1
|
Razavi Z, Soltani M, Souri M, van Wijnen AJ. CRISPR innovations in tissue engineering and gene editing. Life Sci 2024; 358:123120. [PMID: 39426588 DOI: 10.1016/j.lfs.2024.123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
The CRISPR/Cas9 system is a powerful tool for genome editing, utilizing the Cas9 nuclease and programmable single guide RNA (sgRNA). However, the Cas9 nuclease activity can be disabled by mutation, resulting in catalytically deactivated Cas9 (dCas9). By combining the customizable sgRNA with dCas9, researchers can inhibit specific gene expression (CRISPR interference, CRISPRi) or activate the expression of a target gene (CRISPR activation, CRISPRa). In this review, we present the principles and recent advancements of these CRISPR technologies, as well as their delivery vectors. We also explore their applications in stem cell engineering and regenerative medicine, with a focus on in vitro stem cell fate manipulation and in vivo treatments. These include the prevention of retinal and muscular degeneration, neural regeneration, bone regeneration, cartilage tissue engineering, and the treatment of blood, skin, and liver diseases. Furthermore, we discuss the challenges of translating CRISPR technologies into regenerative medicine and provide future perspectives. Overall, this review highlights the potential of CRISPR in advancing regenerative medicine and offers insights into its application in various areas of research and therapy.
Collapse
Affiliation(s)
- ZahraSadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran; Biochemistry Research Center, Iran University Medical Sciences, Tehran, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada; Centre for Sustainable Business, International Business University, Toronto, Canada.
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT, USA; Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
2
|
Alkaş A, Kofsky JM, Sullivan EC, Nebel D, Robertson KN, Capicciotti CJ, Jakeman DL, Johnson ER, Thompson A. BODIPYs α-appended with distyryl-linked aryl bisboronic acids: single-step cell staining and turn-on fluorescence binding with D-glucose. Org Biomol Chem 2024; 22:7448-7459. [PMID: 39188164 DOI: 10.1039/d4ob01013b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Small-molecule sensors that are selective for particular sugars are rare. The synthesis of BODIPYs appended with two boronic acid units is reported, alongside cellular staining/labelling and turn-on fluorescence binding data for carbohydrates. The structural frameworks were designed using computational methods, leaning on the chelation characteristics of bis(boronic acids) and the photophysical properties of BODIPYs. Selective binding to glucose is demonstrated via emission and absorption methods, and the challenges of using NMR data for studying carbohydrate binding are discussed. Furthermore, crystal structures, cell permeability and imaging properties of the BODIPYs appended with two boronic acid units are described. This work presents boronic-acid-appended BODIPYs as a potential framework for tunable carbohydrate sensing and chemical biology staining.
Collapse
Affiliation(s)
- Adil Alkaş
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada.
| | - Joshua M Kofsky
- Department of Chemistry, Department of Biomedical and Molecular Sciences, Department of Surgery, Queen's University, Kingston, K7L 3N6, Canada
| | - Em C Sullivan
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada.
| | - Daisy Nebel
- Department of Chemistry, Department of Biomedical and Molecular Sciences, Department of Surgery, Queen's University, Kingston, K7L 3N6, Canada
| | - Katherine N Robertson
- Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Chantelle J Capicciotti
- Department of Chemistry, Department of Biomedical and Molecular Sciences, Department of Surgery, Queen's University, Kingston, K7L 3N6, Canada
| | - David L Jakeman
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada.
