1
|
Saha A, Bishara LA, Saed Y, Vamisetti GB, Mandal S, Suga H, Ayoub N, Brik A. Exocyclic and Linker Editing of Lys63-linked Ubiquitin Chains Modulators Specifically Inhibits Non-homologous End-joining Repair. Angew Chem Int Ed Engl 2024; 63:e202409012. [PMID: 39115450 DOI: 10.1002/anie.202409012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Indexed: 09/26/2024]
Abstract
Despite the great advances in discovering cyclic peptides against protein targets, their reduced aqueous solubility, cell permeability, and activity of the cyclic peptide restrict its utilization in advanced biological research and therapeutic applications. Here we report on a novel approach of structural alternation of the exocyclic and linker parts that led to a new derivative with significantly improved cell activity allowing us to dissect its mode of action in detail. We have identified an effective cyclic peptide (CP7) that induces approximately a 9-fold increase in DNA damage accumulation and a remarkable increase in apoptotic cancer cell death compared to the reported molecule. Notably, treating cells with CP7 leads to a dramatic decrease in the efficiency of non-homologous end joining (NHEJ) repair of DNA double-strand breaks (DSBs), which is accompanied by an increase in homologous recombination (HR) repair. Interestingly, treating BRCA1-deficient cells with CP7 restores HR integrity, which is accompanied by increased resistance to CP7. Additionally, CP7 treatment increases the sensitivity of cancer cells to ionizing radiation. Collectively, our findings demonstrate that CP7 is a selective inhibitor of NHEJ, offering a potential strategy to enhance the effectiveness of radiation therapy.
Collapse
Affiliation(s)
- Abhishek Saha
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, Telangana, India
| | - Laila A Bishara
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Haifa, 3200008, Israel
| | - Yakop Saed
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Ganga B Vamisetti
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
- Peptide Drug Research and Development, Combiosz Co. Ltd., Changshu National High-Tech Zone, Suzhou, 215500, China
| | - Shaswati Mandal
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku,7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Nabieh Ayoub
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Haifa, 3200008, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| |
Collapse
|
2
|
Fan Y, Feng R, Zhang X, Wang ZL, Xiong F, Zhang S, Zhong ZF, Yu H, Zhang QW, Zhang Z, Wang Y, Li G. Encoding and display technologies for combinatorial libraries in drug discovery: The coming of age from biology to therapy. Acta Pharm Sin B 2024; 14:3362-3384. [PMID: 39220863 PMCID: PMC11365444 DOI: 10.1016/j.apsb.2024.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 09/04/2024] Open
Abstract
Drug discovery is a sophisticated process that incorporates scientific innovations and cutting-edge technologies. Compared to traditional bioactivity-based screening methods, encoding and display technologies for combinatorial libraries have recently advanced from proof-of-principle experiments to promising tools for pharmaceutical hit discovery due to their high screening efficiency, throughput, and resource minimization. This review systematically summarizes the development history, typology, and prospective applications of encoding and displayed technologies, including phage display, ribosomal display, mRNA display, yeast cell display, one-bead one-compound, DNA-encoded, peptide nucleic acid-encoded, and new peptide-encoded technologies, and examples of preclinical and clinical translation. We discuss the progress of novel targeted therapeutic agents, covering a spectrum from small-molecule inhibitors and nonpeptidic macrocycles to linear, monocyclic, and bicyclic peptides, in addition to antibodies. We also address the pending challenges and future prospects of drug discovery, including the size of screening libraries, advantages and disadvantages of the technology, clinical translational potential, and market space. This review is intended to establish a comprehensive high-throughput drug discovery strategy for scientific researchers and clinical drug developers.
Collapse
Affiliation(s)
- Yu Fan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| | - Ruibing Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Xinya Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| | - Zhen-Liang Wang
- Geriatric Medicine, First People's Hospital of XinXiang and the Fifth Affiliated Hospital of Xinxiang Medical College, Xinxiang 453100, China
| | - Feng Xiong
- Shenzhen Innovation Center for Small Molecule Drug Discovery Co., Ltd., Shenzhen 518000, China
| | - Shuihua Zhang
- Shenzhen Innovation Center for Small Molecule Drug Discovery Co., Ltd., Shenzhen 518000, China
| | - Zhang-Feng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Hua Yu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Department of Pharmacy, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| |
Collapse
|
3
|
Imai M, Colas K, Suga H. Protein Grafting Techniques: From Peptide Epitopes to Lasso-Grafted Neobiologics. Chempluschem 2024; 89:e202400152. [PMID: 38693599 DOI: 10.1002/cplu.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Protein engineering techniques have vastly expanded their domain of impact, notably following the success of antibodies. Likewise, smaller peptide therapeutics have carved an increasingly significant niche for themselves in the pharmaceutical landscape. The concept of grafting such peptides onto larger protein scaffolds, thus harvesting the advantages of both, has given rise to a variety of protein engineering strategies that are reviewed herein. We also describe our own "Lasso-Grafting" approach, which combines traditional grafting concepts with mRNA display to streamline the production of multiple grafted drug candidates for virtually any target.
Collapse
Affiliation(s)
- Mikio Imai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kilian Colas
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
4
|
Zhang M, Wang J, Zhang Z, Guo Y, Lou X, Zhang L. Diverse roles of UBE2S in cancer and therapy resistance: Biological functions and mechanisms. Heliyon 2024; 10:e24465. [PMID: 38312603 PMCID: PMC10834827 DOI: 10.1016/j.heliyon.2024.e24465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
The Ubiquitin Conjugating Enzyme E2 S (UBE2S), was initially identified as a crucial member in controlling substrate ubiquitination during the late promotion of the complex's function. In recent years, UBE2S has emerged as a significant epigenetic modification in various diseases, including myocardial ischemia, viral hepatitis, and notably, cancer. Mounting evidence suggests that UBE2S plays a pivotal role in several human malignancies including breast cancer, lung cancer, hepatocellular carcinoma and etc. However, a comprehensive review of UBE2S in human tumor research remains absent. Therefore, this paper aims to fill this gap. This review provides a comprehensive analysis of the structural characteristics of UBE2S and its potential utility as a biomarker in diverse cancer types. Additionally, the role of UBE2S in conferring resistance to tumor treatment is examined. The findings suggest that UBE2S holds promise as a diagnostic and therapeutic target in multiple malignancies, thereby offering novel avenues for cancer therapy.
Collapse
Affiliation(s)
- Mengjun Zhang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou 450052, China
| | - Jialin Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, 100000, China
| | - Zidi Zhang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou 450052, China
| | - Yan Guo
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Street, Zhengzhou 450003, China
| | - Xueling Lou
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou 450052, China
| | - Lindong Zhang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou 450052, China
| |
Collapse
|
5
|
Wei S, Xing J, Chen J, Chen L, Lv J, Chen X, Li T, Yu T, Wang H, Wang K, Yu W. DCAF13 inhibits the p53 signaling pathway by promoting p53 ubiquitination modification in lung adenocarcinoma. J Exp Clin Cancer Res 2024; 43:3. [PMID: 38163876 PMCID: PMC10759521 DOI: 10.1186/s13046-023-02936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Lung cancer is a malignant tumor with the highest mortality worldwide. Abnormalities in the ubiquitin proteasome system are considered to be contributed to lung cancer progression with deleterious effects. DDB1 and CUL4 associated factor 13 (DCAF13) is a substrate receptor of the E3 ubiquitin ligase CRL4, but its role in lung cancer remains unknown. In this study, we aimed to investigate the regulatory mechanisms of DCAF13 in lung adenocarcinoma (LUAD). METHODS So as to investigate the effect of DCAF13 on lung adenocarcinoma cell function using in vivo and in vitro. Mechanistically, we have identified the downstream targets of DCAF13 by using RNA-sequencing, as well as ubiquitination assays, co-immunoprecipitation, immunofluorescence, immunohistochemistry and chromatin immunoprecipitation - qPCR experiments. RESULTS Our findings reveal that DCAF13 is a carcinogenic factor in LUAD, as it is highly expressed and negatively correlated with clinical outcomes in LUAD patients. Through RNA-sequencing, it has been shown that DCAF13 negatively regulates the p53 signaling pathway and inhibits p53 downstream targets including p21, BAX, FAS, and PIDD1. We also demonstrate that DCAF13 can bind to p53 protein, leading to K48-linked ubiquitination and degradation of p53. Functionally, we have shown that DCAF13 knockdown inhibits cell proliferation and migration. Our results highlight the significant role of DCAF13 in promoting LUAD progression by inhibiting p53 protein stabilization and the p53 signaling pathway. Furthermore, our findings suggest that high DCAF13 expression is a poor prognostic indicator in LUAD, and DCAF13 may be a potential therapeutic target for treating with this aggressive cancer. CONCLUSIONS The DCAF13 as a novel negative regulator of p53 to promote LUAD progression via facilitating p53 ubiquitination and degradation, suggesting that DCAF13 might be a novel biomarker and therapeutical target for LUAD.
