xuefeng Ren
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Anmin Liu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| |
Collapse
|
5
|
Lee J, Choi I, Kim E, Park J, Nam KW. Metal-organic frameworks for high-performance cathodes in batteries. iScience 2024; 27:110211. [PMID: 39021798 PMCID: PMC11253523 DOI: 10.1016/j.isci.2024.110211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Metal-organic frameworks (MOFs) are functional materials that are proving to be indispensable for the development of next-generation batteries. The porosity, crystallinity, and abundance of active sites in MOFs, which can be tuned by selecting the appropriate transition metal/organic linker combination, enable MOFs to meet the performance requirements for cathode materials in batteries. Recent studies on the use of MOFs in cathodes have verified their high durability, cyclability, and capacity thus demonstrating the huge potential of MOFs as high-performance cathode materials. However, to keep pace with the rapid growth of the battery industry, several challenges hindering the development of MOF-based cathode materials need to be overcome. This review analyzes current applications of MOFs to commercially available lithium-ion batteries as well as advanced batteries still in the research stage. This review provides a comprehensive outlook on the progress and potential of MOF cathodes in meeting the performance requirements of the future battery industry.
Collapse
Affiliation(s)
- Jeongmin Lee
- Department of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Inyoung Choi
- Department of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Eunji Kim
- Department of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Junghyun Park
- Department of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kwan Woo Nam
- Department of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
6
|
Ge B, Hu L, Yu X, Wang L, Fernandez C, Yang N, Liang Q, Yang QH. Engineering Triple-Phase Interfaces around the Anode toward Practical Alkali Metal-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400937. [PMID: 38634714 DOI: 10.1002/adma.202400937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Alkali metal-air batteries (AMABs) promise ultrahigh gravimetric energy densities, while the inherent poor cycle stability hinders their practical application. To address this challenge, most previous efforts are devoted to advancing the air cathodes with high electrocatalytic activity. Recent studies have underlined the solid-liquid-gas triple-phase interface around the anode can play far more significant roles than previously acknowledged by the scientific community. Besides the bottlenecks of uncontrollable dendrite growth and gas evolution in conventional alkali metal batteries, the corrosive gases, intermediate oxygen species, and redox mediators in AMABs cause more severe anode corrosion and structural collapse, posing greater challenges to the stabilization of the anode triple-phase interface. This work aims to provide a timely perspective on the anode interface engineering for durable AMABs. Taking the Li-air battery as a typical example, this critical review shows the latest developed anode stabilization strategies, including formulating electrolytes to build protective interphases, fabricating advanced anodes to improve their anti-corrosion capability, and designing functional separator to shield the corrosive species. Finally, the remaining scientific and technical issues from the prospects of anode interface engineering are highlighted, particularly materials system engineering, for the practical use of AMABs.
Collapse
Affiliation(s)
- Bingcheng Ge
- Department of Mechanical Engineering and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Liang Hu
- Department of Mechanical Engineering and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Xiaoliang Yu
- Department of Mechanical Engineering and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Lixu Wang
- Fujian XFH New Energy Materials Co, Ltd, No. 38, Shuidong Industry Park, Yongan, 366000, China
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB107QB, UK
| | - Nianjun Yang
- Department of Chemistry & IMO-IMOMEC, Hasselt University, Diepenbeek, 3590, Belgium
| | - Qinghua Liang
- Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, China
| | - Quan-Hong Yang
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, TianjinUniversity, Tianjin, 300072, China
| |
Collapse
|
7
|
Ma R, Tang C, Wang Y, Xu X, Wu M, Cui X, Yang Y. Linker Mediated Electronic-State Manipulation of Conjugated Organic Polymers Enabling Highly Efficient Oxygen Reduction. Angew Chem Int Ed Engl 2024; 63:e202405594. [PMID: 38638107 DOI: 10.1002/anie.202405594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Conjugated polymers with tailorable composition and microarchitecture are propitious for modulating catalytic properties and deciphering inherent structure-performance relationships. Herein, we report a facile linker engineering strategy to manipulate the electronic states of metallophthalocyanine conjugated polymers and uncover the vital role of organic linkers in facilitating electrocatalytic oxygen reduction reaction (ORR). Specifically, a set of cobalt phthalocyanine conjugated polymers (CoPc-CPs) wrapped onto carbon nanotubes (denoted CNTs@CoPc-CPs) are judiciously crafted via in situ assembling square-planar cobalt tetraaminophthalocyanine (CoPc(NH2)4) with different linear aromatic dialdehyde-based organic linkers in the presence of CNTs. Intriguingly, upon varying the electronic characteristic of organic linkers from terephthalaldehyde (TA) to 2,5-thiophenedicarboxaldehyde (TDA) and then to thieno/thiophene-2,5-dicarboxaldehyde (bTDA), their corresponding CNTs@CoPc-CPs exhibit gradually improved electrocatalytic ORR performance. More importantly, theoretical calculations reveal that the charge transfer from CoPc units to electron-withdrawing linkers (i.e., TDA and bTDA) drives the delocalization of Co d-orbital electrons, thereby downshifting the Co d-band energy level. Accordingly, the active Co centers with more positive valence state exhibit optimized binding energy toward ORR-relevant intermediates and thus a balanced adsorption/desorption pathway that endows significant enhancement in electrocatalytic ORR. This work demonstrates a molecular-level engineering route for rationally designing efficient polymer catalysts and gaining insightful understanding of electrocatalytic mechanisms.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Chenglong Tang
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Yonglin Wang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Xiaoxue Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Mingjie Wu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Xun Cui
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Yingkui Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| |
Collapse
|
8
|
Xia Y, Tong R, Zhang J, Xu M, Shao G, Wang H, Dong Y, Wang CA. Polarizable Additive with Intermediate Chelation Strength for Stable Aqueous Zinc-Ion Batteries. NANO-MICRO LETTERS 2024; 16:82. [PMID: 38214786 PMCID: PMC10786796 DOI: 10.1007/s40820-023-01305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/25/2023] [Indexed: 01/13/2024]
Abstract
Aqueous zinc-ion batteries are promising due to inherent safety, low cost, low toxicity, and high volumetric capacity. However, issues of dendrites and side reactions between zinc metal anode and the electrolyte need to be solved for extended storage and cycle life. Here, we proposed that an electrolyte additive with an intermediate chelation strength of zinc ion-strong enough to exclude water molecules from the zinc metal-electrolyte interface and not too strong to cause a significant energy barrier for zinc ion dissociation-can benefit the electrochemical stability by suppressing hydrogen evolution reaction, overpotential growth, and dendrite formation. Penta-sodium diethylene-triaminepentaacetic acid salt was selected for such a purpose. It has a suitable chelating ability in aqueous solutions to adjust solvation sheath and can be readily polarized under electrical loading conditions to further improve the passivation. Zn||Zn symmetric cells can be stably operated over 3500 h at 1 mA cm-2. Zn||NH4V4O10 full cells with the additive show great cycling stability with 84.6% capacity retention after 500 cycles at 1 A g-1. Since the additive not only reduces H2 evolution and corrosion but also modifies Zn2+ diffusion and deposition, highlyreversible Zn electrodes can be achieved as verified by the experimental results. Our work offers a practical approach to the logical design of reliable electrolytes for high-performance aqueous batteries.
Collapse
Affiliation(s)
- Yuting Xia
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Rongao Tong
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jingxi Zhang
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Mingjie Xu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Gang Shao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Hailong Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yanhao Dong
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Chang-An Wang
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
9
|
Li Z, Li Y, Bi C, Zhang Q, Hou L, Li X, Ma J, Zhang X, Li B, Wen R, Zhang Q. Construction of Organic‐Rich Solid Electrolyte Interphase for Long‐Cycling Lithium–Sulfur Batteries. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202304541] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Indexed: 10/10/2024]
Abstract
AbstractLithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy storage devices. However, the parasitic reactions between lithium polysulfides (LiPSs) and Li metal anodes render limited cycling lifespan of Li–S batteries. Herein, an organic‐rich solid electrolyte interphase (SEI) is constructed to inhibit the LiPS parasitic reactions and achieve long‐cycling Li–S batteries. Concretely, 1,3,5‐trioxane is introduced as a reactive co‐solvent that decomposes on Li anode surfaces and contributes organic components to the SEI. The as‐constructed organic‐rich SEI effectively inhibits the LiPS parasitic reactions and protects working Li metal anodes. Consequently, the cycling lifespan of Li–S coin cells with 50 µm Li anodes and 4.0 mg cm−2 sulfur cathodes is prolonged from 130 to 300 cycles by the organic‐rich SEI. Furthermore, the organic‐rich SEI enables a 3.0 Ah‐level Li–S pouch cell to achieve a high energy density of 400 Wh kg−1 and stable 26 cycles. This study affords an effective organic‐rich SEI to inhibit the LiPS parasitic reactions and inspires rational SEI design to achieve long‐cycling Li–S batteries.