- College of Pharmacy, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Erin R Johnson
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada.
| | - Alison Thompson
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada.
| |
Collapse
|
3
|
Weng J, Wen L, Gu G, Bao W, Wu J, Zhao Y. Tailoring the Performance of 19F-Labeled Probes via Dynamic Covalent Chemistry for Improved Chiral Discrimination. Anal Chem 2024; 96:13551-13556. [PMID: 39110928 DOI: 10.1021/acs.analchem.4c02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
This work presents a novel strategy for postmodifying probes using dynamic covalent chemistry. Leveraging reversible interactions between boronic acid and diols, we obtained a panel of 19F-labeled probes with distinct resolving abilities. This approach enables rapid identification of probes with satisfactory performance, streamlining synthesis, and enhancing efficiency in chiral analysis. Our findings demonstrate an exceptional ability to differentiate compounds with distal chirality and challenging aliphatic amines. The postmodified probes also exhibit accuracy and reliability in determining enantiomeric excess, promising advancements in enantio-analysis techniques and chiral discrimination.
Collapse
Affiliation(s)
- Jiajin Weng
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lixian Wen
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guangxing Gu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjing Bao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jian Wu
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yanchuan Zhao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
4
|
Wang S, Guo Y, Wang X, Zhang X, Yang T, Wang JH. Multiplex Sensing of Biomarkers on the Cancer Cell Surface by an Epithelial-Mesenchymal Transition (EMT) Sensing Panel Enables Precise Differentiating of Cancer Cells at Various EMT Stages. Anal Chem 2024. [PMID: 39093913 DOI: 10.1021/acs.analchem.4c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a complex process that plays a critical role in tumor progression. In this study, we present an EMT sensing panel for the classification of cancer cells at different EMT stages. This sensing panel consists of three types of fluorescent probes based on boronic acid-functionalized carbon-nitride nanosheet (BCN) derivatives. The selective response toward different EMT-associated biomarkers, namely, EpCAM, N-cadherin, and sialic acid (SA), was achieved by conjugating the corresponding antibodies to each BCN derivative, whereas the rare-earth-doping ensures simultaneous sensing of the three biomarkers with fluorescent emission of the three probes at different wavelengths. Sensitive sensing of the three biomarkers was achieved at the protein level with LODs reaching 1.35 ng mL-1 for EpCAM, 1.62 ng mL-1 for N-cadherin, and 1.54 ng mL-1 for SA. The selective response of these biomarkers on the cell surface also facilitated sensitive detection of MCF-7 cells and MDA-MB-231 cells with LODs of 2 cells/mL and 2 cells/mL, respectively. Based on the simultaneous sensing of the three biomarkers on cancer cells that underwent different extents of EMT, precise discrimination and classification of cells at various EMT stages were also achieved with an accuracy of 93.3%. This EMT sensing panel provided a versatile tool for monitoring the EMT evolution process and has the potential to be used for the evaluation of the EMT-targeting therapy and metastasis prediction.
Collapse
Affiliation(s)
- Siyi Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yushuang Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xin Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xuan Zhang
- Institute of Medical Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
5
|
Terriac L, Helesbeux JJ, Maugars Y, Guicheux J, Tibbitt MW, Delplace V. Boronate Ester Hydrogels for Biomedical Applications: Challenges and Opportunities. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:6674-6695. [PMID: 39070669 PMCID: PMC11270748 DOI: 10.1021/acs.chemmater.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/30/2024]
Abstract
Boronate ester (BE) hydrogels are increasingly used for biomedical applications. The dynamic nature of these molecular networks enables bond rearrangement, which is associated with viscoelasticity, injectability, printability, and self-healing, among other properties. BEs are also sensitive to pH, redox reactions, and the presence of sugars, which is useful for the design of stimuli-responsive materials. Together, BE hydrogels are interesting scaffolds for use in drug delivery, 3D cell culture, and biofabrication. However, designing stable BE hydrogels at physiological pH (≈7.4) remains a challenge, which is hindering their development and biomedical application. In this context, advanced chemical insights into BE chemistry are being used to design new molecular solutions for material fabrication. This review article summarizes the state of the art in BE hydrogel design for biomedical applications with a focus on the materials chemistry of this class of materials. First, we discuss updated knowledge in BE chemistry including details on the molecular mechanisms associated with BE formation and breakage. Then, we discuss BE hydrogel formation at physiological pH, with an overview of the main systems reported to date along with new perspectives. A last section covers several prominent biomedical applications of BE hydrogels, including drug delivery, 3D cell culture, and bioprinting, with critical insights on the design relevance, limitations and potential.