Collapse
Affiliation(s)
- Shan Wei
- Department of Respiratory and Critical Care Medicine, The Affiliated People's Hospital of Ningbo University (Ningbo Yinzhou People's Hospital), 251, Baizhang Road, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Jing Xing
- Department of Respiratory and Critical Care Medicine, The Affiliated People's Hospital of Ningbo University (Ningbo Yinzhou People's Hospital), 251, Baizhang Road, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Jia Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated People's Hospital of Ningbo University (Ningbo Yinzhou People's Hospital), 251, Baizhang Road, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Liping Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated People's Hospital of Ningbo University (Ningbo Yinzhou People's Hospital), 251, Baizhang Road, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Jiapei Lv
- Department of Respiratory and Critical Care Medicine, The Affiliated People's Hospital of Ningbo University (Ningbo Yinzhou People's Hospital), 251, Baizhang Road, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Xiaofei Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated People's Hospital of Ningbo University (Ningbo Yinzhou People's Hospital), 251, Baizhang Road, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Tang Li
- Department of Respiratory and Critical Care Medicine, The Affiliated People's Hospital of Ningbo University (Ningbo Yinzhou People's Hospital), 251, Baizhang Road, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Tao Yu
- Department of Respiratory and Critical Care Medicine, The Affiliated People's Hospital of Ningbo University (Ningbo Yinzhou People's Hospital), 251, Baizhang Road, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Huaying Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated People's Hospital of Ningbo University (Ningbo Yinzhou People's Hospital), 251, Baizhang Road, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, People's Republic of China
| | - Wanjun Yu
- Department of Respiratory and Critical Care Medicine, The Affiliated People's Hospital of Ningbo University (Ningbo Yinzhou People's Hospital), 251, Baizhang Road, Ningbo, Zhejiang, 315040, People's Republic of China.
| |
Collapse
|
6
|
Li C, Jin K. Chemical Strategies towards the Development of Effective Anticancer Peptides. Curr Med Chem 2024; 31:1839-1873. [PMID: 37170992 DOI: 10.2174/0929867330666230426111157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/28/2023] [Accepted: 02/24/2023] [Indexed: 05/13/2023]
Abstract
Cancer is increasingly recognized as one of the primary causes of death and has become a multifaceted global health issue. Modern medical science has made significant advancements in the diagnosis and therapy of cancer over the past decade. The detrimental side effects, lack of efficacy, and multidrug resistance of conventional cancer therapies have created an urgent need for novel anticancer therapeutics or treatments with low cytotoxicity and drug resistance. The pharmaceutical groups have recognized the crucial role that peptide therapeutic agents can play in addressing unsatisfied healthcare demands and how these become great supplements or even preferable alternatives to biological therapies and small molecules. Anticancer peptides, as a vibrant therapeutic strategy against various cancer cells, have demonstrated incredible anticancer potential due to high specificity and selectivity, low toxicity, and the ability to target the surface of traditional "undruggable" proteins. This review will provide the research progression of anticancer peptides, mainly focusing on the discovery and modifications along with the optimization and application of these peptides in clinical practice.
Collapse
Affiliation(s)
- Cuicui Li
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Kang Jin
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
7
|
Lemma B, Zhang D, Vamisetti GB, Wentz BG, Suga H, Brik A, Lubkowski J, Fushman D. Mechanism of selective recognition of Lys48-linked polyubiquitin by macrocyclic peptide inhibitors of proteasomal degradation. Nat Commun 2023; 14:7212. [PMID: 37938554 PMCID: PMC10632358 DOI: 10.1038/s41467-023-43025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Post-translational modification of proteins with polyubiquitin chains is a critical cellular signaling mechanism in eukaryotes with implications in various cellular states and processes. Unregulated ubiquitin-mediated protein degradation can be detrimental to cellular homeostasis, causing numerous diseases including cancers. Recently, macrocyclic peptides were developed that selectively target long Lysine-48-linked polyubiquitin chains (tetra-ubiquitin) to inhibit ubiquitin-proteasome system, leading to attenuation of tumor growth in vivo. However, structural determinants of the chain length and linkage selectivity by these cyclic peptides remained unclear. Here, we uncover the mechanism underlying cyclic peptide's affinity and binding selectivity by combining X-ray crystallography, solution NMR, and biochemical studies. We found that the peptide engages three consecutive ubiquitins that form a ring around the peptide and determined requirements for preferential selection of a specific trimer moiety in longer polyubiquitin chains. The structural insights gained from this work will guide the development of next-generation cyclic peptides with enhanced anti-cancer activity.
Collapse
Affiliation(s)
- Betsegaw Lemma
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Di Zhang
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Ganga B Vamisetti
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200008, Israel
| | - Bryan G Wentz
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200008, Israel.
| | - Jacek Lubkowski
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - David Fushman
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
8
|
Saha A, Suga H, Brik A. Combining Chemical Protein Synthesis and Random Nonstandard Peptides Integrated Discovery for Modulating Biological Processes. Acc Chem Res 2023; 56:1953-1965. [PMID: 37312234 PMCID: PMC10357587 DOI: 10.1021/acs.accounts.3c00178] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Indexed: 06/15/2023]
Abstract
Chemical manipulation of naturally occurring peptides offers a convenient route for generating analogs to screen against different therapeutic targets. However, the limited success of the conventional chemical libraries has urged chemical biologists to adopt alternative methods such as phage and mRNA displays and create libraries of a large number of variants for the screening and selection of novel peptides. Messenger RNA (mRNA) display provides great advantages in terms of the library size and the straightforward recovery of the selected polypeptide sequences. Importantly, the integration of the flexible in vitro translation (FIT) system with the mRNA display provides the basis of the random nonstandard peptides integrated discovery (RaPID) approach for the introduction of diverse nonstandard motifs, such as unnatural side chains and backbone modifications. This platform allows the discovery of functionalized peptides with tight binding against virtually any protein of interest (POI) and therefore shows great potential in the pharmaceutical industry. However, this method has been limited to targets generated by recombinant expression, excluding its applications to uniquely modified proteins, particularly those with post-translational modifications.Chemical protein synthesis allows a wide range of changes to the protein's chemical composition to be performed, including side chain and backbone modifications and access to post-translationally modified proteins, which are often inaccessible or difficult to achieve via recombinant expression methods. Notably, d-proteins can be prepared via chemical synthesis, which has been used in mirror image phase display for the discovery of nonproteolytic d-peptide binders.Combining chemical protein synthesis with the RaPID system allows the production of a library of trillions of cyclic peptides and subsequent selection for novel cyclic peptide binders targeting a uniquely modified protein to assist in studying its unexplored biology and possibly the discovery of new drug candidates.Interestingly, the small post-translational modifier protein ubiquitin (Ub), with its various polymeric forms, regulates directly or indirectly many biochemical processes, e.g., proteasomal degradation, DNA damage repair, cell cycle regulation, etc. In this Account, we discuss combining the RaPID approach against various synthetic Ub chains for selecting effective and specific macrocyclic peptide binders. This offers an advancement in modulating central Ub pathways and provides opportunities in drug discovery areas associated with Ub signaling. We highlight experimental approaches and conceptual adaptations required to design and modulate the activity of Lys48- and Lys63-linked Ub chains by macrocyclic peptides. We also present the applications of these approaches to shed light on related biological activities and ultimately their activity against cancer. Finally, we contemplate future developments still pending in this exciting multidisciplinary field.
Collapse
Affiliation(s)
- Abhishek Saha
- Schulich
Faculty of Chemistry, Technion-Israel Institute
of Technology, Haifa 3200008, Israel
| | - Hiroaki Suga
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Ashraf Brik
- Schulich
Faculty of Chemistry, Technion-Israel Institute
of Technology, Haifa 3200008, Israel
| |
Collapse
|
9
|
Kragelund BB, Loland CJ, Montoya G, Hatzakis N, Martinez KL, Gajhede M, Christensen CE, Holt L. Realizing integration in structural biology: The 2022 ISBUC Annual Meeting. Structure 2023; 31:747-754. [PMID: 37419096 DOI: 10.1016/j.str.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 07/09/2023]
Abstract
This meeting report presents the 2022 Annual Meeting of the cluster for Integrative Structural Biology at the University of Copenhagen (ISBUC) and discusses the cluster approach to interdisciplinary research management. This approach successfully facilitates cross-faculty and inter-departmental collaboration. Innovative integrative research collaborations ignited by ISBUC, as well as research presented at the meeting, are showcased.
Collapse
Affiliation(s)
- Birthe B Kragelund
- University of Copenhagen, Department of Biology, Structural Biology and NMR Laboratory, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Claus Juul Loland
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Guillermo Montoya
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3-B, 2200 Copenhagen, Denmark
| | - Nikos Hatzakis
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Karen L Martinez
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Michael Gajhede
- Peptides and Proteins, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Caspar Elo Christensen
- University of Copenhagen, Department of Biology, Structural Biology and NMR Laboratory, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Lucy Holt
- University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
10
|
Furuhata T, Devadasan Racheal PA, Murayama I, Toyoda U, Okamoto A. One-Pot, Photocontrolled Enzymatic Assembly of the Structure-Defined Heterotypic Polyubiquitin Chain. J Am Chem Soc 2023; 145:11690-11700. [PMID: 37200097 DOI: 10.1021/jacs.3c01912] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Heterotypic polyubiquitins are an emerging class of polyubiquitins that have attracted interest because of their potential diversity of structures and physiological functions. There is an increasing demand for structure-defined synthesis of heterotypic chains to investigate the topological factors underlying the intracellular signals that are characteristically mediated by the heterotypic chain. However, the applicability of chemical and enzymatic polyubiquitin synthesis developed to date has been limited by laborious rounds of ligation and purification or by a lack of modularity of the chain structure with respect to the length and the branch position. Here, we established a one-pot, photocontrolled synthesis of structurally defined heterotypic polyubiquitin chains. We designed ubiquitin derivatives with a photolabile protecting group at a lysine residue used for polymerization. Repetitive cycles of linkage-specific enzymatic elongation and photoinduced deprotection of the protected ubiquitin units enabled stepwise addition of ubiquitins with appropriate functionalities to control the length and branching positions. The positional control of branching was achieved without isolation of intermediates, allowing one-pot synthesis of K63 triubiqutin chains and a K63/K48 heterotypic tetraubiquitin chain with defined branching positions. The present study provides a chemical platform for the efficient construction of long polyubiquitin chains with defined branch structures that will facilitate the understanding of the essential relationships between functions and structures of the heterotypic chain that have hitherto been overlooked.
Collapse
Affiliation(s)
- Takafumi Furuhata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Phebee Angeline Devadasan Racheal
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Iori Murayama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Usano Toyoda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
11
|
Pietz HL, Abbas A, Johnson ZL, Oldham ML, Suga H, Chen J. A macrocyclic peptide inhibitor traps MRP1 in a catalytically incompetent conformation. Proc Natl Acad Sci U S A 2023; 120:e2220012120. [PMID: 36893260 PMCID: PMC10089224 DOI: 10.1073/pnas.2220012120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
Adenosine triphosphate-binding cassette (ABC) transporters, such as multidrug resistance protein 1 (MRP1), protect against cellular toxicity by exporting xenobiotic compounds across the plasma membrane. However, constitutive MRP1 function hinders drug delivery across the blood-brain barrier, and MRP1 overexpression in certain cancers leads to acquired multidrug resistance and chemotherapy failure. Small-molecule inhibitors have the potential to block substrate transport, but few show specificity for MRP1. Here we identify a macrocyclic peptide, named CPI1, which inhibits MRP1 with nanomolar potency but shows minimal inhibition of a related multidrug transporter P-glycoprotein. A cryoelectron microscopy (cryo-EM) structure at 3.27 Å resolution shows that CPI1 binds MRP1 at the same location as the physiological substrate leukotriene C4 (LTC4). Residues that interact with both ligands contain large, flexible sidechains that can form a variety of interactions, revealing how MRP1 recognizes multiple structurally unrelated molecules. CPI1 binding prevents the conformational changes necessary for adenosine triphosphate (ATP) hydrolysis and substrate transport, suggesting it may have potential as a therapeutic candidate.