Collapse
Affiliation(s)
- Zheng Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Yuan Li
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Chen‐Xi Bi
- Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology Beijing 100081 China
- School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qian‐Kui Zhang
- Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology Beijing 100081 China
- School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Peng Hou
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Xi‐Yao Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Jin Ma
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
- Shanxi Research Institute for Clean Energy Tsinghua University Taiyuan 030032 China
| | - Xue‐Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Bo‐Quan Li
- Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology Beijing 100081 China
- School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Rui Wen
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
10
|
Zhu F, Zhang Z, Gu J, Xu J, Eitssayeam S, Xu Q, Shi P, Min Y. Li 3Bi/Li 2O layer with uniform built-in electric field distribution for dendrite free lithium metal batteries. J Colloid Interface Sci 2023; 650:622-635. [PMID: 37437442 DOI: 10.1016/j.jcis.2023.06.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/14/2023]
Abstract
Lithium metal batteries have garnered significant attention as a promising energy storage technology, offering high energy density and potential applications across various industries. However, the formation of lithium dendrites during battery cycling poses a considerable challenge, leading to performance degradation and safety hazards. This study aims to address this issue by investigating the effectiveness of a protective layer on the lithium metal surface in inhibiting dendrite growth. The hypothesis is that continuous lithium consumption during battery cycling is a primary contributor to dendrite formation. To test this hypothesis, a protective layer of Li3Bi/Li2O was applied to the lithium foil through immersion in a BiN3O9 solution. Experimental techniques including kelvin probe force microscopy (KPFM) and density functional theory (DFT) calculations were employed to analyze the structural and electronic properties of the Li3Bi/Li2O layer. The findings demonstrate successful doping of Bi into the Li coating, forming Bi-Bi and Bi-O bonds. KPFM measurements reveal a higher work function of Li3Bi/Li2O, indicating its potential as an effective protective layer. DFT calculations further support this observation by revealing a greater adsorption energy of lithium on the Li3Bi/Li2O layer compared to the bulk material. Charge density analysis suggests that the adsorption of Li atoms onto the Li3Bi/Li2O layer induces a redistribution of charge, resulting in increased electron availability on the surface and preventing electrode-electrolyte contact. This study provides insights into the role of the Li3Bi/Li2O protective layer in inhibiting dendrite growth in lithium metal batteries. By mitigating dendrite formation, the protective layer holds promise for enhancing battery performance and longevity. These findings contribute to the development of strategies for improving the stability and reliability of lithium metal batteries, facilitating their wider adoption in energy storage applications.
Collapse
Affiliation(s)
- Fei Zhu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zekai Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Gu
- China-UK Low Carbon College, Shanghai Jiao Tong University, Lingang, Shanghai 201306, China
| | - Jinting Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Sukum Eitssayeam
- Physics and Materials science Department, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai 50200, Thailand
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - PengHui Shi
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - YuLin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
11
|
Shinde SS, Wagh NK, Kim S, Lee J. Li, Na, K, Mg, Zn, Al, and Ca Anode Interface Chemistries Developed by Solid-State Electrolytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304235. [PMID: 37743719 PMCID: PMC10646287 DOI: 10.1002/advs.202304235] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/30/2023] [Indexed: 09/26/2023]
Abstract
Solid-state batteries (SSBs) have received significant attention due to their high energy density, reversible cycle life, and safe operations relative to commercial Li-ion batteries using flammable liquid electrolytes. This review presents the fundamentals, structures, thermodynamics, chemistries, and electrochemical kinetics of desirable solid electrolyte interphase (SEI) required to meet the practical requirements of reversible anodes. Theoretical and experimental insights for metal nucleation, deposition, and stripping for the reversible cycling of metal anodes are provided. Ion transport mechanisms and state-of-the-art solid-state electrolytes (SEs) are discussed for realizing high-performance cells. The interface challenges and strategies are also concerned with the integration of SEs, anodes, and cathodes for large-scale SSBs in terms of physical/chemical contacts, space-charge layer, interdiffusion, lattice-mismatch, dendritic growth, chemical reactivity of SEI, current collectors, and thermal instability. The recent innovations for anode interface chemistries developed by SEs are highlighted with monovalent (lithium (Li+ ), sodium (Na+ ), potassium (K+ )) and multivalent (magnesium (Mg2+ ), zinc (Zn2+ ), aluminum (Al3+ ), calcium (Ca2+ )) cation carriers (i.e., lithium-metal, lithium-sulfur, sodium-metal, potassium-ion, magnesium-ion, zinc-metal, aluminum-ion, and calcium-ion batteries) compared to those of liquid counterparts.
Collapse
Affiliation(s)
- Sambhaji S. Shinde
- Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
- FLEXOLYTE Inc.Ansan15588Republic of Korea
| | - Nayantara K. Wagh
- Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
- FLEXOLYTE Inc.Ansan15588Republic of Korea
| | - Sung‐Hae Kim
- Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
- FLEXOLYTE Inc.Ansan15588Republic of Korea
| | - Jung‐Ho Lee
- Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
- FLEXOLYTE Inc.Ansan15588Republic of Korea
| |
Collapse
|
12
|
Ding H, Feng Y, Zhou J, Yu X, Fan L, Lu B. Superstable potassium metal batteries with a controllable internal electric field. FUNDAMENTAL RESEARCH 2023; 3:813-821. [PMID: 38933301 PMCID: PMC11197696 DOI: 10.1016/j.fmre.2022.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/09/2022] [Accepted: 03/06/2022] [Indexed: 11/30/2022] Open
Abstract
Stable potassium metal batteries (PMBs) are promising candidates for electrical energy storage due to their ability to reversibly store electrical energy at a low cost. However, dendritic growth and large volume changes hinder their practical application. Here, referring to the morphology and structure of a virus, a bionic virus-like-carbon microsphere (BVC) was designed as the anode host for a PMB. A BVC with a three-dimensional structure can not only control the electric field, which can suppress dendrite formation, but can also provide a larger space to accommodate the volume change during the cycle progress. The designed potassium (K) metal anode exhibits excellent cycle life and stability (during 1800 h of repeated plating/stripping of K at a current density of 0.1 mA cm-2, K-BVC can realize a very stable K metal anode with low voltage hysteresis). Stable cyclability and improved rate capability can be realized in a full cell using Prussian blue over 400 cycles. This research provides a new idea for the development of stable K metal anodes and may pave the way for the practical application of next-generation metal batteries.
Collapse
Affiliation(s)
- Hongbo Ding
- School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
| | - Yanhong Feng
- School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
| | - Jiang Zhou
- School of Materials Science and Engineering and Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China
| | - Xinzhi Yu
- School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
| | - Ling Fan
- School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
| | - Bingan Lu
- School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
| |
Collapse
|
13
|
Yang Q, Li G, Shi D, Gao L, Deng N, Kang W, Cheng B. Composite Solid Electrolyte with Continuous and Fast Organic-Inorganic Ion Transport Highways Created by 3D Crimped Nanofibers@functional Ceramic Nanowires. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301521. [PMID: 37093187 DOI: 10.1002/smll.202301521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/18/2023] [Indexed: 05/03/2023]
Abstract
A 3D crimped sulfonated polyethersulfone-polyethylene oxide(C-SPES/PEO) nanofiber membrane and long-range lanthanum cobaltate(LaCoO3 ) nanowires are collectively doped into a PEO matrix to acquire a composite solid electrolyte (C-SPES-PEO-LaCoO3 ) for all-solid-state lithium metal batteries(ASSLMBs). The 3D crimped structure enables the fiber membrane to have a large porosity of 90%. Therefore, under the premise of strongly guaranteeing the mechanical properties of C-SPES-PEO-LaCoO3 , the ceramic nanowires conveniently penetrated into the 3D crimped SPES nanofiber without being blocked, which can facilitate fast ionic conductivity by forming 3D continuous organic-inorganic ion transport pathways. The as-prepared electrolyte delivers an excellent ionic conductivity of 2.5 × 10-4 S cm-1 at 30 °C. Density functional theory calculations indicate that the LaCoO3 nanowires and 3D crimped C-SPES/PEO fibers contribute to Li+ movement. Particularly, the LiFePO4 /C-SPES-PEO-LaCoO3 /Li and NMC811/C-SPES-PEO-LaCoO3 /Li pouch cell have a high initial discharge specific capacity of 156.8 mAh g-1 and a maximum value of 176.7 mAh g-1 , respectively. In addition, the universality of the penetration of C-SPES/PEO nanofibers to functional ceramic nanowires is also reflected by the stable cycling performance of ASSLMBs based on the electrolytes, in which the LaCoO3 nanowires are replaced with Gd-doped CeO2 nanowires. The work will provide a novel approach to high performance solid-state electrolytes.