Collapse
Affiliation(s)
- Léa Terriac
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | | | - Yves Maugars
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | - Jérôme Guicheux
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | - Mark W. Tibbitt
- Macromolecular
Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Vianney Delplace
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| |
Collapse
|
6
|
Gandra UR, Axthelm J, Bellstedt P, Singh A, Schiller A, Mohideen MIH, Mandal AK. 19F NMR Probes: Molecular Logic Material Implications for the Anion Discrimination and Chemodosimetric Approach for Selective Detection of H 2O 2. Anal Chem 2024; 96:11232-11238. [PMID: 38961620 DOI: 10.1021/acs.analchem.4c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Detection and discrimination of similar solvation energies of bioanalytes are vital in medical and practical applications. Currently, various advanced techniques are equipped to recognize these crucial bioanalytes. Each strategy has its own benefits and limitations. One-dimensional response, lack of discrimination power for anions, and reactive oxygen species (ROS) generally limit the utilized fluorescent probe. Therefore, a cutting-edge, refined method is expected to conquer these limitations. The use of 19F NMR spectroscopy for detecting and discriminating essential analytes in practical applications is an emerging technique. As an alternative strategy, we report two fluorinated boronic acid-appended pyridinium salts 5-F-o-BBBpy (1) and 5-CF3-o-BBBpy (2). Probe (1) acts as a chemosensor for identifying and discriminating inorganic anions with similar solvation energies with strong bidirectional 19F shifts in the lower ppm range. Probe (2) turns as a chemo dosimeter for the selective detection and precise quantification of hydrogen peroxide (H2O2) among other competing ROS. To demonstrate real-life applicability, we successfully quantified H2O2 via probe (2) in different pharmaceutical, dental, and cosmetic samples. We found that tuning the -F/-CF3 moiety to the arene boronic acid enables the π-conjugation, a crucial prerequisite for the discrimination of anions and H2O2. Characteristic 19F NMR fingerprints in the presence of anions revealed a complementary implication (IMP)/not implication (NIMP) logic function. Finally, the 16 distinct binary Boolean operations on two logic values are defined for "functional completeness" using the special property of the IMP gate. Boolean logic's ability to handle information by utilizing characteristic 19F NMR fingerprints has not been seen previously in a single chemical platform for detecting and differentiating such anions.
Collapse
Affiliation(s)
- Upendar Reddy Gandra
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany
- Department of Chemistry, Khalifa University of Science and Technology, Main Campus, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Jörg Axthelm
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany
| | - Peter Bellstedt
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany
| | - Akanksha Singh
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Alexander Schiller
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany
| | - M Infas H Mohideen
- Department of Chemistry, Khalifa University of Science and Technology, Main Campus, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Amal Kumar Mandal
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Delgado Gonzalez B, Lopez-Blanco R, Parcero-Bouzas S, Barreiro-Piñeiro N, Garcia-Abuin L, Fernandez-Megia E. Dynamic Covalent Boronate Chemistry Accelerates the Screening of Polymeric Gene Delivery Vectors via In Situ Complexation of Nucleic Acids. J Am Chem Soc 2024; 146:17211-17219. [PMID: 38864331 PMCID: PMC11212051 DOI: 10.1021/jacs.4c03384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Gene therapy provides exciting new therapeutic opportunities beyond the reach of traditional treatments. Despite the tremendous progress of viral vectors, their high cost, complex manufacturing, and side effects have encouraged the development of nonviral alternatives, including cationic polymers. However, these are less efficient in overcoming cellular barriers, resulting in lower transfection efficiencies. Although the exquisite structural tunability of polymers might be envisaged as a versatile tool for improving transfection, the need to fine-tune several structural parameters represents a bottleneck in current screening technologies. By taking advantage of the fast-forming and strong boronate ester bond, an archetypal example of dynamic covalent chemistry, a highly adaptable gene delivery platform is presented, in which the polycation synthesis and pDNA complexation occur in situ. The robustness of the strategy entitles the simultaneous evaluation of several structural parameters at will, enabling the accelerated screening and adaptive optimization of lead polymeric vectors using dynamic covalent libraries.