Collapse
Affiliation(s)
- Harlan L Pietz
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065
| | - Ata Abbas
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Zachary Lee Johnson
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065
| | - Michael L Oldham
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065
- HHMI, New York, NY 10065
| | - Hiroaki Suga
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065
- HHMI, New York, NY 10065
| |
Collapse
|
12
|
Alteen MG, Peacock H, Meek RW, Busmann JA, Zhu S, Davies GJ, Suga H, Vocadlo DJ. Potent De Novo Macrocyclic Peptides That Inhibit O-GlcNAc Transferase through an Allosteric Mechanism. Angew Chem Int Ed Engl 2023; 62:e202215671. [PMID: 36460613 DOI: 10.1002/anie.202215671] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
Glycosyltransferases are a superfamily of enzymes that are notoriously difficult to inhibit. Here we apply an mRNA display technology integrated with genetic code reprogramming, referred to as the RaPID (random non-standard peptides integrated discovery) system, to identify macrocyclic peptides with high binding affinities for O-GlcNAc transferase (OGT). These macrocycles inhibit OGT activity through an allosteric mechanism that is driven by their binding to the tetratricopeptide repeats of OGT. Saturation mutagenesis in a maturation screen using 39 amino acids, including 22 non-canonical residues, led to an improved unnatural macrocycle that is ≈40 times more potent than the parent compound (Ki app =1.5 nM). Subsequent derivatization delivered a biotinylated derivative that enabled one-step affinity purification of OGT from complex samples. The high potency and novel mechanism of action of these OGT ligands should enable new approaches to elucidate the specificity and regulation of OGT.
Collapse
Affiliation(s)
- Matthew G Alteen
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Hayden Peacock
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Richard W Meek
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Jil A Busmann
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Sha Zhu
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo, 113-0033, Japan
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
13
|
Huppelschoten Y, van der Heden van Noort GJ. State of the art in (semi-)synthesis of Ubiquitin- and Ubiquitin-like tools. Semin Cell Dev Biol 2022; 132:74-85. [PMID: 34961664 DOI: 10.1016/j.semcdb.2021.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/14/2022]
Abstract
Protein ubiquitination is a key post-translational modification in regulating many fundamental cellular processes and dysregulation of these processes can give rise to a vast array of diseases. Unravelling the molecular mechanisms of ubiquitination hence is an important area in current ubiquitin research with as aim to understand this enigmatic process. The complexity of ubiquitin (Ub) signaling arises from the large variety of Ub conjugates, where Ub is attached to other Ub proteins, Ub-like proteins, and protein substrates. The chemical preparation of such Ub conjugates in high homogeneity and in adequate amounts contributes greatly to the deciphering of Ub signaling. The strength of these chemically synthesized conjugates lies in the chemo-selectivity in which they can be created that are sometimes difficult to obtain using biochemical methodology. In this review, we will discuss the progress in the chemical protein synthesis of state-of-the-art Ub and Ub-like chemical probes, their unique concepts and related discoveries in the ubiquitin field.
Collapse
Affiliation(s)
- Yara Huppelschoten
- Oncode Institute and Dept. Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands; Global Research Technologies, Novo Nordisk Research Park, Måløv, Denmark
| | | |
Collapse
|
14
|
Yang J, Zhu Q, Wu Y, Qu X, Liu H, Jiang B, Ge D, Song X. Utilization of macrocyclic peptides to target protein-protein interactions in cancer. Front Oncol 2022; 12:992171. [PMID: 36465350 PMCID: PMC9714258 DOI: 10.3389/fonc.2022.992171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
Protein-protein interactions (PPIs) play vital roles in normal cellular processes. Dysregulated PPIs are involved in the process of various diseases, including cancer. Thus, these PPIs may serve as potential therapeutic targets in cancer treatment. However, despite rapid advances in small-molecule drugs and biologics, it is still hard to target PPIs, especially for those intracellular PPIs. Macrocyclic peptides have gained growing attention for their therapeutic properties in targeting dysregulated PPIs. Macrocyclic peptides have some unique features, such as moderate sizes, high selectivity, and high binding affinities, which make them good drug candidates. In addition, some oncology macrocyclic peptide drugs have been approved by the US Food and Drug Administration (FDA) for clinical use. Here, we reviewed the recent development of macrocyclic peptides in cancer treatment. The opportunities and challenges were also discussed to inspire new perspectives.
Collapse
Affiliation(s)
- Jiawen Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yifan Wu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Qu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haixia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoling Song
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
15
|
Selective macrocyclic peptide modulators of Lys63-linked ubiquitin chains disrupt DNA damage repair. Nat Commun 2022; 13:6174. [PMID: 36257952 PMCID: PMC9579194 DOI: 10.1038/s41467-022-33808-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Developing an effective binder for a specific ubiquitin (Ub) chain is a promising approach for modulating various biological processes with potential applications in drug discovery. Here, we combine the Random Non-standard Peptides Integrated Discovery (RaPID) method and chemical protein synthesis to screen an extended library of macrocyclic peptides against synthetic Lys63-linked Di-Ub to discover a specific binder for this Ub chain. Furthermore, next-generation binders are generated by chemical modifications. We show that our potent cyclic peptide is cell-permeable, and inhibits DNA damage repair, leading to apoptotic cell death. Concordantly, a pulldown experiment with the biotinylated analog of our lead cyclic peptide supports our findings. Collectively, we establish a powerful strategy for selective inhibition of protein-protein interactions associated with Lys63-linked Di-Ub using cyclic peptides. This study offers an advancement in modulating central Ub pathways and provides opportunities in drug discovery areas associated with Ub signaling.
Collapse
|
16
|
Cui Y, Chen X, Wang Z, Lu Y. Cell-Free PURE System: Evolution and Achievements. BIODESIGN RESEARCH 2022; 2022:9847014. [PMID: 37850137 PMCID: PMC10521753 DOI: 10.34133/2022/9847014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/16/2022] [Indexed: 10/19/2023] Open
Abstract
The cell-free protein synthesis (CFPS) system, as a technical core of synthetic biology, can simulate the transcription and translation process in an in vitro open environment without a complete living cell. It has been widely used in basic and applied research fields because of its advanced engineering features in flexibility and controllability. Compared to a typical crude extract-based CFPS system, due to defined and customizable components and lacking protein-degrading enzymes, the protein synthesis using recombinant elements (PURE) system draws great attention. This review first discusses the elemental composition of the PURE system. Then, the design and preparation of functional proteins for the PURE system, especially the critical ribosome, were examined. Furthermore, we trace the evolving development of the PURE system in versatile areas, including prototyping, synthesis of unnatural proteins, peptides and complex proteins, and biosensors. Finally, as a state-of-the-art engineering strategy, this review analyzes the opportunities and challenges faced by the PURE system in future scientific research and diverse applications.
Collapse
Affiliation(s)
- Yi Cui
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- College of Life Sciences, Shenyang Normal University, Shenyang 110034, Liaoning, China
| | - Xinjie Chen
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ze Wang
- College of Life Sciences, Shenyang Normal University, Shenyang 110034, Liaoning, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Dreier JE, Prestel A, Martins JM, Brøndum SS, Nielsen O, Garbers AE, Suga H, Boomsma W, Rogers JM, Hartmann-Petersen R, Kragelund BB. A context-dependent and disordered ubiquitin-binding motif. Cell Mol Life Sci 2022; 79:484. [PMID: 35974206 PMCID: PMC9381478 DOI: 10.1007/s00018-022-04486-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Ubiquitin is a small, globular protein that is conjugated to other proteins as a posttranslational event. A palette of small, folded domains recognizes and binds ubiquitin to translate and effectuate this posttranslational signal. Recent computational studies have suggested that protein regions can recognize ubiquitin via a process of folding upon binding. Using peptide binding arrays, bioinformatics, and NMR spectroscopy, we have uncovered a disordered ubiquitin-binding motif that likely remains disordered when bound and thus expands the palette of ubiquitin-binding proteins. We term this motif Disordered Ubiquitin-Binding Motif (DisUBM) and find it to be present in many proteins with known or predicted functions in degradation and transcription. We decompose the determinants of the motif showing it to rely on features of aromatic and negatively charged residues, and less so on distinct sequence positions in line with its disordered nature. We show that the affinity of the motif is low and moldable by the surrounding disordered chain, allowing for an enhanced interaction surface with ubiquitin, whereby the affinity increases ~ tenfold. Further affinity optimization using peptide arrays pushed the affinity into the low micromolar range, but compromised context dependence. Finally, we find that DisUBMs can emerge from unbiased screening of randomized peptide libraries, featuring in de novo cyclic peptides selected to bind ubiquitin chains. We suggest that naturally occurring DisUBMs can recognize ubiquitin as a posttranslational signal to act as affinity enhancers in IDPs that bind to folded and ubiquitylated binding partners.
Collapse
Affiliation(s)
- Jesper E Dreier
- Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark.,REPIN, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Andreas Prestel
- Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - João M Martins
- Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen Ø, Denmark
| | - Sebastian S Brøndum
- Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Olaf Nielsen
- Functional Genomics, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Anna E Garbers
- Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark.,REPIN, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Wouter Boomsma
- Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen Ø, Denmark
| | - Joseph M Rogers
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen Ø, Denmark
| | - Rasmus Hartmann-Petersen
- REPIN, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark. .,The Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark. .,REPIN, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark. .,The Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
18
|
Zheng Q, Su Z, Yu Y, Liu L. Recent progress in dissecting ubiquitin signals with chemical biology tools. Curr Opin Chem Biol 2022; 70:102187. [PMID: 35961065 DOI: 10.1016/j.cbpa.2022.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
Abstract
Protein ubiquitination regulates almost all eukaryotic cellular processes, and is of very high complexity due to the diversity of ubiquitin (Ub) modifications including mono-, multiply mono-, homotypic poly-, and even heterotypic poly-ubiquitination. To accurately elucidate the role of each specific Ub signal in different cells with spatiotemporal resolutions, a variety of chemical biology tools have been developed. In this review, we summarize some recently developed chemical biology tools for ubiquitination studies and their applications in molecular and cellular biology.