Collapse
Affiliation(s)
- Qi Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, P. R. China
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Geng Li
- National Supercomputer Center in Tianjin, Tianjin, 300457, P. R. China
| | - Dongjie Shi
- National Supercomputer Center in Tianjin, Tianjin, 300457, P. R. China
| | - Lu Gao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, P. R. China
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, P. R. China
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, P. R. China
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
14
|
Liu T, Zhao S, Xiong Q, Yu J, Wang J, Huang G, Ni M, Zhang X. Reversible Discharge Products in Li-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208925. [PMID: 36502282 DOI: 10.1002/adma.202208925] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/06/2022] [Indexed: 05/19/2023]
Abstract
Lithium-air (Li-air) batteries stand out among the post-Li-ion batteries due to their high energy density, which has rapidly progressed in the past years. Regarding the fundamental mechanism of Li-air batteries that discharge products produced and decomposed during charging and recharging progress, the reversibility of products closely affects the battery performance. Along with the upsurge of the mainstream discharge products lithium peroxide, with devoted efforts to screening electrolytes, constructing high-efficiency cathodes, and optimizing anodes, much progress is made in the fundamental understanding and performance. However, the limited advancement is insufficient. In this case, the investigations of other discharge products, including lithium hydroxide, lithium superoxide, lithium oxide, and lithium carbonate, emerge and bring breakthroughs for the Li-air battery technologies. To deepen the understanding of the electrochemical reactions and conversions of discharge products in the battery, recent advances in the various discharge products, mainly focusing on the growth and decomposition mechanisms and the determining factors are systematically reviewed. The perspectives for Li-air batteries on the fundamental development of discharge products and future applications are also provided.
Collapse
Affiliation(s)
- Tong Liu
- Building Energy Research Group, Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| | - Siyuan Zhao
- Building Energy Research Group, Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Qi Xiong
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jie Yu
- Building Energy Research Group, Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Jian Wang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| | - Gang Huang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Meng Ni
- Building Energy Research Group, Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Xinbo Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| |
Collapse
|
15
|
Wu W, Luo W, Huang Y. Less is more: a perspective on thinning lithium metal towards high-energy-density rechargeable lithium batteries. Chem Soc Rev 2023; 52:2553-2572. [PMID: 36920421 DOI: 10.1039/d2cs00606e] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Lithium (Li) metal, owing to its high specific capacity and low redox potential as a Li+ ion source in rechargeable lithium batteries, shows impressive prospects for electrochemical energy storage. However, engineering Li metal into thin foils has historically remained difficult, owing to its stickiness and fragility upon mechanical rolling. Consequently, using thick Li in battery systems betrays the original target for achieving higher energy density, results in material waste, and creates illusions on evaluating modification strategies for taming the highly reactive Li metal anode. Being apprehensive of this, in the tutorial review, we illustrate the argument of applying thin Li (<50 μm, preferably ≤30 μm) to achieve more realistic and advanced battery systems. A brief overview of Li is sketched first to help understand its role in batteries. Then, the reasons for pursuing thin Li are critically analyzed. Next, seminal technologies enabling the fabrication of thin Li are summarized and compared, which calls for the participation of experts from mechanical engineering, metallurgy, electrochemistry, and other fields. Subsequently, the possible applications of thin Li in batteries are presented. With the deployment of thin Li, there are new challenges and opportunities to encounter and an outlook is afforded thereof. Holy-grail Li metal anodes, combined with the subtraction operation in thickness and compatible modification strategies, would bring about a truly great leap forward in electrochemical energy storage.
Collapse
Affiliation(s)
- Wangyan Wu
- Institute of New Energy for Vehicles, Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China. .,Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Wei Luo
- Institute of New Energy for Vehicles, Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China. .,Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
16
|
Liu F, Fan Z. Defect engineering of two-dimensional materials for advanced energy conversion and storage. Chem Soc Rev 2023; 52:1723-1772. [PMID: 36779475 DOI: 10.1039/d2cs00931e] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
In the global trend towards carbon neutrality, sustainable energy conversion and storage technologies are of vital significance to tackle the energy crisis and climate change. However, traditional electrode materials gradually reach their property limits. Two-dimensional (2D) materials featuring large aspect ratios and tunable surface properties exhibit tremendous potential for improving the performance of energy conversion and storage devices. To rationally control the physical and chemical properties for specific applications, defect engineering of 2D materials has been investigated extensively, and is becoming a versatile strategy to promote the electrode reaction kinetics. Simultaneously, exploring the in-depth mechanisms underlying defect action in electrode reactions is crucial to provide profound insight into structure tailoring and property optimization. In this review, we highlight the cutting-edge advances in defect engineering in 2D materials as well as their considerable effects in energy-related applications. Moreover, the confronting challenges and promising directions are discussed for the development of advanced energy conversion and storage systems.
Collapse
Affiliation(s)
- Fu Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China. .,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
17
|
Cao J, Qian G, Lu X, Lu X. Advanced Composite Lithium Metal Anodes with 3D Frameworks: Preloading Strategies, Interfacial Optimization, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205653. [PMID: 36517114 DOI: 10.1002/smll.202205653] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Lithium (Li) metal is regarded as the most promising anode candidate for next-generation rechargeable storage systems due to its impeccable capacity and the lowest electrochemical potential. Nevertheless, the irregular dendritic Li, unstable interface, and infinite volume change, which are the intrinsic drawbacks rooted in Li metal, give a seriously negative effect on the practical commercialization for Li metal batteries. Among the numerous optimization strategies, designing a 3D framework with high specific surface area and sufficient space is a convincing way out to ameliorate the above issues. Due to the Li-free property of the 3D framework, a Li preloading process is necessary before the 3D framework that matches with the electrolyte and cathode. How to achieve homogeneous integration with Li and 3D framework is essential to determine the electrochemical performance of Li metal anode. Herein, this review overviews the recent general fabrication methods of 3D framework-based composite Li metal anode, including electrodeposition, molten Li infusion, and pressure-derived fabrication, with the focus on the underlying mechanism, design criteria, and interfacial optimization. These results can give specific perspectives for future Li metal batteries with thin thickness, low N/P ratio, lean electrolyte, and high energy density (>350 Wh Kg-1 ).
Collapse
Affiliation(s)
- Jiaqi Cao
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Guoyu Qian
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Xueyi Lu
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Xia Lu
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| |
Collapse
|
18
|
Wang J, Chen Y, Zhao Y, Yao C, Liu Y, Liu X. CO 2 Capture Membrane for Long-Cycle Lithium-Air Battery. Molecules 2023; 28:molecules28052024. [PMID: 36903270 PMCID: PMC10003791 DOI: 10.3390/molecules28052024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Lithium-air batteries (LABs) have attracted extensive attention due to their ultra-high energy density. At present, most LABs are operated in pure oxygen (O2) since carbon dioxide (CO2) under ambient air will participate in the battery reaction and generate an irreversible by-product of lithium carbonate (Li2CO3), which will seriously affect the performance of the battery. Here, to solve this problem, we propose to prepare a CO2 capture membrane (CCM) by loading activated carbon encapsulated with lithium hydroxide (LiOH@AC) onto activated carbon fiber felt (ACFF). The effect of the LiOH@AC loading amount on ACFF has been carefully investigated, and CCM has an ultra-high CO2 adsorption performance (137 cm3 g-1) and excellent O2 transmission performance by loading 80 wt% LiOH@AC onto ACFF. The optimized CCM is further applied as a paster on the outside of the LAB. As a result, the specific capacity performance of LAB displays a sharp increase from 27,948 to 36,252 mAh g-1, and the cycle time is extended from 220 h to 310 h operating in a 4% CO2 concentration environment. The concept of carbon capture paster opens a simple and direct way for LABs operating in the atmosphere.