Collapse
Affiliation(s)
- Bruno Delgado Gonzalez
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Roi Lopez-Blanco
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Samuel Parcero-Bouzas
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Natalia Barreiro-Piñeiro
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Bioquímica
e Bioloxía Molecular, Universidade
de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Lucas Garcia-Abuin
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Eduardo Fernandez-Megia
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
8
|
Ma Y, Xing Y, Han F, Xu J, Qian H, Chen W, Huang D. Dually crosslinked degradable polyionic micelles for sustained glucose-responsive insulin release. Biomater Sci 2024; 12:3202-3211. [PMID: 38747944 DOI: 10.1039/d4bm00314d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Glucose -sensitive delivery systems hold great promise as a therapeutic approach for high-incidence diabetes owing to their ability to release insulin whenever elevated glycemia is detected. However, they are unstable in a hyperglycemic environment, which leads to short-term sustained insulin release. Herein, we designed dually crosslinked insulin polyionic micelles (DCM@insulin) based on triblock polymers of o-glycol and phenylboronic acid-functionalized poly(ethylene glycol)-poly(dimethylamino carbonate)-poly(dimethylamino-trimethylene carbonate) (mPEG-P(AC-co-MPD)-PDMAC and mPEG-P(AC-co-MAPBA)-PDMATC, respectively) for sustained glucose-responsive insulin release. DCM@insulin with a phenylboronic acid ester structure (first crosslinking structure) enhanced glycemic responsiveness by regulating insulin release in a hyperglycemic environment. Additionally, the UV-crosslinking structure (second crosslinking structure) formed by the residual double bonds in AC units endowed DCM@insulin with the ability to effectively protect the loaded insulin against protease degradation and avoid burst release under multiple insulin release. The in vivo findings demonstrated that DCM@insulin effectively maintained glycemic levels (BGLs) within the normal range for 6 h in comparison to single-crosslinked micelles (SCM@insulin). Therefore, the glucose-responsive and dually crosslinked polyionic micelle system exhibits potential as a viable option for the treatment of diabetes.
Collapse
Affiliation(s)
- Yuhong Ma
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Yu Xing
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Fuwei Han
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Jiahao Xu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| |
Collapse
|
9
|
Pervaiz A, Shahzad SA, Assiri MA, Javid T, Irshad H, Khan KO. Extensive optical and DFT studies on novel AIE active fluorescent sensor for Colorimetric and fluorometric detection of nitrobenzene in Solid, solution and vapor phase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124121. [PMID: 38460231 DOI: 10.1016/j.saa.2024.124121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/01/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
An electron rich isophthalamide based sensor IPA has been synthesized through a simple two-step reaction, containing noteworthy aggregation induced emission (AIE) properties. Considering the significant emission with λmax at 438 nm, sensor IPA has been employed for the sensing of nitrobenzene (NB) in solid, solution and vapor state with high sensitivity and selectivity. Sensor IPA showed noteworthy colorimetric and fluorometric quenching in fluorescence emission when exposed to NB. Small size of NB and involvement of photoinduced electron transfer (PET) lead to detection of NB down to 60 nM. IPA-NB interaction was studied through UV-Vis. spectroscopic studies along with fluorescence spectroscopy. Moreover, 1H and 13C NMR titration experiments provided additional support for determination of interaction type. Furthermore, by using density functional theory (DFT) calculations, thermodynamic stability was studied. Additionally, non-covalent interactions (NCI), frontier molecular orbitals (FMO), density of states (DOS), were investigated for providing further evidence of nitrobenzene sensing and its interaction with sensor. Natural bond orbital (NBO) analysis was carried out for charge transfer studies. Quantum theory of atom in molecule (QTAIM) and SAPT0 studies provided information about interaction points and binding energy. Additionally, IPA was investigated for NB sensing in real water samples, and its effective participation in solid state on-site detection as well as in solution phase was brought to light along with logic gate construction.