Collapse
Affiliation(s)
- Qingyun Zheng
- School of Medicine, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China; Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (MOE), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhen Su
- School of Medicine, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China
| | - Yuanyuan Yu
- School of Medicine, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China.
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (MOE), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
19
|
Morgan M, Ikenoue T, Suga H, Wolberger C. Potent macrocycle inhibitors of the human SAGA deubiquitinating module. Cell Chem Biol 2022; 29:544-554.e4. [PMID: 34936860 PMCID: PMC9035043 DOI: 10.1016/j.chembiol.2021.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/08/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022]
Abstract
The Spt-Ada-Gcn5 acetyltransferase (SAGA) transcriptional coactivator contains a four-protein subcomplex called the deubiquitinating enzyme (DUB) module that removes ubiquitin from histone H2B-K120. The human DUB module contains the catalytic subunit ubiquitin-specific protease 22 (USP22), which is overexpressed in a number of cancers that are resistant to available therapies. We screened a massive combinatorial library of cyclic peptides and identified potent inhibitors of USP22. The top hit was highly specific for USP22 compared with a panel of 44 other human DUBs. Cells treated with peptide had increased levels of H2B monoubiquitination, demonstrating the ability of the cyclic peptides to enter human cells and inhibit H2B deubiquitination. These macrocycle inhibitors are, to our knowledge, the first reported inhibitors of USP22/SAGA DUB module and show promise for development.
Collapse
Affiliation(s)
- Michael Morgan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tatsuya Ikenoue
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
20
|
2-Pyridine Carboxaldehyde for Semi-Automated Soft Spot Identification in Cyclic Peptides. Int J Mol Sci 2022; 23:ijms23084269. [PMID: 35457087 PMCID: PMC9028278 DOI: 10.3390/ijms23084269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cyclic peptides are an attractive option as therapeutics due to their ability to disrupt crucial protein-protein interactions and their flexibility in display type screening strategies, but they come with their own bioanalytical challenges in metabolite identification. Initial amide hydrolysis of a cyclic peptide results in a ring opening event in which the sequence is linearized. Unfortunately, the mass of the singly hydrolyzed sequence is the same (M + 18.0106 Da) irrespective of the initial site of hydrolysis, or soft spot. Soft spot identification at this point typically requires time-consuming manual interpretation of the tandem mass spectra, resulting in a substantial bottleneck in the hit to lead process. To overcome this, derivatization using 2-pyridine carboxaldehyde, which shows high selectivity for the alpha amine on the N-terminus, was employed. This strategy results in moderate- to high-efficiency derivatization with a unique mass tag and diagnostic ions that serve to highlight the first amino acid in the newly linearized peptide. The derivatization method and analytical strategy are demonstrated on a whole cell lysate digest, and the soft spot identification strategy is shown with two commercially available cyclic peptides: JB1 and somatostatin. Effective utilization of the automated sample preparation and interpretation of the resulting spectra shown here will serve to reduce the hit-to-lead time for generating promising proteolytically stable peptide candidates.
Collapse
|
21
|
Buyanova M, Pei D. Targeting intracellular protein-protein interactions with macrocyclic peptides. Trends Pharmacol Sci 2022; 43:234-248. [PMID: 34911657 PMCID: PMC8840965 DOI: 10.1016/j.tips.2021.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/23/2021] [Accepted: 11/09/2021] [Indexed: 01/07/2023]
Abstract
Intracellular protein-protein interactions (PPIs) are challenging targets for traditional drug modalities. Macrocyclic peptides (MPs) prove highly effective PPI inhibitors in vitro and can be rapidly discovered against PPI targets by rational design or screening combinatorial libraries but are generally impermeable to the cell membrane. Recent advances in MP science and technology are allowing for the development of 'drug-like' MPs that potently and specifically modulate intracellular PPI targets in cell culture and animal models. In this review, we highlight recent progress in generating cell-permeable MPs that enter the mammalian cell by passive diffusion, endocytosis followed by endosomal escape, or as-yet unknown mechanisms.
Collapse
Affiliation(s)
- Marina Buyanova
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
22
|
Gu Y, Iannuzzelli JA, Fasan R. MOrPH-PhD: A Phage Display System for the Functional Selection of Genetically Encoded Macrocyclic Peptides. Methods Mol Biol 2022; 2371:261-286. [PMID: 34596853 PMCID: PMC8493807 DOI: 10.1007/978-1-0716-1689-5_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Macrocyclic peptides represent promising scaffolds for targeting biomolecules with high affinity and selectivity, making methods for the diversification and functional selection of these macrocycles highly valuable for drug discovery purposes. We recently reported a novel phage display platform (called MOrPH-PhD) for the creation and functional exploration of combinatorial libraries of genetically encoded cyclic peptides. In this system, spontaneous, posttranslational peptide cyclization by means of a cysteine-reactive non-canonical amino acid is integrated with M13 bacteriophage display, enabling the creation of genetically encoded macrocyclic peptide libraries displayed on phage particles. Using this system, it is possible to rapidly generate and screen large libraries of phage-displayed macrocyclic peptides (up to 108 to 1010 members) in order to identify high-affinity binders of a target protein of interest. Herein, we describe step-by-step protocols for the production of MOrPH-PhD libraries, the screening of these libraries against an immobilized protein target, and the isolation and characterization of functional macrocyclic peptides from these genetically encoded libraries.
Collapse
Affiliation(s)
- Yu Gu
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | | | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
23
|
Vanjari R, Eid E, Vamisetti GB, Mandal S, Brik A. Highly Efficient Cyclization Approach of Propargylated Peptides via Gold(I)-Mediated Sequential C-N, C-O, and C-C Bond Formation. ACS CENTRAL SCIENCE 2021; 7:2021-2028. [PMID: 34966846 PMCID: PMC8711126 DOI: 10.1021/acscentsci.1c00969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 05/02/2023]
Abstract
A rapid and efficient cyclization of unprotected N-propargylated peptides using the Au(I) organometallic complex is reported. The method relies on the activation of the propargyl functionality using gold(I) to produce a new linkage with the N-terminus amine at the cyclization site. The presented method features a fast reaction rate (within 20 min), mild conditions, chemoselectivity, wide sequence scope, and high yields (up to 87%). The strategy was successfully tested on a wide variety of 30 unprotected peptides having various sequences and lengths, thus providing access to structurally distinct cyclic peptides. The practical usefulness of this method was demonstrated in producing peptides that bind efficiently to Lys48-linked di- and tetra-ubiquitin chains. The new cyclic peptide modulators exhibited high permeability to living cells and promoted apoptosis via binding with the endogenous Lys48-linked ubiquitin chains.
Collapse
|
24
|
Gutkin S, Gandhesiri S, Brik A, Shabat D. Synthesis and Evaluation of Ubiquitin-Dioxetane Conjugate as a Chemiluminescent Probe for Monitoring Deubiquitinase Activity. Bioconjug Chem 2021; 32:2141-2147. [PMID: 34549948 PMCID: PMC8589252 DOI: 10.1021/acs.bioconjchem.1c00413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Indexed: 12/27/2022]
Abstract
The removal of ubiquitin (Ub) from a modified protein or Ub chain is a process that occurs regularly by the ubiquitin-proteasome system. This process is known to be mediated by various deubiquitinating enzymes (DUBs) in order to control the protein's half-life and its expression levels among many other signaling processes. Since the function of DUBs is also involved in numerous human diseases, such as cancer, there is an obvious need for an effective diagnostic probe that can monitor the activity of these enzymes. We have developed the first chemiluminescence probe for detection of DUBs activity. The probe was prepared by conjugation of the chemically synthesized C-terminally activated Ub(1-75) with a Gly-enolether precursor. Subsequent oxidation, under aqueous conditions, of the enolether conjuagate with singlet-oxygen furnished the dioxetane probe Ub-CL. This synthesis provides the first example of a dioxetane-luminophore protein conjugate. The probe's ability to detect deubiquitinating activity was successfully validated with three different DUBs. In order to demonstrate the advantage of our new probe, comparison measurements for detection of DUB UCH-L3 activity were performed between the chemiluminescent probe Ub-CL and the well-known Ub-AMC probe. The obtained data showed significantly higher S/N, for probe Ub-CL (>93-fold) in comparison to that observed for Ub-AMC (1.5-fold). We anticipate that the successful design and synthesis of the turn-ON protein-dioxetane conjugate probe, demonstrated in this work, will provide the insight and motivation for preparation of other relevant protein-dioxetane conjugates.
Collapse
Affiliation(s)
- Sara Gutkin
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Satish Gandhesiri
- Schulich
Faculty of Chemistry, Technion-Israel Institute
of Technology, Haifa 3200008, Israel
| | - Ashraf Brik
- Schulich
Faculty of Chemistry, Technion-Israel Institute
of Technology, Haifa 3200008, Israel
| | - Doron Shabat
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
25
|
Wu Y, Bertran MT, Rowley J, Calder EDD, Joshi D, Walport LJ. Fluorescent Amino Acid Initiated de novo Cyclic Peptides for the Label-Free Assessment of Cell Permeability*. ChemMedChem 2021; 16:3185-3188. [PMID: 34236771 PMCID: PMC8597039 DOI: 10.1002/cmdc.202100315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 11/11/2022]
Abstract
The major obstacle in applying peptides to intracellular targets is their low inherent cell permeability. Standard approaches to attach a fluorophore (e. g. FITC, TAMRA) can change the physicochemical properties of the parent peptide and influence their ability to penetrate and localize in cells. We report a label-free strategy for evaluating the cell permeability of cyclic peptide leads. Fluorescent tryptophan analogues 4-cyanotryptophan (4CNW) and β-(1-azulenyl)-L-alanine (AzAla) were incorporated into in vitro translated macrocyclic peptides by initiator reprogramming. We then demonstrate these efficient blue fluorescent emitters are good tools for monitoring peptide penetration into cells.