Collapse
|
19
|
Li X, Zhang K, Li Z, Yan Y, Yuan Y, Ma L, Xie K, Ping Loh K. Rational Design of Covalent Organic Frameworks as Gas Diffusion Layers for Multi-atmosphere Lithium-Air Batteries. Angew Chem Int Ed Engl 2023; 62:e202217869. [PMID: 36625674 DOI: 10.1002/anie.202217869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Non-aqueous Li-air batteries, despite their high energy density and low cost, have not been deployed practically due to their instability in ambient air, where moisture causes parasitic reactions and shortens their life drastically. Here, we demonstrate the rational design of nanoporous covalent organic frameworks (COFs) as effective gas diffusion layers (GDLs) to address this constraint. The COF GDLs, with a tailor-made pore size of ≈1.4 nm and superhydrophobicity, can limit the intrusion of organic electrolytes and moisture into the gas diffusion channels, enabling high capacity, fast kinetics, and excellent stability of the Li-air batteries. Moreover, we achieve multi-atmosphere Li-air batteries, which can stably cycle under open ambient air (relative humidity up to 95 %) and even in various atmospheres with looping oxygen, humid air, and carbon dioxide. The design principles of our COF GDLs can be universally applied in energy storage and electrochemical systems using organic electrolytes.
Collapse
Affiliation(s)
- Xing Li
- Department of Chemistry, National University of Singapore, 117543, Singapore, Singapore
| | - Kun Zhang
- Department of Chemistry, National University of Singapore, 117543, Singapore, Singapore.,Institute of Clean Energy, Yangtze River Delta Research Institute, Northwestern Polytechnical University, 215400, Taicang, P. R. China.,State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, P. R. China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum, 266580, Qingdao, Shandong, China
| | - Youguo Yan
- School of Materials Science and Engineering, China University of Petroleum, 266580, Qingdao, Shandong, China
| | - Yijia Yuan
- Department of Chemistry, National University of Singapore, 117543, Singapore, Singapore
| | - Li Ma
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, P. R. China
| | - Keyu Xie
- Institute of Clean Energy, Yangtze River Delta Research Institute, Northwestern Polytechnical University, 215400, Taicang, P. R. China.,State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, P. R. China
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, 117543, Singapore, Singapore
| |
Collapse
|
20
|
Cao T, Cheng X, Wang M, Lu J, Niu J, Liu H, Liu X, Zhang Y. Realizing Holistic Charging-Discharging for Dendrite-Free Lithium Metal Anodes via Constructing Three-Dimensional Li + Conductive Networks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6666-6675. [PMID: 36705679 DOI: 10.1021/acsami.2c17953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Lithium (Li) metal is a promising candidate for next-generation anode materials with high energy densities. However, Li dissolution/deposition processes are limited at the upper surface in contact with the electrolyte, which brings a locally high current density and then results in dendritic Li growth. This restraint of the local surface reaction during cycling has not been solved by commonly used modification strategies. In this study, a three-dimensional (3D) Li+ conductive skeleton is activated from atomic layer deposition (ALD) coating Li3PO4 (LPO) on the surface of the Ni foam (LPNF). Then, the skeleton is efficiently constructed in the Li metal anode by the lower-temperature Li infusion. Ionic conductor LPO layers and electronic conductor Ni fibers supply charge transport channels between the electrolyte and the internal Li. The mixed conductive network realizes holistic charge transfer, which is proved by in situ scanning electron microscopy experiments. In virtue of dispersive dissolution/deposition and optimized electrochemical kinetics brought by a Li+ conductive network, the composited Li electrode presents an excellent symmetric battery cycling stability (over 1200 h) and enhanced rate performances (stable cycling even at 10.0 mA cm-2). When matching with a LiCoO2 (LCO) cathode, LCO||Li@LPNF full batteries exhibit a capacity retention of 80.8% over 250 cycles. During cycling, there was no evidence of dendrite growth and the remaining Li in the composited anode showed a smooth, compact, and well-combined condition with LPNF. Through constructing a 3D Li+ conductive network, the composited Li metal anode breaks through the limit of the local surface reaction; this work proposes a novel insight of realizing holistic charging/discharging for the dendrite-free Li metal anode.
Collapse
Affiliation(s)
- Tianci Cao
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Xiaopeng Cheng
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Mingming Wang
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Junxia Lu
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Jiajia Niu
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Huan Liu
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Xianqiang Liu
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yuefei Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
21
|
Yao N, Sun SY, Chen X, Zhang XQ, Shen X, Fu ZH, Zhang R, Zhang Q. The Anionic Chemistry in Regulating the Reductive Stability of Electrolytes for Lithium Metal Batteries. Angew Chem Int Ed Engl 2022; 61:e202210859. [PMID: 36314987 DOI: 10.1002/anie.202210859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Indexed: 11/07/2022]
Abstract
Advanced electrolyte design is essential for building high-energy-density lithium (Li) batteries, and introducing anions into the Li+ solvation sheaths has been widely demonstrated as a promising strategy. However, a fundamental understanding of the critical role of anions in such electrolytes is very lacking. Herein, the anionic chemistry in regulating the electrolyte structure and stability is probed by combining computational and experimental approaches. Based on a comprehensive analysis of the lowest unoccupied molecular orbitals, the solvents and anions in Li+ solvation sheaths exhibit enhanced and decreased reductive stability compared with free counterparts, respectively, which agrees with both calculated and experimental results of reduction potentials. Accordingly, new strategies are proposed to build stable electrolytes based on the established anionic chemistry. This work unveils the mysterious anionic chemistry in regulating the structure-function relationship of electrolytes and contributes to a rational design of advanced electrolytes for practical Li metal batteries.
Collapse
Affiliation(s)
- Nan Yao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Shu-Yu Sun
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiang Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xue-Qiang Zhang
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China.,School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xin Shen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhong-Heng Fu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Rui Zhang
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China.,School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
22
|
Chen Y, Xu J, He P, Qiao Y, Guo S, Yang H, Zhou H. Metal-air batteries: progress and perspective. Sci Bull (Beijing) 2022; 67:2449-2486. [PMID: 36566068 DOI: 10.1016/j.scib.2022.11.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The metal-air batteries with the largest theoretical energy densities have been paid much more attention. However, metal-air batteries including Li-air/O2, Li-CO2, Na-air/O2, and Zn-air/O2 batteries, are complex systems that have their respective scientific problems, such as metal dendrite forming/deforming, the kinetics of redox mediators for oxygen reduction/evolution reactions, high overpotentials, desolution of CO2, H2O, etc. from the air and related side reactions on both anode and cathode. It should be the main direction to address these shortages to improve performance. Here, we summarized recently research progress in these metal-air/O2 batteries. Some perspectives are also provided for these research fields.
Collapse
Affiliation(s)
- Yuhui Chen
- State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jijing Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ping He
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Yu Qiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shaohua Guo
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Huijun Yang
- Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Umezono, Tsukuba 305-8568, Japan
| | - Haoshen Zhou
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
23
|
Yao N, Sun S, Chen X, Zhang X, Shen X, Fu Z, Zhang R, Zhang Q. The Anionic Chemistry in Regulating the Reductive Stability of Electrolytes for Lithium Metal Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Nan Yao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Shu‐Yu Sun
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Xiang Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Xue‐Qiang Zhang
- Advanced Research Institute for Multidisciplinary Science Beijing Institute of Technology Beijing 100081 China
- School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Xin Shen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Zhong‐Heng Fu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Rui Zhang
- Advanced Research Institute for Multidisciplinary Science Beijing Institute of Technology Beijing 100081 China
- School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
24
|
Hu X, Zhang Y, Wang P, Matios E, Li W. Suppression of Gas Crossover and Dendrite Growth in Sodium-Gas Batteries across a Wide Operating Temperature Range. ACS NANO 2022; 16:17965-17972. [PMID: 36150109 DOI: 10.1021/acsnano.2c05211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Enabling highly stable alkali metal anodes in gas atmospheres, such as oxygen and carbon dioxide, is critical for the implementation of emerging metal-gas batteries with high energy density and improved safety. Herein, we demonstrate a three-salt electrolyte system to tackle the problems of gas crossover and uncontrolled metallic dendrite growth for all-climate sodium-gas batteries by the formation of an electrochemically/chemically stable solid electrolyte interphase that is rich in fluoride and sulfate compounds. Consequently, the sodium metal anodes present high reversible capacity (10 mAh cm-2 at 1.5 mA cm-2) and long cycle life (2000 h) in gas atmospheres across a wide operating temperature range. Using the three-salt electrolyte, all-climate sodium-oxygen and sodium-carbon dioxide batteries are demonstrated with a reversible capacity of 1000 mAh g-1 over 100 cycles at ambient temperature and good adaptability to temperatures from -60 to 60 °C.