Collapse
Affiliation(s)
- Aqsa Pervaiz
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan.
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61514, P. O. Box 9004, Saudi Arabia
| | - Tayyeba Javid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Hasher Irshad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Khanzadi Omama Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| |
Collapse
|
10
|
Fiore A, Yu G, Northey JJ, Patel R, Ravenscroft TA, Ikegami R, Kolkman W, Kumar P, Grimm JB, Dilan TL, Ruetten VM, Ahrens MB, Shroff H, Lavis LD, Wang S, Weaver VM, Pedram K. Imaging the extracellular matrix in live tissues and organisms with a glycan-binding fluorophore. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593460. [PMID: 38766047 PMCID: PMC11100790 DOI: 10.1101/2024.05.09.593460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
All multicellular systems produce and dynamically regulate extracellular matrices (ECM) that play important roles in both biochemical and mechanical signaling. Though the spatial arrangement of these extracellular assemblies is critical to their biological functions, visualization of ECM structure is challenging, in part because the biomolecules that compose the ECM are difficult to fluorescently label individually and collectively. Here, we present a cell-impermeable small molecule fluorophore, termed Rhobo6, that turns on and red shifts upon reversible binding to glycans. Given that most ECM components are densely glycosylated, the dye enables wash-free visualization of ECM, in systems ranging from in vitro substrates to in vivo mouse mammary tumors. Relative to existing techniques, Rhobo6 provides a broad substrate profile, superior tissue penetration, nonperturbative labeling, and negligible photobleaching. This work establishes a straightforward method for imaging the distribution of ECM in live tissues and organisms, lowering barriers for investigation of extracellular biology.
Collapse
Affiliation(s)
- Antonio Fiore
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Guoqiang Yu
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Jason J. Northey
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Ronak Patel
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | | | - Richard Ikegami
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Wiert Kolkman
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Pratik Kumar
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Jonathan B. Grimm
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Tanya L. Dilan
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | | | - Misha B. Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Hari Shroff
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Shaohe Wang
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Kayvon Pedram
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| |
Collapse
|
11
|
Zhang X, Wu S, Feng T, Yan Y, Wu S, Chen Y, Wang Y, Wang Q, Hu N, Wang L. Visualized sensing of erythritol using a simple enzyme-free catechol-based hydrogel film. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1686-1696. [PMID: 38421030 DOI: 10.1039/d3ay02131a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Based on the versatile properties of bio-derived materials, non-enzymatic assays in combination with electronic devices have attracted increasing interest. Here, we report a novel enzyme-free visualization approach for the detection of erythritol, which is a zero-calorie natural sweetener and serves as an ideal sucrose substitute for diabetics or overweight people who need sugar control. The recognition element of the electrochemical biosensor was constructed by catechol modification on a chitosan-based hydrogel film. The signal transduction was achieved by the competitive binding assay of sweeteners. The results show that 2-fluorophenylboronic acid (FPBA) can form a cyclic boronate ester with the ortho-hydroxyls of both reduced catechol and oxidized quinone, impeding the electron transfer and leading to redox signal attenuation. The addition of sweeteners caused a competitive reaction resulting in bonding between the 1,2-diols and FPBA moieties, and in the recovery of the redox signals. Importantly, the pattern of redox signal changes of catechol can be detected optically, as the oxidized quinone state is darker in color than the reduced catechol state. Using a simple cell phone imaging application, we demonstrate that erythritol can be distinguished from other sweeteners in real samples using the oxidized catechol-Chit0/agarose hydrogel film. Thus, we envision that this method could allow diabetics and people who need to control their sugar intake to detect whether the product contains only erythritol in the field or at home. In addition, this work further illustrates the potential of bio-derived materials for performing redox-based functions and enzyme-free visualization assays.