Collapse
Affiliation(s)
- Yuteng Wu
- Protein-Protein Interaction LaboratoryThe Francis Crick InstituteLondonNW1 1ATUK
- Department of ChemistryMolecular Sciences Research HubImperial College LondonLondonW12 0BZUK
| | - M. Teresa Bertran
- Protein-Protein Interaction LaboratoryThe Francis Crick InstituteLondonNW1 1ATUK
| | - James Rowley
- Protein-Protein Interaction LaboratoryThe Francis Crick InstituteLondonNW1 1ATUK
- Department of ChemistryMolecular Sciences Research HubImperial College LondonLondonW12 0BZUK
| | - Ewen D. D. Calder
- Protein-Protein Interaction LaboratoryThe Francis Crick InstituteLondonNW1 1ATUK
- Department of ChemistryMolecular Sciences Research HubImperial College LondonLondonW12 0BZUK
| | - Dhira Joshi
- Peptide ChemistryThe Francis Crick InstituteLondonNW1 1ATUK
| | - Louise J. Walport
- Protein-Protein Interaction LaboratoryThe Francis Crick InstituteLondonNW1 1ATUK
- Department of ChemistryMolecular Sciences Research HubImperial College LondonLondonW12 0BZUK
| |
Collapse
|
26
|
Goto Y, Suga H. The RaPID Platform for the Discovery of Pseudo-Natural Macrocyclic Peptides. Acc Chem Res 2021; 54:3604-3617. [PMID: 34505781 DOI: 10.1021/acs.accounts.1c00391] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although macrocyclic peptides bearing exotic building blocks have proven their utility as pharmaceuticals, the sources of macrocyclic peptide drugs have been largely limited to mimetics of native peptides or natural product peptides. However, the recent emergence of technologies for discovering de novo bioactive peptides has led to their reconceptualization as a promising therapeutic modality. For the construction and screening of libraries of such macrocyclic peptides, our group has devised a platform to conduct affinity-based selection of massive libraries (>1012 unique sequences) of in vitro expressed macrocyclic peptides, which is referred to as the random nonstandard peptides integrated discovery (RaPID) system. The RaPID system integrates genetic code reprogramming using the FIT (flexible in vitro translation) system, which is largely facilitated by flexizymes (flexible tRNA-aminoacylating ribozymes), with mRNA display technology.We have demonstrated that the RaPID system enables rapid discovery of various de novo pseudo-natural peptide ligands for protein targets of interest. Many examples discussed in this Account prove that thioether-closed macrocyclic peptides (teMPs) obtained by the RaPID system generally exhibit remarkably high affinity and specificity, thereby potently inhibiting or activating a specific function(s) of the target. Moreover, such teMPs are used for a wide range of biochemical applications, for example, as crystallization chaperones for intractable transmembrane proteins and for in vivo recognition of specific cell types. Furthermore, recent studies demonstrate that some teMPs exhibit pharmacological activities in animal models and that even intracellular proteins can be inhibited by teMPs, illustrating the potential of this class of peptides as drug leads.Besides the ring-closing thioether linkage in the teMPs, genetic code reprogramming by the FIT system allows for incorporation of a variety of other exotic building blocks. For instance, diverse nonproteinogenic amino acids, hydroxy acids (ester linkage), amino carbothioic acid (thioamide linkage), and abiotic foldamer units have been successfully incorporated into ribosomally synthesized peptides. Despite such enormous successes in the conventional FIT system, multiple or consecutive incorporation of highly exotic amino acids, such as d- and β-amino acids, is yet challenging, and particularly the synthesis of peptides bearing non-carbonyl backbone structures remains a demanding task. To upgrade the RaPID system to the next generation, we have engaged in intensive manipulation of the FIT system to expand the structural diversity of peptides accessible by our in vitro biosynthesis strategy. Semilogical engineering of tRNA body sequences led to a new suppressor tRNA (tRNAPro1E2) capable of effectively recruiting translation factors, particularly EF-Tu and EF-P. The use of tRNAPro1E2 in the FIT system allows for not only single but also consecutive and multiple elongation of exotic amino acids, such as d-, β-, and γ-amino acids as well as aminobenzoic acids. Moreover, the integration of the FIT system with various chemical or enzymatic posttranslational modifications enables us to expand the range of accessible backbone structures to non-carbonyl moieties prominent in natural products and peptidomimetics. In such systems, FIT-expressed peptides undergo multistep backbone conversions in a one-pot manner to yield designer peptides composed of modified backbones such as azolines, azoles, and ring-closing pyridines. Our current research endeavors focus on applying such in vitro biosynthesis systems for the discovery of bioactive de novo pseudo-natural products.
Collapse
Affiliation(s)
- Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
27
|
Yao G, Knittel CH, Kosol S, Wenz MT, Keller BG, Gruß H, Braun AC, Lutz C, Hechler T, Pahl A, Süssmuth RD. Iodine-Mediated Tryptathionine Formation Facilitates the Synthesis of Amanitins. J Am Chem Soc 2021; 143:14322-14331. [PMID: 34459587 DOI: 10.1021/jacs.1c06565] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthetic methods on the macrocyclization of peptides are of high interest since they facilitate the synthesis of various types of potentially bioactive compounds, e.g. addressing targets like protein-protein-interactions. Herein, we report on an efficient method to construct tryptathionine-cross-links in peptides between the amino acids Trp and Cys. This reaction not only is the basis for the total synthesis of the death cap toxin α-amanitin but also provides rapid access to various new amanitin analogues. This study for the first time presents a systematic compilation of structure-activity relations (SAR) of amatoxins with regard to RNA polymerase II inhibition and cytotoxicity with one amanitin derivative of superior RNAP II inhibition. The present approach paves the way for the synthesis of structurally diverse amatoxins as future payloads for antibody-toxin conjugates in cancer therapy.
Collapse
Affiliation(s)
- Guiyang Yao
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Caroline H Knittel
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Simone Kosol
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Marius T Wenz
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Bettina G Keller
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Hendrik Gruß
- Heidelberg Pharma Research GmbH, Gregor-Mendel-Straße 22, 68526 Ladenburg, Germany
| | - Alexandra C Braun
- Heidelberg Pharma Research GmbH, Gregor-Mendel-Straße 22, 68526 Ladenburg, Germany
| | - Christian Lutz
- Heidelberg Pharma Research GmbH, Gregor-Mendel-Straße 22, 68526 Ladenburg, Germany
| | - Torsten Hechler
- Heidelberg Pharma Research GmbH, Gregor-Mendel-Straße 22, 68526 Ladenburg, Germany
| | - Andreas Pahl
- Heidelberg Pharma Research GmbH, Gregor-Mendel-Straße 22, 68526 Ladenburg, Germany
| | - Roderich D Süssmuth
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| |
Collapse
|
28
|
Norman A, Franck C, Christie M, Hawkins PME, Patel K, Ashhurst AS, Aggarwal A, Low JKK, Siddiquee R, Ashley CL, Steain M, Triccas JA, Turville S, Mackay JP, Passioura T, Payne RJ. Discovery of Cyclic Peptide Ligands to the SARS-CoV-2 Spike Protein Using mRNA Display. ACS CENTRAL SCIENCE 2021; 7:1001-1008. [PMID: 34230894 PMCID: PMC8189037 DOI: 10.1021/acscentsci.0c01708] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 05/03/2023]
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has led to substantial morbidity, mortality, and disruption globally. Cellular entry of SARS-CoV-2 is mediated by the viral spike protein, and affinity ligands to this surface protein have the potential for applications as antivirals and diagnostic reagents. Here, we describe the affinity selection of cyclic peptide ligands to the SARS-CoV-2 spike protein receptor binding domain (RBD) from three distinct libraries (in excess of a trillion molecules each) by mRNA display. We identified six high affinity molecules with dissociation constants (K D) in the nanomolar range (15-550 nM) to the RBD. The highest affinity ligand could be used as an affinity reagent to detect the spike protein in solution by ELISA, and the cocrystal structure of this molecule bound to the RBD demonstrated that it binds to a cryptic binding site, displacing a β-strand near the C-terminus. Our findings provide key mechanistic insight into the binding of peptide ligands to the SARS-CoV-2 spike RBD, and the ligands discovered in this work may find future use as reagents for diagnostic applications.
Collapse
Affiliation(s)
- Alexander Norman
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Charlotte Franck
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
- School
of Life and Environmental Sciences, The
University of Sydney, Sydney, New South Wales 2006, Australia
| | - Mary Christie
- School
of Life and Environmental Sciences, The
University of Sydney, Sydney, New South Wales 2006, Australia
| | - Paige M. E. Hawkins
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Karishma Patel
- School
of Life and Environmental Sciences, The
University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anneliese S. Ashhurst
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | | - Jason K. K. Low
- School
of Life and Environmental Sciences, The
University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rezwan Siddiquee
- School
of Life and Environmental Sciences, The
University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Caroline L. Ashley
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Megan Steain
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - James A. Triccas
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | | - Joel P. Mackay
- School
of Life and Environmental Sciences, The
University of Sydney, Sydney, New South Wales 2006, Australia
| | - Toby Passioura
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- School
of Life and Environmental Sciences, The
University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Richard J. Payne
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
29
|
Wang W, Khojasteh SC, Su D. Biosynthetic Strategies for Macrocyclic Peptides. Molecules 2021; 26:3338. [PMID: 34206124 PMCID: PMC8199541 DOI: 10.3390/molecules26113338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/28/2022] Open
Abstract
Macrocyclic peptides are predominantly peptide structures bearing one or more rings and spanning multiple amino acid residues. Macrocyclization has become a common approach for improving the pharmacological properties and bioactivity of peptides. A variety of ribosomal-derived and non-ribosomal synthesized cyclization approaches have been established. The biosynthesis of backbone macrocyclic peptides using seven new emerging methodologies will be discussed with regard to the features and strengths of each platform rather than medicinal chemistry tools. The mRNA display variant, known as the random nonstandard peptide integrated discovery (RaPID) platform, utilizes flexible in vitro translation (FIT) to access macrocyclic peptides containing nonproteinogenic amino acids (NAAs). As a new discovery approach, the ribosomally synthesized and post-translationally modified peptides (RiPPs) method involves the combination of ribosomal synthesis and the phage screening platform together with macrocyclization chemistries to generate libraries of macrocyclic peptides. Meanwhile, the split-intein circular ligation of peptides and proteins (SICLOPPS) approach relies on the in vivo production of macrocyclic peptides. In vitro and in vivo peptide library screening is discussed as an advanced strategy for cyclic peptide selection. Specifically, biosynthetic bicyclic peptides are highlighted as versatile and attractive modalities. Bicyclic peptides represent another type of promising therapeutics that allow for building blocks with a heterotrimeric conjugate to address intractable challenges and enable multimer complexes via linkers. Additionally, we discuss the cell-free chemoenzymatic synthesis of macrocyclic peptides with a non-ribosomal catalase known as the non-ribosomal synthetase (NRPS) and chemo-enzymatic approach, with recombinant thioesterase (TE) domains. Novel insights into the use of peptide library tools, activity-based two-hybrid screening, structure diversification, inclusion of NAAs, combinatorial libraries, expanding the toolbox for macrocyclic peptides, bicyclic peptides, chemoenzymatic strategies, and future perspectives are presented. This review highlights the broad spectrum of strategy classes, novel platforms, structure diversity, chemical space, and functionalities of macrocyclic peptides enabled by emerging biosynthetic platforms to achieve bioactivity and for therapeutic purposes.