Collapse
Affiliation(s)
- Xiaofei Hu
- Thayer School of Engineering Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States
| | - Yiwen Zhang
- Thayer School of Engineering Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States
| | - Peiyu Wang
- Thayer School of Engineering Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States
| | - Edward Matios
- Thayer School of Engineering Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States
| | - Weiyang Li
- Thayer School of Engineering Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States
| |
Collapse
|
25
|
Shuai Y, Lou J, Pei X, Su C, Ye X, Zhang L, Wang Y, Xu Z, Gao P, He S, Wang Z, Chen K. Constructing an In Situ Polymer Electrolyte and a Na-Rich Artificial SEI Layer toward Practical Solid-State Na Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45382-45391. [PMID: 36170595 DOI: 10.1021/acsami.2c12518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sodium is one of the most promising anode candidates for the beyond-lithium-ion batteries. The development of Na metal batteries with a high energy density, high safety, and low cost is desirable to meet the requirements of both portable and stationary electrical energy storage. However, several problems caused by the unstable Na metal anode and the unsafe liquid electrolyte severely hinder their practical applications. Herein, we report a facile but effective methodology to construct an in situ polymer electrolyte and Na-rich artificial solid-electrolyte interface (SEI) layer concurrently. The obtained integrated Na metal batteries display long cycling life and admirable dynamic performance with total inhibition of dendrites, excellent contact of the cathode/polymer electrolyte, and reduction of side reactions during cycling. The modified Na metal electrode with the in situ polymer electrolyte is stable and dendrite-free in repeated plating/stripping processes with a life span of above 1000 h. Moreover, this method is compatible with different cathodes that demonstrate outstanding electrochemical performance in full cells. We believe that this approach provides a practical solution to solid-state Na metal batteries.
Collapse
Affiliation(s)
- Yi Shuai
- School of Resources and Environment, Carbon Neutralization Research Institute, Hunan University of Technology and Business, Changsha 410083, China
| | - Jin Lou
- School of Resources and Environment, Carbon Neutralization Research Institute, Hunan University of Technology and Business, Changsha 410083, China
- Light Alloy Research Institute, Central South University, Changsha 410083, China
| | - Xianglin Pei
- School of Resources and Environment, Carbon Neutralization Research Institute, Hunan University of Technology and Business, Changsha 410083, China
| | - Changqing Su
- School of Resources and Environment, Carbon Neutralization Research Institute, Hunan University of Technology and Business, Changsha 410083, China
| | - Xiaosheng Ye
- School of Resources and Environment, Carbon Neutralization Research Institute, Hunan University of Technology and Business, Changsha 410083, China
| | - Limin Zhang
- School of Resources and Environment, Carbon Neutralization Research Institute, Hunan University of Technology and Business, Changsha 410083, China
| | - Yu Wang
- Department of Biomedical Engineering, Changzhi Medical College, Changzhi 046000, China
| | - Zhixin Xu
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pingping Gao
- Light Alloy Research Institute, Central South University, Changsha 410083, China
| | - Shijie He
- Light Alloy Research Institute, Central South University, Changsha 410083, China
| | - Zhilong Wang
- Light Alloy Research Institute, Central South University, Changsha 410083, China
| | - Kanghua Chen
- Light Alloy Research Institute, Central South University, Changsha 410083, China
| |
Collapse
|
26
|
Meng J, Jia G, Yang H, Wang M. Recent advances for SEI of hard carbon anode in sodium-ion batteries: A mini review. Front Chem 2022; 10:986541. [PMID: 36204151 PMCID: PMC9531120 DOI: 10.3389/fchem.2022.986541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 11/27/2022] Open
Abstract
The commercialization of sodium-ion batteries has been hampered by the anode’s performance. Carbon-based anodes have always had great application prospects, but traditional graphite anodes have great application limitations due to the inability of reversible insertion/de-insertion of sodium ions in them, while hard carbon materials have the high theoretical capacity, low reaction potential has received extensive attention in recent years. Nevertheless, the low first cycle Coulomb efficiency and rapid capacity decline of hard carbon materials limited its application. SEI has always played a crucial role in the electrochemical process. By controlling the formation of SEI, researchers have increased the efficiency of sodium-ion battery anodes, although the composition of SEI and how it evolved are still unknown. This paper briefly summarizes the research progress of hard carbon anode surface SEI in sodium-ion batteries in recent years. From the perspectives of characterization methods, structural composition, and regulation strategies is reviewed, and the future development directions of these three directions are suggested. The reference opinions are provided for the reference researchers.
Collapse
Affiliation(s)
- Jiaqi Meng
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guofeng Jia
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, China
| | - Hongjun Yang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, China
| | - Min Wang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, China
| |
Collapse
|
27
|
Wu X, Wang X, Li Z, Chen L, Zhou S, Zhang H, Qiao Y, Yue H, Huang L, Sun SG. Stabilizing Li-O 2 Batteries with Multifunctional Fluorinated Graphene. NANO LETTERS 2022; 22:4985-4992. [PMID: 35686884 DOI: 10.1021/acs.nanolett.2c01713] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As a full cell system with attractive theoretical energy density, challenges faced by Li-O2 batteries (LOBs) are not only the deficient actual capacity and superoxide-derived parasitic reactions on the cathode side but also the stability of Li-metal anode. To solve simultaneously intrinsic issues, multifunctional fluorinated graphene (CFx, x = 1, F-Gr) was introduced into the ether-based electrolyte of LOBs. F-Gr can accelerate O2- transformation and O2--participated oxygen reduction reaction (ORR) process, resulting in enhanced discharge capacity and restrained O2--derived side reactions of LOBs, respectively. Moreover, F-Gr induced the F-rich and O-depleted solid electrolyte interphase (SEI) film formation, which have improved Li-metal stability. Therefore, energy storage capacity, efficiency, and cyclability of LOBs have been markedly enhanced. More importantly, the method developed in this work to disperse F-Gr into an ether-based electrolyte for improving LOBs' performances is convenient and significant from both scientific and engineering aspects.
Collapse
Affiliation(s)
- Xiaohong Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Xiaotong Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Zhengang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Libin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Shiyuan Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Haitang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Yu Qiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
- Fujian Science and Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen 361005, P.R. China
| | - Hongjun Yue
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China
| | - Ling Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| |
Collapse
|
28
|
He X, Cui Y, Qian Y, Wu Y, Ling H, Zhang H, Kong XY, Zhao Y, Xue M, Jiang L, Wen L. Anion Concentration Gradient-Assisted Construction of a Solid-Electrolyte Interphase for a Stable Zinc Metal Anode at High Rates. J Am Chem Soc 2022; 144:11168-11177. [PMID: 35658470 DOI: 10.1021/jacs.2c01815] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Coulombic efficiency (CE) and cycle life of metal anodes (lithium, sodium, zinc) are limited by dendritic growth and side reactions in rechargeable metal batteries. Here, we proposed a concept for constructing an anion concentration gradient (ACG)-assisted solid-electrolyte interphase (SEI) for ultrahigh ionic conductivity on metal anodes, in which the SEI layer is fabricated through an in situ chemical reaction of the sulfonic acid polymer and zinc (Zn) metal. Owing to the driving force of the sulfonate concentration gradient and high bulky sulfonate concentration, a promoted Zn2+ ionic conductivity and inhibited anion diffusion in the SEI layer are realized, resulting in a significant suppression of dendrite growth and side reaction. The presence of ACG-SEI on the Zn metal enables stable Zn plating/stripping over 2000 h at a high current density of 20 mA cm-2 and a capacity of 5 mAh cm-2 in Zn/Zn symmetric cells, and moreover an improved cycling stability is also observed in Zn/MnO2 full cells and Zn/AC supercapacitors. The SEI layer containing anion concentration gradients for stable cycling of a metal anode sheds a new light on the fundamental understanding of cation plating/stripping on metal electrodes and technical advances of rechargeable metal batteries with remarkable performance under practical conditions.
Collapse
Affiliation(s)
- Xiaofeng He
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanglansen Cui
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yongchao Qian
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yadong Wu
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haoyang Ling
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huanrong Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiang-Yu Kong
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education; National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology; School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Mianqi Xue
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
29
|
Xiong Q, Li C, Li Z, Liang Y, Li J, Yan J, Huang G, Zhang X. Hydrogen-Bond-Assisted Solution Discharge in Aprotic Li-O 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110416. [PMID: 35363905 DOI: 10.1002/adma.202110416] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Surface discharge mechanism induced cathode passivation is a critical challenge that blocks the full liberation of the ultrahigh theoretical energy density in aprotic Li-O2 batteries. Herein, a facile and universal concept of hydrogen-bond-assisted solvation is proposed to trigger the solution discharge process for averting the shortcomings associated with surface discharge. 2,5-Di-tert-butylhydroquinone (DBHQ), an antioxidant with hydroxyl groups, is introduced as an exemplary soluble catalyst to promote solution discharge by hydrogen-bond-assisted solvation of O2 - and Li2 O2 (OH···O). Thus, a Li-O2 battery with 50 × 10-3 m DBHQ delivers an extraordinary discharge capacity of 18 945 mAh g-1 (i.e., 9.47 mAh cm-2 ), even surpassing the capacity endowed by the state-of-the-art reduction mediator of 2,5-di-tert-butyl-1,4-benzoquinone. Besides, an ultrahigh Li2 O2 yield of 97.1% is also achieved due to the depressed reactivity of the reduced oxygen-containing species (O2 - , LiO2 , and Li2 O2 ) by the solvating and antioxidative abilities of DBHQ. Consequently, the Li-O2 battery with DBHQ exhibits excellent cycling lifetime and rate capability. Furthermore, the generalizability of this approach of hydrogen-bond-assisted solution discharge is verified by other soluble catalysts that contain OH or NH groups, with implications that could bring Li-O2 batteries one step closer to being a viable technology.