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Si Wu
- College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Tao Feng
- College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yuanhao Yan
- College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Shijing Wu
- College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Yinyu Chen
- College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Yu Wang
- College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Qingmiao Wang
- College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Ning Hu
- College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Li Wang
- College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
12
|
Chatterjee S, Chowdhury A, Saproo S, Mani Tripathi N, Naidu S, Bandyopadhyay A. Capturing Sialyl-glycan on Live Cancer Cells by Tailored Boronopeptide. Chemistry 2024; 30:e202303327. [PMID: 38051420 DOI: 10.1002/chem.202303327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Boronic acid-containing molecules are substantially popularized in chemical biology and medicinal chemistry due to the broad spectrum of covalent conjugations as well as interaction modules offered by the versatile boron atom. Apparently, the WGA peptide (wheat germ agglutinin, 62-73), which shows a considerably low binding affinity to sialic acid, turned into a selective and >5 folds potent binder with the aid of a suitable boronic acid probe installed chemoselectively. In silico studies prompted us to install BA probes on the cysteine residue, supposedly located in close proximity to the bound sialic acid. In vitro studies revealed that the tailored boronopeptides show enhanced binding ability due to the synergistic recognition governed by selective non-covalent interactions and cis-diol boronic acid conjugation. The intense binding is observed even in 10 % serum, thus enabling profiling of sialyl-glycan on cancer cells, as compared with the widely used lectin, Sambucus nigra. The synergistic binding mode between the best boronopeptide (P3) binder and sialic acid was analyzed via 1 H and 11 B NMR.
Collapse
Affiliation(s)
- Saurav Chatterjee
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Punjab, India
| | - Arnab Chowdhury
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Punjab, India
| | - Sheetanshu Saproo
- Department of Biomedical Engineering, Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Punjab, India
| | - Nitesh Mani Tripathi
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Punjab, India
| | - Srivatsava Naidu
- Department of Biomedical Engineering, Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Punjab, India
| | - Anupam Bandyopadhyay
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Punjab, India
| |
Collapse
|
13
|
Mao X, Lu Z, Zhang J, Xie Z. Catalyst-Free Regioselective Diborylation of Aryllithium with Tetra(o-tolyl)diborane(4). Angew Chem Int Ed Engl 2024; 63:e202317614. [PMID: 38123525 DOI: 10.1002/anie.202317614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
A catalyst-free 1,2-diborylation of aryllithium with tetra(o-tolyl)diborane(4) has been achieved, giving a series of 1,2-diborylaryl lithium species in excellent yields under mild reaction conditions, which leads to 1,2-di(tolyl)borylarenes in 60-91 % yields upon treatment with the hydride-abstracting reagent. In these transformations, one sp2 C-H of arene is activated and both boryl units are utilized to build two new (sp2 )C-B bonds. This represents a new strategy for selective arene diborylation. Density functional theory (DFT) calculations suggest that an aromatic nucleophilic substitution is a key step in the formation of the products.