Collapse
Affiliation(s)
| | | | - Dian Su
- Drug Metabolism and Disposition, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (W.W.); (S.C.K.)
| |
Collapse
|
30
|
Xie Q, Wiedmann MM, Zhao A, Pagan IR, Novick RP, Suga H, Muir TW. Discovery of quorum quenchers targeting the membrane-embedded sensor domain of the Staphylococcus aureus receptor histidine kinase, AgrC. Chem Commun (Camb) 2021; 56:11223-11226. [PMID: 32820778 DOI: 10.1039/d0cc04873a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We combined mRNA display technology with lipid-nanodisc based selections and identified high-affinity ligands targeting the integral membrane sensor domain of the histidine kinase AgrC as potent inhibitors of Staphylococcus aureus quorum sensing-modulated virulence. Our study highlights the potential of this integrated approach for identifying functional modulators of integral membrane proteins.
Collapse
Affiliation(s)
- Qian Xie
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| | - Mareike M Wiedmann
- Department of Chemistry, University of Tokyo, Graduate School of Science, Tokyo, Japan.
| | - Aishan Zhao
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| | - Ivelisse R Pagan
- Skirball Institute, Department of Microbiology, NYU Medical Center, New York, NY, USA
| | - Richard P Novick
- Skirball Institute, Department of Microbiology, NYU Medical Center, New York, NY, USA
| | - Hiroaki Suga
- Department of Chemistry, University of Tokyo, Graduate School of Science, Tokyo, Japan.
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
31
|
Ishida T, Ciulli A. E3 Ligase Ligands for PROTACs: How They Were Found and How to Discover New Ones. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:484-502. [PMID: 33143537 PMCID: PMC8013866 DOI: 10.1177/2472555220965528] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022]
Abstract
Bifunctional degrader molecules, also called proteolysis-targeting chimeras (PROTACs), are a new modality of chemical tools and potential therapeutics to understand and treat human disease. A required PROTAC component is a ligand binding to an E3 ubiquitin ligase, which is then joined to another ligand binding to a protein to be degraded via the ubiquitin-proteasome system. The advent of nonpeptidic small-molecule E3 ligase ligands, notably for von Hippel-Lindau (VHL) and cereblon (CRBN), revolutionized the field and ushered in the design of drug-like PROTACs with potent and selective degradation activity. A first wave of PROTAC drugs are now undergoing clinical development in cancer, and the field is seeking to extend the repertoire of chemistries that allow hijacking new E3 ligases to improve the scope of targeted protein degradation.Here, we briefly review how traditional E3 ligase ligands were discovered, and then outline approaches and ligands that have been recently used to discover new E3 ligases for PROTACs. We will then take an outlook at current and future strategies undertaken that invoke either target-based screening or phenotypic-based approaches, including the use of DNA-encoded libraries (DELs), display technologies and cyclic peptides, smaller molecular glue degraders, and covalent warhead ligands. These approaches are ripe for expanding the chemical space of PROTACs and usher in the advent of other emerging bifunctional modalities of proximity-based pharmacology.
Collapse
Affiliation(s)
- Tasuku Ishida
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
32
|
Nagano M, Huang Y, Obexer R, Suga H. One-Pot In Vitro Ribosomal Synthesis of Macrocyclic Depsipeptides. J Am Chem Soc 2021; 143:4741-4750. [PMID: 33733757 DOI: 10.1021/jacs.1c00466] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we report a method for the one-pot ribosomal synthesis of macrocyclic depsipeptides. This method is based on a Ser-Pro-Cys-Gly (SPCG) motif discovered by in vitro selection of peptides for the function of self-acylation in the presence of a thioester acyl donor, which forms an O-acyl isopeptide bond via intramolecular S-to-O acyl transfer. Ribosomal synthesis of linear peptides containing the SPCG motif and a backbone "acyl donor" thioester at a downstream position results in spontaneous conversion to the corresponding cyclic depsipeptides (CDPs) in a nearly independent manner of ring size and sequence context. Mutational analysis of the SPCG motif revealed that the P and G residues are dispensable to some extent, but the arrangement of residues in SXCX is crucial for efficient acyl transfer, e.g., CPSG is much less efficient. Finally, one-pot ribosomal synthesis of macrocyclic depsipeptides with various ring sizes and sequences has been demonstrated. This synthetic method can facilitate the ribosomal construction of highly diverse CDP libraries for the discovery of de novo bioactive CDPs.
Collapse
Affiliation(s)
- Masanobu Nagano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yichao Huang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Richard Obexer
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
33
|
Discovery of De Novo Macrocyclic Peptides by Messenger RNA Display. Trends Pharmacol Sci 2021; 42:385-397. [PMID: 33771353 DOI: 10.1016/j.tips.2021.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
Macrocyclic peptides are a promising class of compounds that can often engage challenging therapeutic targets. Display technologies, such as mRNA display, allow for the efficient discovery of macrocyclic peptides. This article reviews the current approaches for generating macrocyclic peptide libraries using mRNA display and highlights some recent examples of ribosomal incorporation of nonproteinogenic amino acids into macrocyclic peptides.
Collapse
|
34
|
Vamisetti GB, Meledin R, Nawatha M, Suga H, Brik A. The Development of a Fluorescence-Based Competitive Assay Enabled the Discovery of Dimeric Cyclic Peptide Modulators of Ubiquitin Chains. Angew Chem Int Ed Engl 2021; 60:7018-7023. [PMID: 33326152 PMCID: PMC8048552 DOI: 10.1002/anie.202013392] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/13/2020] [Indexed: 12/15/2022]
Abstract
Development of modulators targeting specific interactions of ubiquitin-based conjugates with their partners is a formidable task since it requires a suitable screening assay and homogeneous ubiquitin conjugates. We developed a novel high-throughput strategy for screening ligands for Lys48-linked tetraubiquitin chain in a relatively simple, fast, and affordable manner. This approach combined with a state-of-the-art toolbox of chemical protein synthesis and a specially optimized Cys deprotection protocol enabled us to design highly potent, Lys48-linked tetraubiquitin chain selective "next generation" dimeric peptide modulators. The dimeric peptide exhibited cancer cell permeability and induced cell death with higher efficiency compared to its monocyclic analogue. These features make our dimeric peptide a promising candidate for further studies using in vivo models. Our assay can be adopted for other various ubiquitin chains in their free or anchored forms as well as conjugates for Ub-like modifiers.
Collapse
Affiliation(s)
- Ganga B. Vamisetti
- SchulichFaculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| | - Roman Meledin
- SchulichFaculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| | - Mickal Nawatha
- SchulichFaculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| | - Hiroaki Suga
- Department of ChemistrySchool of ScienceThe University of TokyoTokyo113-0033Japan
| | - Ashraf Brik
- SchulichFaculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| |
Collapse
|
35
|
Vamisetti GB, Meledin R, Nawatha M, Suga H, Brik A. The Development of a Fluorescence‐Based Competitive Assay Enabled the Discovery of Dimeric Cyclic Peptide Modulators of Ubiquitin Chains. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ganga B. Vamisetti
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Roman Meledin
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Mickal Nawatha
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Hiroaki Suga
- Department of Chemistry School of Science The University of Tokyo Tokyo 113-0033 Japan
| | - Ashraf Brik
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200008 Israel
| |
Collapse
|
36
|
Guardiola S, Varese M, Roig X, Sánchez-Navarro M, García J, Giralt E. Target-templated de novo design of macrocyclic d-/l-peptides: discovery of drug-like inhibitors of PD-1. Chem Sci 2021; 12:5164-5170. [PMID: 34163753 PMCID: PMC8179567 DOI: 10.1039/d1sc01031j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 01/22/2023] Open
Abstract
Peptides are a rapidly growing class of therapeutics with various advantages over traditional small molecules, especially for targeting difficult protein-protein interactions. However, current structure-based methods are largely limited to natural peptides and are not suitable for designing bioactive cyclic topologies that go beyond natural l-amino acids. Here, we report a generalizable framework that exploits the computational power of Rosetta, in terms of large-scale backbone sampling, side-chain composition and energy scoring, to design heterochiral cyclic peptides that bind to a protein surface of interest. To showcase the applicability of our approach, we developed two new inhibitors (PD-i3 and PD-i6) of programmed cell death 1 (PD-1), a key immune checkpoint in oncology. A comprehensive biophysical evaluation was performed to assess their binding to PD-1 as well as their blocking effect on the endogenous PD-1/PD-L1 interaction. Finally, NMR elucidation of their in-solution structures confirmed our de novo design approach.