Collapse
Affiliation(s)
- Qi Xiong
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Chaole Li
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ziwei Li
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yulong Liang
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jianchen Li
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Junmin Yan
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Gang Huang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xinbo Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
30
|
Li S, Huang J, Cui Y, Liu S, Chen Z, Huang W, Li C, Liu R, Fu R, Wu D. A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes. NATURE NANOTECHNOLOGY 2022; 17:613-621. [PMID: 35469010 DOI: 10.1038/s41565-022-01107-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The low cycling efficiency and uncontrolled dendrite growth resulting from an unstable and heterogeneous lithium-electrolyte interface have largely hindered the practical application of lithium metal batteries. In this study, a robust all-organic interfacial protective layer has been developed to achieve a highly efficient and dendrite-free lithium metal anode by the rational integration of porous polymer-based molecular brushes (poly(oligo(ethylene glycol) methyl ether methacrylate)-grafted, hypercrosslinked poly(4-chloromethylstyrene) nanospheres, denoted as xPCMS-g-PEGMA) with single-ion-conductive lithiated Nafion. The porous xPCMS inner cores with rigid hypercrosslinked skeletons substantially increase mechanical robustness and provide adequate channels for rapid ionic conduction, while the flexible PEGMA and lithiated Nafion polymers enable the formation of a structurally stable artificial protective layer with uniform Li+ diffusion and high Li+ transference number. With such artificial solid electrolyte interphases, ultralong-term stable cycling at an ultrahigh current density of 10 mA cm-2 for over 9,100 h (>1 year) and unprecedented reversible lithium plating/stripping (over 2,800 h) at a large areal capacity (10 mAh cm-2) have been achieved for lithium metal anodes. Moreover, the protected anodes also show excellent cell stability when paired with high-loading cathodes (~4 mAh cm-2), demonstrating great prospects for the practical application of lithium metal batteries.
Collapse
Affiliation(s)
- Shimei Li
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Junlong Huang
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yin Cui
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shaohong Liu
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Zirun Chen
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wen Huang
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chuanfa Li
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ruliang Liu
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ruowen Fu
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Dingcai Wu
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
31
|
Xiong Q, Huang G, Yu Y, Li CL, Li JC, Yan JM, Zhang XB. Soluble and Perfluorinated Polyelectrolyte for Safe and High-Performance Li-O 2 Batteries. Angew Chem Int Ed Engl 2022; 61:e202116635. [PMID: 35274415 DOI: 10.1002/anie.202116635] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 11/07/2022]
Abstract
The severe performance degradation of high-capacity Li-O2 batteries induced by Li dendrite growth and concentration polarization from the low Li+ transfer number of conventional electrolytes hinder their practical applications. Herein, lithiated Nafion (LN) with the sulfonic group immobilized on the perfluorinated backbone has been designed as a soluble lithium salt for preparing a less flammable polyelectrolyte solution, which not only simultaneously achieves a high Li+ transfer number (0.84) and conductivity (2.5 mS cm-1 ), but also the perfluorinated anion of LN produces a LiF-rich SEI for protecting the Li anode from dendrite growth. Thus, the Li-O2 battery with a LN-based electrolyte achieves an all-round performance improvement, like low charge overpotential (0.18 V), large discharge capacity (9508 mAh g-1 ), and excellent cycling performance (225 cycles). Besides, the fabricated pouch-type Li-air cells exhibit promising applications to power electronic equipment with satisfactory safety.
Collapse
Affiliation(s)
- Qi Xiong
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Gang Huang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yue Yu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chao-Le Li
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jian-Chen Li
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Jun-Min Yan
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Xin-Bo Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
32
|
Li J, Han C, Ou X, Tang Y. Concentrated Electrolyte for High-Performance Ca-Ion Battery Based on Organic Anode and Graphite Cathode. Angew Chem Int Ed Engl 2022; 61:e202116668. [PMID: 34994498 DOI: 10.1002/anie.202116668] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Due to the large abundance, low redox potential, and multivalent properties of calcium (Ca), Ca-ion batteries (CIBs) show promising prospects for energy storage applications. However, current research on CIBs faces the challenges of unsatisfactory cycling stability and capacity, mainly restricted by the lack of suitable electrolytes and electrode materials. Herein, we firstly developed a 3.5 m concentrated electrolyte with a calcium bis(fluorosulfonyl)imide (Ca(FSI)2 ) salt dissolved in carbonate solvents. This electrolyte significantly improved the intercalation capacity for anions in the graphite cathode and contributed to the reversible insertion of Ca2+ in the organic anode. By combining this concentrated electrolyte with the low-cost and environmentally friendly graphite cathode and organic anode, the assembled Ca-based dual-ion battery (Ca-DIB) exhibits 75.4 mAh g-1 specific discharge capacity at 100 mA g-1 and 84.7 % capacity retention over 350 cycles, among the best results known for CIBs.
Collapse
Affiliation(s)
- Jin Li
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Chengjun Han
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Xuewu Ou
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Key Laboratory of Advanced Materials Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
33
|
Xiong Q, Huang G, Yu Y, Li C, Li J, Yan J, Zhang X. Soluble and Perfluorinated Polyelectrolyte for Safe and High‐Performance Li−O
2
Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qi Xiong
- Key Laboratory of Automobile Materials Ministry of Education Department of Materials Science and Engineering Jilin University Changchun 130022 P. R. China
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Gang Huang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Yue Yu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Chao‐Le Li
- Key Laboratory of Automobile Materials Ministry of Education Department of Materials Science and Engineering Jilin University Changchun 130022 P. R. China
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Jian‐Chen Li
- Key Laboratory of Automobile Materials Ministry of Education Department of Materials Science and Engineering Jilin University Changchun 130022 P. R. China
| | - Jun‐Min Yan
- Key Laboratory of Automobile Materials Ministry of Education Department of Materials Science and Engineering Jilin University Changchun 130022 P. R. China
| | - Xin‐Bo Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
34
|
Seok J, Hyun JH, Jin A, Um JH, Abruña HD, Yu SH. Visualization of Sodium Metal Anodes via Operando X-Ray and Optical Microscopy: Controlling the Morphological Evolution of Sodium Metal Plating. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10438-10446. [PMID: 35175729 DOI: 10.1021/acsami.1c24673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Because of the abundance and cost effectiveness of sodium, rechargeable sodium metal batteries have been widely studied to replace current lithium-ion batteries. However, there are some critical unresolved issues including the high reactivity of sodium, an unstable solid-electrolyte interphase (SEI), and sodium dendrite formation. While several studies have been conducted to understand sodium plating/stripping processes, only a very limited number of studies have been carried out under operando conditions. We have employed operando X-ray and optical imaging techniques to understand the mechanistic behavior of Na metal plating. The morphology of sodium metal plated on a copper electrode depends strongly on the salts and solvents used in the electrolyte. The addition of a fluorine-containing additive to a carbonate-based electrolyte, NaClO4 in propylene carbonate (PC):fluoroethylene carbonate (FEC), results in uniform sodium plating processes and much more stable cycling performance, compared to NaClO4 in PC, because of the formation of a stable SEI containing NaF. A NaF layer, on top of the sodium metal, leads to a much more uniform deposition of sodium and greatly enhanced cyclability.
Collapse
Affiliation(s)
- Jeesoo Seok
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jae-Hwan Hyun
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Aihua Jin
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ji Hyun Um
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Seung-Ho Yu
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
35
|
Liu H, Shi S, Wang Z, Han Y, Huang W. Recent Advances in Metal-Gas Batteries with Carbon-Based Nonprecious Metal Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103747. [PMID: 34859956 DOI: 10.1002/smll.202103747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Metal-gas batteries draw a lot of attention due to their superiorities in high energy density and stable performance. However, the sluggish electrochemical reactions and associated side reactions in metal-gas batteries require suitable catalysts, which possess high catalytic activity and selectivity. Although precious metal catalysts show a higher catalytic activity, high cost of the precious metal catalysts hinders their commercial applications. In contrast, nonprecious metal catalysts complement the weakness of cost, and the gap in activity can be made up by increasing the amount of the nonprecious metal active centers. Herein, recent work on carbon-based nonprecious metal catalysts for metal-gas batteries is summarized. This review starts with introducing the advantages of carbon-based nonprecious metal catalysts, followed by a discussion of the synthetic strategy of carbon-based nonprecious metal catalysts and classification of active sites, and finally a summary of present metal-gas batteries with the carbon-based nonprecious metal catalysts is presented. The challenges and opportunities for carbon-based nonprecious metal catalysts in metal-gas batteries are also explored.
Collapse
Affiliation(s)
- Haoran Liu
- Frontiers Science Center for Flexible Electronics and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shuangrui Shi
- Frontiers Science Center for Flexible Electronics and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhenhua Wang
- Frontiers Science Center for Flexible Electronics and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yunhu Han
- Frontiers Science Center for Flexible Electronics and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
36
|
Zheng J, Huang Z, Zeng Y, Liu W, Wei B, Qi Z, Wang Z, Xia C, Liang H. Electrostatic Shielding Regulation of Magnetron Sputtered Al-Based Alloy Protective Coatings Enables Highly Reversible Zinc Anodes. NANO LETTERS 2022; 22:1017-1023. [PMID: 35041439 DOI: 10.1021/acs.nanolett.1c03917] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The uncontrolled zinc dendrite growth during plating leads to quick battery failure, which hinders the widespread applications of aqueous zinc-ion batteries. The growth of Zn dendrites is often promoted by the "tip effect". In this work, we propose a generate strategy to eliminate the "tip effect" by utilizing the electrostatic shielding effect, which is achieved by coating Zn anodes with magnetron sputtered Al-based alloy protective layers. The Al can form a surface insulating Al2O3 layer and by manipulating the Al content of Zn-Al alloy films, we are able to control the strength of the electrostatic shield, therefore realizing a long lifespan of Zn anodes up to 3000 h at a practical operating condition of 1.0 mA cm-2 and 1.0 mAh cm-2. In addition, the concept can be extended to other Al-based systems such as Ti-Al alloy and achieve enhanced stability of Zn anodes, demonstrating the generality and efficacy of our strategy.
Collapse
Affiliation(s)
- Jiaxian Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zihao Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ye Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wanqiang Liu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Binbin Wei
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhengbing Qi
- Key Laboratory of Functional Materials and Applications of Fujian Province, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Zhoucheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chuan Xia
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, Zhejiang, China
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hanfeng Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
37
|
Li J, Han C, Ou X, Tang Y. Concentrated Electrolyte for High‐performance Ca‐ion Battery based on Organic Anode and Graphite Cathode. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jin Li
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Advanced Energy Storage Technology Research Center CHINA
| | - Chengjun Han
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Advanced Energy Storage Technology Research Center CHINA
| | - Xuewu Ou
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Advanced Energy Storage Technology Research Center CHINA
| | - Yongbing Tang
- Shenzhen institute of advanced technology Chinese Academy of Sciences Functional Thin Films Research Centre 1068 Xueyuan Avenue, Shenzhen University Town 518000 SHENZHEN CHINA
| |
Collapse
|
38
|
Zhang R, Ren P, Xu S, Xu D, Wang S, Bian X, Ma J, Wang H, Yang X. A new research perspective: The application of potassiated alloy/carbon composite counter electrode in fundamental and practical research of K-ion batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Lv H, Chen H, Hu T, Zhang X. Nanocage-based {In 2Tm 2}-organic framework for efficiently catalyzing the cycloaddition reaction of CO 2 with epoxides and Knoevenagel condensation. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01271e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of [In2Tm2(μ2-OH)2(CO2)10(H2O)2] clusters and H5BDCP ligand generated a highly robust nanoporous MOF with high catalytic performance in the cycloaddition reaction of epoxides with CO2 and Knoevenagel condensation.
Collapse
Affiliation(s)
- Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Tuoping Hu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
40
|
|
41
|
Liu H, Xie W, Huang Z, Yao C, Han Y, Huang W. Recent Advances in Flexible Zn-Air Batteries: Materials for Electrodes and Electrolytes. SMALL METHODS 2022; 6:e2101116. [PMID: 35041275 DOI: 10.1002/smtd.202101116] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/16/2021] [Indexed: 06/14/2023]
Abstract
Flexible Zn-air batteries (ZABs) draw much attention due to the merits of high energy density, stability, and safety, and show potential applications for wearable devices. However, the development of flexible ZABs with great energy density, high round-trip efficiency, and long cycle life for practical applications is highly restricted by the lack of highly active oxygen catalysts, high ion-conducting solid-state electrolytes, appropriate Zn anodes, and advanced battery configuration. Promising oxygen catalysts should possess both, superior oxygen reduction reaction and oxygen evolution reaction performance and can be directly used as self-supporting cathodes without loading catalysts on support materials such as carbon cloth. In addition, electrolytes play an important role in ZABs; a good electrolyte should be in all-solid state with high ion conductivity. Moreover, for an excellent Zn anode, it is required to stably contact the electrolyte interface during the bending process. Therefore, in this review, recent advances in ZABs are summarized, including: i) the powder and 3D self-supporting oxygen catalysts, ii) the species of solid-state electrolytes, and iii) the rational design of Zn anodes. Finally, the challenges and opportunities of this promising field are presented.
Collapse
Affiliation(s)
- Haoran Liu
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), and Ningbo Institute of NPU, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wen Xie
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), and Ningbo Institute of NPU, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zeyi Huang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), and Ningbo Institute of NPU, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chuanhao Yao
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), and Ningbo Institute of NPU, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yunhu Han
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), and Ningbo Institute of NPU, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), and Ningbo Institute of NPU, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
42
|
Huang Z, Li Z, Zhu M, Wang G, Yu F, Wu M, Xu G, Dou SX, Liu HK, Wu C. Highly Stable Lithium/Sodium Metal Batteries with High Utilization Enabled by a Holey Two-Dimensional N-Doped TiNb 2O 7 Host. NANO LETTERS 2021; 21:10453-10461. [PMID: 34846156 DOI: 10.1021/acs.nanolett.1c03844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lithium/sodium metal batteries have attracted enormous attention as promising candidates for high-energy storage devices. However, their practical applications are impeded by the growth of dendrites upon Li/Na plating. Here, we report that holey 2D N-doped TiNb2O7 (N-TNO) nanosheets with high electroactive surface area and large amounts of lithiophilic/sodiophilic sites can effectively regulate Li/Na deposition as an interfacial layer, leading to an excellent cycling stability. The N-TNO interfacial layer enables the Li||Li symmetric cell to sustain stable electrodeposition over 1000 h as well as the Na||Na cell to stably cycle for 2400 h at 1 mA cm-2 and 3 mA h cm-2 with a depth of discharge as high as 50%. The full cells of the Li/Na anodes based on the N-TNO layer paired with the LiFePO4 and NaTi2(PO4)3 cathodes, respectively, show a very stable cycling over 1000 cycles at a negative-to-positive electrode capacity (N/P) ratio up to 3.
Collapse
Affiliation(s)
- Zhongyi Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Zhen Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Ming Zhu
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2525, Australia
| | - Guanyao Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Fangfang Yu
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2525, Australia
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, P. R. China
| | - Gang Xu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, P. R. China
| | - Shi-Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2525, Australia
| | - Hua-Kun Liu
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2525, Australia
| | - Chao Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2525, Australia
| |
Collapse
|
43
|
Liang F, Zhang K, Zhang L, Zhang Y, Lei Y, Sun X. Recent Development of Electrocatalytic CO 2 Reduction Application to Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100323. [PMID: 34151517 DOI: 10.1002/smll.202100323] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/12/2021] [Indexed: 06/13/2023]
Abstract
Carbon dioxide (CO2 ) emission has caused greenhouse gas pollution worldwide. Hence, strengthening CO2 recycling is necessary. CO2 electroreduction reaction (CRR) is recognized as a promising approach to utilize waste CO2 . Electrocatalysts in the CRR process play a critical role in determining the selectivity and activity of CRR. Different types of electrocatalysts are introduced in this review: noble metals and their derived compounds, transition metals and their derived compounds, organic polymer, and carbon-based materials, as well as their major products, Faradaic efficiency, current density, and onset potential. Furthermore, this paper overviews the recent progress of the following two major applications of CRR according to the different energy conversion methods: electricity generation and formation of valuable carbonaceous products. Considering electricity generation devices, the electrochemical properties of metal-CO2 batteries, including Li-CO2 , Na-CO2 , Al-CO2 , and Zn-CO2 batteries, are mainly summarized. Finally, different pathways of CO2 electroreduction to carbon-based fuels is presented, and their reaction mechanisms are illustrated. This review provides a clear and innovative insight into the entire reaction process of CRR, guiding the new electrocatalysts design, state-of-the-art analysis technique application, and reaction system innovation.