Collapse
Affiliation(s)
- Salvador Guardiola
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology Baldiri Reixac 10 08028 Barcelona Spain
| | - Monica Varese
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology Baldiri Reixac 10 08028 Barcelona Spain
| | - Xavier Roig
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology Baldiri Reixac 10 08028 Barcelona Spain
| | | | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology Baldiri Reixac 10 08028 Barcelona Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology Baldiri Reixac 10 08028 Barcelona Spain
- Department of Inorganic and Organic Chemistry, University of Barcelona Spain
| |
Collapse
|
37
|
|
38
|
Liu R, Zuo R, Hudalla GA. Harnessing molecular recognition for localized drug delivery. Adv Drug Deliv Rev 2021; 170:238-260. [PMID: 33484737 PMCID: PMC8274479 DOI: 10.1016/j.addr.2021.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
A grand challenge in drug delivery is providing the right dose, at the right anatomic location, for the right duration of time to maximize therapeutic efficacy while minimizing off-target toxicity and other deleterious side-effects. Two general modalities are receiving broad attention for localized drug delivery. In the first, referred to as "targeted accumulation", drugs or drug carriers are engineered to have targeting moieties that promote their accumulation at a specific tissue site from circulation. In the second, referred to as "local anchoring", drugs or drug carriers are inserted directly into the tissue site of interest where they persist for a specified duration of time. This review surveys recent advances in harnessing molecular recognition between proteins, peptides, nucleic acids, lipids, and carbohydrates to mediate targeted accumulation and local anchoring of drugs and drug carriers.
Collapse
Affiliation(s)
- Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ran Zuo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
39
|
Polyubiquitin and ubiquitin-like signals share common recognition sites on proteasomal subunit Rpn1. J Biol Chem 2021; 296:100450. [PMID: 33617881 PMCID: PMC8008175 DOI: 10.1016/j.jbc.2021.100450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 11/21/2022] Open
Abstract
Proteasome-mediated substrate degradation is an essential process that relies on the coordinated actions of ubiquitin (Ub), shuttle proteins containing Ub-like (UBL) domains, and the proteasome. Proteinaceous substrates are tagged with polyUb and shuttle proteins, and these signals are then recognized by the proteasome, which subsequently degrades the substrate. To date, three proteasomal receptors have been identified, as well as multiple shuttle proteins and numerous types of polyUb chains that signal for degradation. While the components of this pathway are well-known, our understanding of their interplay is unclear—especially in the context of Rpn1, the largest proteasomal subunit. Here, using nuclear magnetic resonance (NMR) spectroscopy in combination with competition assays, we show that Rpn1 associates with UBL-containing proteins and polyUb chains, while exhibiting a preference for shuttle protein Rad23. Rpn1 appears to contain multiple Ub/UBL-binding sites, theoretically as many as one for each of its hallmark proteasome/cyclosome repeats. Remarkably, we also find that binding sites on Rpn1 can be shared among Ub and UBL species, while proteasomal receptors Rpn1 and Rpn10 can compete with each other for binding of shuttle protein Dsk2. Taken together, our results rule out the possibility of exclusive recognition sites on Rpn1 for individual Ub/UBL signals and further emphasize the complexity of the redundancy-laden proteasomal degradation pathway.
Collapse
|
40
|
Dotter H, Boll M, Eder M, Eder AC. Library and post-translational modifications of peptide-based display systems. Biotechnol Adv 2021; 47:107699. [PMID: 33513435 DOI: 10.1016/j.biotechadv.2021.107699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 12/27/2022]
Abstract
Innovative biotechnological methods empower the successful identification of new drug candidates. Phage, ribosome and mRNA display represent high throughput screenings, allowing fast and efficient progress in the field of targeted drug discovery. The identification range comprises low molecular weight peptides up to whole antibodies. However, a major challenge poses the stability and affinity in particular of peptides. Chemical modifications e.g. the introduction of unnatural amino acids or cyclization, have been proven to be essential tools to overcome these limitations. This review article particularly focuses on available methods for the targeted chemical modification of peptides and peptide libraries in selected display approaches.
Collapse
Affiliation(s)
- Hanna Dotter
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium, partner site Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany, and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Melanie Boll
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium, partner site Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany, and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Matthias Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium, partner site Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany, and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Ann-Christin Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium, partner site Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany, and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
41
|
ZHONG H, HUANG Y, JIN Y, ZHAO R. [Advances in the application of affinity separation for analyzing protein ubiquitination]. Se Pu 2021; 39:26-33. [PMID: 34227356 PMCID: PMC9274849 DOI: 10.3724/sp.j.1123.2020.07005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Indexed: 11/25/2022] Open
Abstract
Protein ubiquitination is one of the most common yet complex post-translational modifications in eukaryotes that plays an important role in various biological processes including cell signal transduction, growth, and metabolism. Disorders in the ubiquitination process have been revealed to correlate with the occurrence and development of many diseases such as neurodegenerative disease, inflammation, and cancer. Investigation of protein ubiquitination is of great importance to uncover protein functions, understand the molecular mechanisms underlying biological processes, and develop novel strategies for disease treatment. Great advances have been made toward understanding protein ubiquitination; however, it remains a challenging task due to the high diversity of ubiquitination sites and structures, as well as the dynamic nature of ubiquitination in biological processes. Protein ubiquitination occurs through the formation of a covalent bond between the carboxyl terminus of ubiquitin and the ε-amino group of a lysine residue in the substrate. As a small protein, ubiquitin itself can be further modified by another ubiquitin molecule to form homotypic or heterotypic polyubiquitin chains. There are eight sites, namely seven lysine residues (K6, K11, K27, K29, K33, K48, and K63) and one N-terminal methionine (M1), in one ubiquitin molecule that can be used to form a ubiquitin dimer. The variations in modification sites, ubiquitin chain lengths, and conformations result in differences in protein sorting, cell signaling, and function. To resolve the high complexity of protein ubiquitination, new separation approaches are required. Affinity separation based on the specific recognition between biomolecules offers high selectivity and has been employed to study the structures and functions of ubiquitination. In addition, affinity ligands are central to the separation performance. Different affinity ligands have been developed and employed for the capture and enrichment of ubiquitylated proteins. Immunoaffinity separation based on antigen-antibody interactions has been one of the most classical separation methods. Antibodies against ubiquitin or different ubiquitin linkages have been developed and widely applied for the enrichment of ubiquitylated proteins or peptides. The specific capture allows the downstream identification of endogenous ubiquitination sites via mass spectrometry and thus facilitates understanding of the roles and dynamics of polyubiquitin signals. Ubiquitin-binding domains (UBDs) are a collection of modular protein domains that can interact with ubiquitin or polyubiquitin chains. Ubiquitin-associated domains, ubiquitin-interacting motifs, and ubiquitin-binding zinc finger domains are the most frequently used UBDs. Due to the moderate affinity of UBDs toward ubiquitin or ubiquitin chains, tandem ubiquitin-binding entities (TUBEs) have been engineered with high affinities (Kd in the nanomolar range) and exhibit potential as powerful tools for ubiquitination analysis. Because of their affinity and selectivity, UBDs and TUBEs have been applied for the isolation and identification of ubiquitylated targets in cancer cells and yeasts. Compared with antibodies and UBDs, peptides are smaller in size and can be facilely synthesized via chemical approaches. The modular structure of peptides allows for de novo design and screening of artificial ubiquitin affinity ligands for targeted capture of ubiquitinated proteins. Furthermore, the polyhistidine tag at the N-terminus of ubiquitin facilitates the purification of ubiquitylated substrates using immobilized metal affinity chromatography. Considering the high complexity of biosystems, strategies combining multiple affinity ligands have emerged to further improve separation efficiency and reduce background interference. Several combinations of antibodies with UBDs, antibodies with peptidyl tags, and UBDs with peptidyl tags have been developed and proven to be effective for the analysis of protein ubiquitination. These affinity-based approaches serve as important solutions for studying the structure-activity relationship of protein ubiquitination. This review highlights the applications and recent advances in affinity separation techniques for analyzing protein ubiquitination, focusing on the methods using antibodies, UBDs, peptides, and their combinations as affinity ligands. Further, their applications in the enrichment of ubiquitin-modified substrates and the identification of ubiquitination structures are introduced. Additionally, remaining challenges in affinity separation of protein ubiquitination and perspectives are discussed.
Collapse
|
42
|
Rogers JM, Nawatha M, Lemma B, Vamisetti GB, Livneh I, Barash U, Vlodavsky I, Ciechanover A, Fushman D, Suga H, Brik A. In vivo modulation of ubiquitin chains by N-methylated non-proteinogenic cyclic peptides. RSC Chem Biol 2020; 2:513-522. [PMID: 34179781 PMCID: PMC8232551 DOI: 10.1039/d0cb00179a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer and other disease states can change the landscape of proteins post-translationally tagged with ubiquitin (Ub) chains. Molecules capable of modulating Ub chains are potential therapeutic agents, but their discovery represents a significant challenge. Recently, it was shown that de novo cyclic peptides, selected from trillion-member random libraries, are capable of binding particular Ub chains. However, these peptides were overwhelmingly proteinogenic, so the prospect of in vivo activity was uncertain. Here, we report the discovery of small, non-proteinogenic cyclic peptides, rich in non-canonical features like N-methylation, which can tightly and specifically bind Lys48-linked Ub chains. These peptides engage three Lys48-linked Ub units simultaneously, block the action of deubiquitinases and the proteasome, induce apoptosis in vitro, and attenuate tumor growth in vivo. This highlights the potential of non-proteinogenic cyclic peptide screening to rapidly find in vivo-active leads, and the targeting of ubiquitin chains as a promising anti-cancer mechanism of action.
Collapse
Affiliation(s)
- Joseph M Rogers
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Mickal Nawatha
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Betsegaw Lemma
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Ganga B Vamisetti
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Ido Livneh
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Uri Barash
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Israel Vlodavsky
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Aaron Ciechanover
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| |
Collapse
|
43
|
Iskandar SE, Haberman VA, Bowers AA. Expanding the Chemical Diversity of Genetically Encoded Libraries. ACS COMBINATORIAL SCIENCE 2020; 22:712-733. [PMID: 33167616 PMCID: PMC8284915 DOI: 10.1021/acscombsci.0c00179] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The power of ribosomes has increasingly been harnessed for the synthesis and selection of molecular libraries. Technologies, such as phage display, yeast display, and mRNA display, effectively couple genotype to phenotype for the molecular evolution of high affinity epitopes for many therapeutic targets. Genetic code expansion is central to the success of these technologies, allowing researchers to surpass the intrinsic capabilities of the ribosome and access new, genetically encoded materials for these selections. Here, we review techniques for the chemical expansion of genetically encoded libraries, their abilities and limits, and opportunities for further development. Importantly, we also discuss methods and metrics used to assess the efficiency of modification and library diversity with these new techniques.
Collapse
Affiliation(s)
- Sabrina E Iskandar
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Victoria A Haberman
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
44
|
Development of cyclic peptides with potent in vivo osteogenic activity through RaPID-based affinity maturation. Proc Natl Acad Sci U S A 2020; 117:31070-31077. [PMID: 33229551 PMCID: PMC7733813 DOI: 10.1073/pnas.2012266117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Osteoporosis is caused by a disequilibrium between bone resorption and bone formation. Therapeutics for osteoporosis can be divided into antiresorptives that suppress bone resorption and anabolics which increase bone formation. Currently, the only anabolic treatment options are parathyroid hormone mimetics or an anti-sclerostin monoclonal antibody. With the current global increases in demographics at risk for osteoporosis, development of therapeutics that elicit anabolic activity through alternative mechanisms is imperative. Blockade of the PlexinB1 and Semaphorin4D interaction on osteoblasts has been shown to be a promising mechanism to increase bone formation. Here we report the discovery of cyclic peptides by a novel RaPID (Random nonstandard Peptides Integrated Discovery) system-based affinity maturation methodology that generated the peptide PB1m6A9 which binds with high affinity to both human and mouse PlexinB1. The chemically dimerized peptide, PB1d6A9, showed potent inhibition of PlexinB1 signaling in mouse primary osteoblast cultures, resulting in significant enhancement of bone formation even compared to non-Semaphorin4D-treated controls. This high anabolic activity was also observed in vivo when the lipidated PB1d6A9 (PB1d6A9-Pal) was intravenously administered once weekly to ovariectomized mice, leading to complete rescue of bone loss. The potent osteogenic properties of this peptide shows great promise as an addition to the current anabolic treatment options for bone diseases such as osteoporosis.
Collapse
|
45
|
McAllister TE, Coleman OD, Roper G, Kawamura A. Structural diversity in
de novo
cyclic peptide ligands from genetically encoded library technologies. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tom E. McAllister
- Chemistry – School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
| | - Oliver D. Coleman
- Chemistry – School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
| | - Grace Roper
- Chemistry – School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
- Chemistry Research Laboratory, Department of Chemistry University of Oxford Oxford UK
| | - Akane Kawamura
- Chemistry – School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
- Chemistry Research Laboratory, Department of Chemistry University of Oxford Oxford UK
| |
Collapse
|
46
|
Cui Z, Johnston WA, Alexandrov K. Cell-Free Approach for Non-canonical Amino Acids Incorporation Into Polypeptides. Front Bioeng Biotechnol 2020; 8:1031. [PMID: 33117774 PMCID: PMC7550873 DOI: 10.3389/fbioe.2020.01031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Synthetic biology holds promise to revolutionize the life sciences and biomedicine via expansion of macromolecular diversity outside the natural chemical space. Use of non-canonical amino acids (ncAAs) via codon reassignment has found diverse applications in protein structure and interaction analysis, introduction of post-translational modifications, production of constrained peptides, antibody-drug conjugates, and novel enzymes. However, simultaneously encoding multiple ncAAs in vivo requires complex engineering and is sometimes restricted by the cell's poor uptake of ncAAs. In contrast the open nature of cell-free protein synthesis systems offers much greater freedom for manipulation and repurposing of the biosynthetic machinery by controlling the level and identity of translational components and reagents, and allows simultaneous incorporation of multiple ncAAs with non-canonical side chains and even backbones (N-methyl, D-, β-amino acids, α-hydroxy acids etc.). This review focuses on the two most used Escherichia coli-based cell-free protein synthesis systems; cell extract- and PURE-based systems. The former is a biological mixture with >500 proteins, while the latter consists of 38 individually purified biomolecules. We delineate compositions of these two systems and discuss their respective advantages and applications. Also, we dissect the translational components required for ncAA incorporation and compile lists of ncAAs that can be incorporated into polypeptides via different acylation approaches. We highlight the recent progress in using unnatural nucleobase pairs to increase the repertoire of orthogonal codons, as well as using tRNA-specific ribozymes for in situ acylation. We summarize advances in engineering of translational machinery such as tRNAs, aminoacyl-tRNA synthetases, elongation factors, and ribosomes to achieve efficient incorporation of structurally challenging ncAAs. We note that, many engineered components of biosynthetic machinery are developed for the use in vivo but are equally applicable to the in vitro systems. These are included in the review to provide a comprehensive overview for ncAA incorporation and offer new insights for the future development in cell-free systems. Finally, we highlight the exciting progress in the genomic engineering, resulting in E. coli strains free of amber and some redundant sense codons. These strains can be used for preparation of cell extracts offering multiple reassignment options.
Collapse
Affiliation(s)
- Zhenling Cui
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Wayne A Johnston
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kirill Alexandrov
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
47
|
Rogers JM. Peptide Folding and Binding Probed by Systematic Non-canonical Mutagenesis. Front Mol Biosci 2020; 7:100. [PMID: 32671094 PMCID: PMC7326784 DOI: 10.3389/fmolb.2020.00100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022] Open
Abstract
Many proteins and peptides fold upon binding another protein. Mutagenesis has proved an essential tool in the study of these multi-step molecular recognition processes. By comparing the biophysical behavior of carefully selected mutants, the concert of interactions and conformational changes that occur during folding and binding can be separated and assessed. Recently, this mutagenesis approach has been radically expanded by deep mutational scanning methods, which allow for many thousands of mutations to be examined in parallel. Furthermore, these high-throughput mutagenesis methods have been expanded to include mutations to non-canonical amino acids, returning peptide structure-activity relationships with unprecedented depth and detail. These developments are timely, as the insights they provide can guide the optimization of de novo cyclic peptides, a promising new modality for chemical probes and therapeutic agents.
Collapse
Affiliation(s)
- Joseph M Rogers
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Yin H, Huang YH, Deprey K, Condon ND, Kritzer JA, Craik DJ, Wang CK. Cellular Uptake and Cytosolic Delivery of a Cyclic Cystine Knot Scaffold. ACS Chem Biol 2020; 15:1650-1661. [PMID: 32315152 DOI: 10.1021/acschembio.0c00297] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclotides are macrocyclic peptides with exceptionally stable structures and have been reported to penetrate cells, making them promising scaffolds for the delivery of inhibitory peptides to target intracellular proteins. However, their cellular uptake and cytosolic localization have been poorly understood until now, which has limited their therapeutic potential. In this study, the recently developed chloroalkane penetration assay was combined with established assays to characterize the cellular uptake and cytosolic delivery of the prototypic cyclotide, kalata B1. We show that kalata B1 enters the cytosol at low efficiency. A structure-activity study of residues in loop 6 showed that some modifications, such as increasing cationic residue content, did not affect delivery efficiency, whereas others, including introducing a single hydrophobic amino acid, did significantly improve cytosolic delivery. Our results provide a foundation for the further development of a structurally unique class of scaffolds for the delivery of therapeutic cargoes into cells.
Collapse
Affiliation(s)
- Huawu Yin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kirsten Deprey
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Nicholas D. Condon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joshua A. Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Conan K. Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
49
|
Huang Y, Nawatha M, Livneh I, Rogers JM, Sun H, Singh SK, Ciechanover A, Brik A, Suga H. Affinity Maturation of Macrocyclic Peptide Modulators of Lys48‐Linked Diubiquitin by a Twofold Strategy. Chemistry 2020; 26:8022-8027. [DOI: 10.1002/chem.202000273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Yichao Huang
- Department of ChemistrySchool of ScienceThe University of Tokyo 7-3-1 Hongo Bunkyo Tokyo 113-0033 Japan
| | - Mickal Nawatha
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Ido Livneh
- The Rappaport Faculty of Medicine and Research InstituteTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Joseph M. Rogers
- Department of ChemistrySchool of ScienceThe University of Tokyo 7-3-1 Hongo Bunkyo Tokyo 113-0033 Japan
| | - Hao Sun
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Sumeet K. Singh
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Aaron Ciechanover
- The Rappaport Faculty of Medicine and Research InstituteTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Ashraf Brik
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Hiroaki Suga
- Department of ChemistrySchool of ScienceThe University of Tokyo 7-3-1 Hongo Bunkyo Tokyo 113-0033 Japan
| |
Collapse
|
50
|
Iannuzzelli JA, Fasan R. Expanded toolbox for directing the biosynthesis of macrocyclic peptides in bacterial cells. Chem Sci 2020; 11:6202-6208. [PMID: 32953014 PMCID: PMC7480269 DOI: 10.1039/d0sc01699c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022] Open
Abstract
A new suite of unnatural amino acids is reported for directing the biosynthesis of genetically encoded macrocyclic peptides in live bacteria.
The macrocyclization of recombinant polypeptides by means of genetically encodable non-canonical amino acids has recently provided an attractive strategy for the screening and discovery of macrocyclic peptide inhibitors of protein–protein interactions. Here, we report the development of an expanded suite of electrophilic unnatural amino acids (eUAAs) useful for directing the biosynthesis of genetically encoded thioether-bridged macrocyclic peptides in bacterial cells (E. coli). These reagents are shown to provide efficient access to a broad range of macrocyclic peptide scaffolds spanning from 2 to 20 amino acid residues, with the different eUAAs offering complementary reactivity profiles toward mediating short- vs. long-range macrocyclizations. Swapping of the eUAA cyclization module in a cyclopeptide inhibitor of streptavidin and Keap1 led to compounds with markedly distinct binding affinity toward the respective target proteins, highlighting the effectiveness of this strategy toward tuning the structural and functional properties of bioactive macrocyclic peptides. The peptide cyclization strategies reported here expand opportunities for the combinatorial biosynthesis of natural product-like peptide macrocycles in bacterial cells or in combination with display platforms toward the discovery of selective agents capable of targeting proteins and protein-mediated interactions.
Collapse
Affiliation(s)
- Jacob A Iannuzzelli
- Department of Chemistry , University of Rochester , Rochester , New York 14627 , USA .
| | - Rudi Fasan
- Department of Chemistry , University of Rochester , Rochester , New York 14627 , USA .
| |
Collapse
|