Collapse
Affiliation(s)
- Feng Liang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clear Utilization, Kunming University of Science and Technology, Kunming, 650093, China
| | - Kaiwen Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Lei Zhang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Yingjie Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yong Lei
- Institute of Physics & IMN MacroNano (ZIK), Technical University of Ilmenau, 98693, Ilmenau, Germany
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| |
Collapse
|
44
|
Composite solid electrolyte comprising poly(propylene carbonate) and Li1.5Al0.5Ge1.5(PO4)3 for long-life all-solid-state Li-ion batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Ramasubramanian B, Reddy MV, Zaghib K, Armand M, Ramakrishna S. Growth Mechanism of Micro/Nano Metal Dendrites and Cumulative Strategies for Countering Its Impacts in Metal Ion Batteries: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2476. [PMID: 34684917 PMCID: PMC8538702 DOI: 10.3390/nano11102476] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 01/09/2023]
Abstract
Metal-ion batteries are capable of delivering high energy density with a longer lifespan. However, they are subject to several issues limiting their utilization. One critical impediment is the budding and extension of solid protuberances on the anodic surface, which hinders the cell functionalities. These protuberances expand continuously during the cyclic processes, extending through the separator sheath and leading to electrical shorting. The progression of a protrusion relies on a number of in situ and ex situ factors that can be evaluated theoretically through modeling or via laboratory experimentation. However, it is essential to identify the dynamics and mechanism of protrusion outgrowth. This review article explores recent advances in alleviating metal dendrites in battery systems, specifically alkali metals. In detail, we address the challenges associated with battery breakdown, including the underlying mechanism of dendrite generation and swelling. We discuss the feasible solutions to mitigate the dendrites, as well as their pros and cons, highlighting future research directions. It is of great importance to analyze dendrite suppression within a pragmatic framework with synergy in order to discover a unique solution to ensure the viability of present (Li) and future-generation batteries (Na and K) for commercial use.
Collapse
Affiliation(s)
| | - M. V. Reddy
- Centre of Excellence in Transportation Electrification and Energy Storage (CETEES), Institute of Research Hydro-Québec, 1806, Lionel-Boulet Blvd., Varennes, QC J3X 1S1, Canada
| | - Karim Zaghib
- Department of Mining and Materials Engineering, McGill University, Wong Building, 3610 University Street, Montreal, QC H3A OC5, Canada;
| | - Michel Armand
- Centre for Cooperative Research on Alternative Energies, Basque Research and Technology Alliance, Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain;
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
46
|
Zheng X, Huang L, Ye X, Zhang J, Min F, Luo W, Huang Y. Critical effects of electrolyte recipes for Li and Na metal batteries. Chem 2021. [DOI: 10.1016/j.chempr.2021.02.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Wang H, Li Y, Luo Y, Yuan W, Chen X, Zhang L, Shu J. Expounding the Initial Alloying Behavior of Na-K Liquid Alloy Electrodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40118-40126. [PMID: 34387075 DOI: 10.1021/acsami.1c11134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Primary electrodeposition is an accepted strategy to elucidate the nucleation and growth kinetics of metal electrodes. Nevertheless, when confronted with the phase transition process caused by bi-active metals such as NaK liquid alloys, the research process becomes complex and elusive. Herein, we have reduced the intricate issues to relatively simple initial alloying behaviors. Two exchange diffusion mechanisms of the Na atom embedded in K crystals and K atom embedded in Na crystals are investigated by first-principles density functional theory (DFT) calculation and mechanical simulation. As a result, the process of embedding the Na atom in K crystals shows a better thermodynamic stability and lower activation barrier and structural stress than those of the other. The abovementioned conclusions are further proved by stepwise Na and K electrodeposition experiments, and the prepared NaK alloy electrode displays excellent electrochemical performance. Our findings correlate the original alloying mechanism model specification with electrodeposition experimental verification and provide strategies to achieve controllable NaK electrode construction.
Collapse
Affiliation(s)
- Huifeng Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yuqian Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yusheng Luo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Wenlu Yuan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xiumin Chen
- The National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China
| | - Liyuan Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jie Shu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
48
|
Lu Z, Guo Y, Zhang S, Wu S, Meng R, Hong S, Li J, Xue H, Zhang B, Fan D, Zhang Y, Zhang C, Lv W, Yang QH. Crowning Metal Ions by Supramolecularization as a General Remedy toward a Dendrite-Free Alkali-Metal Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101745. [PMID: 34146362 DOI: 10.1002/adma.202101745] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Alkali metals have low potentials and high capacities, making them ideal anodes for next-generation batteries, but they suffer major problems, including dendrite growth and low Coulombic efficiency (CE). Achieving uniform metal deposition and having a reliable solid electrolyte interphase (SEI) are the basic requirements for overcoming these problems. Here, a general remedy is reported for various alkali-metal anodes by the supramolecularization of alkali-metal cations with crown ethers that follows a size-matching rule. The positively charged supramolecular complex provides electrostatic shielding layers to regulate metal deposition and suppress dendrite formation. More promisingly, it reforms electric double layers and drives the production of organic-dominated SEIs with improved flexibility that can accommodate large volume changes. The high flexibility of SEIs during metal deposition and dissolution reduces the amount of dead metal and improves CE and cycling stability. Specifically, a 200% excess Li-based full cell has a capacity retention of ≈100% after 100 cycles. This crown-like supramolecularization strategy is a new chemistry that may be used for the production of dendrite-free metal-anode-based batteries not limited to the cases with alkali metal. It is also expected as a practical technology to improve the uniformity of coatings produced in the electrodeposition industry.
Collapse
Affiliation(s)
- Ziyang Lu
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Yong Guo
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Siwei Zhang
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Shichao Wu
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Rongwei Meng
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- School of Marine Science and Technology, Tianjin University, Tianjin, 300350, China
| | - Shuang Hong
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jiaxi Li
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Haoyu Xue
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Boyi Zhang
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Dinghui Fan
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Yifang Zhang
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Tianjin University, Fuzhou, 350207, China
| | - Chen Zhang
- School of Marine Science and Technology, Tianjin University, Tianjin, 300350, China
| | - Wei Lv
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Quan-Hong Yang
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Tianjin University, Fuzhou, 350207, China
| |
Collapse
|
49
|
Ye L, Liao M, Cheng X, Zhou X, Zhao Y, Yang Y, Tang C, Sun H, Gao Y, Wang B, Peng H. Lithium‐Metal Anodes Working at 60 mA cm
−2
and 60 mAh cm
−2
through Nanoscale Lithium‐Ion Adsorbing. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lei Ye
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Meng Liao
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Xiangran Cheng
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Xufeng Zhou
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Yang Zhao
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Yibei Yang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Chengqiang Tang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Hao Sun
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Yue Gao
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Bingjie Wang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| |
Collapse
|
50
|
Ye L, Liao M, Cheng X, Zhou X, Zhao Y, Yang Y, Tang C, Sun H, Gao Y, Wang B, Peng H. Lithium-Metal Anodes Working at 60 mA cm -2 and 60 mAh cm -2 through Nanoscale Lithium-Ion Adsorbing. Angew Chem Int Ed Engl 2021; 60:17419-17425. [PMID: 34109719 DOI: 10.1002/anie.202106047] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/01/2021] [Indexed: 11/06/2022]
Abstract
Achieving high-current-density and high-area-capacity operation of Li metal anodes offers promising opportunities for high-performing next-generation batteries. However, high-rate Li deposition suffers from undesired Li-ion depletion especially at the electrolyte-anode interface, which compromises achievable capacity and lifetime. Here, electronegative graphene quantum dots are synthesized and assembled into an ultra-thin overlayer capable of efficient Li-ion adsorbing at the nanoscale on Li-metal to fully relieve Li-ion depletion. The protected Li anode achieves long-term reversible Li plating/stripping over 1000 h at both superior current density of 60 mA cm-2 and areal capacity of 60 mAh cm-2 . Implementation of the protected anode allows for the construction of Li-air full battery with both enhanced rate capability and cycling performance.
Collapse
Affiliation(s)
- Lei Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Meng Liao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Xiangran Cheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Xufeng Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Yang Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Yibei Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Chengqiang Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Hao Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Yue Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Bingjie Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|