Collapse
Affiliation(s)
- Xiaofeng Mao
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Zhenpin Lu
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
14
|
Haggett JG, Domaille DW. ortho-Boronic Acid Carbonyl Compounds and Their Applications in Chemical Biology. Chemistry 2024; 30:e202302485. [PMID: 37967030 DOI: 10.1002/chem.202302485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023]
Abstract
Iminoboronates and diazaborines are related classes of compounds that feature an imine ortho to an arylboronic acid (iminoboronate) or a hydrazone that cyclizes with an ortho arylboronic acid (diazaborine). Rather than acting as independent chemical motifs, the arylboronic acid impacts the rate of imine/hydrazone formation, hydrolysis, and exchange with competing nucleophiles. Increasing evidence has shown that the imine/hydrazone functionality also impacts arylboronic acid reactivity toward diols and reactive oxygen and nitrogen species (ROS/RNS). Untangling the communication between C=N linked functionalities and arylboronic acids has revealed a powerful and tunable motif for bioconjugation chemistries and other applications in chemical biology. Here, we survey the applications of iminoboronates and diazaborines in these fields with an eye toward understanding their utility as a function of neighboring group effects.
Collapse
Affiliation(s)
- Jack G Haggett
- Department of Chemistry, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
- Quantitative Biology and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| |
Collapse
|
15
|
Liyanage SH, Yan M. Maltose-Derivatized Fluorescence Turn-On Imaging Probe for Bacteria Detection. ACS Infect Dis 2023; 9:2560-2571. [PMID: 37936289 DOI: 10.1021/acsinfecdis.3c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
We report a maltose-derivatized fluorescence turn-on imaging probe, Mal-Cz, to detect E. coli and Staphylococci. The fluorescence turn-on is achieved through an intramolecular C-H insertion reaction of the perfluoroaryl azide-functionalized carbazole to give a fluorescent product. Confocal fluorescence microscopy confirmed the successful uptake of Mal-Cz by E. coli and Staphylococci upon photoactivation. The Mal-Cz probe could selectively detect E. coli and S. epidermidis in the presence of P. aeruginosa and M. smegmatis without interference from these bacteria. Both the photoactivation and bacteria detection can be accomplished using a hand-held UV lamp at 365 nm, with the limit of detection of 103 CFU/mL by the naked eye. Mal-Cz could also be used to detect E. coli and S. epidermidis spiked in milk by the naked eye under a hand-held UV lamp. The uptake of Mal-Cz requires metabolically active bacteria: the uptake was reduced in stationary phase bacteria and was diminished in bacteria that were killed by heating or treating with antibiotics or sodium azide. The uptake decreased with increasing concentration of added free maltose, indicating that Mal-Cz hijacked the maltose uptake pathways. In E. coli, the maltose transport systems, including maltoporin LamB, maltose binding protein MBP, and the maltose ATP binding cassette (ABC) transporter MalFGK2, are all critical for the transport of Mal-Cz. The uptake was diminished in the deletion mutants ΔLamB, ΔMalE, ΔMalF, and ΔMalK.
Collapse
Affiliation(s)
- Sajani H Liyanage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
16
|
Green MJ, Ge H, Flower SE, Pourzand C, Botchway SW, Wang HC, Kuganathan N, Kociok-Köhn G, Li M, Xu S, James TD, Pascu SI. Fluorescent naphthalimide boronates as theranostics: structural investigations, confocal fluorescence and multiphoton fluorescence lifetime imaging microscopy in living cells. RSC Chem Biol 2023; 4:1082-1095. [PMID: 38033726 PMCID: PMC10685793 DOI: 10.1039/d3cb00112a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/17/2023] [Indexed: 12/02/2023] Open
Abstract
New design and synthetic strategies were developed to generate functional phenyl boronic acid (BA)-based fluorescent probes incorporating the 1,8-naphthalimide (NI) tag. This fluorescent core was anchored onto the BA unit through small organic linkers consisting of nitrogen groups which can arrest, and internally stabilise the phenyl-boronate units. The newly synthesised fluorophores were characterised spectroscopically by NMR spectroscopy and mass spectrometry and evaluated for their ability to bind to a naturally occurring polysaccharide, β-d-glucan in DMSO and simultaneously as act as in vitro cell imaging reagents. The uptake of these new NI-boronic acid derivatives was studied living cancer cells (HeLa, PC-3) in the presence, and absence, of β-d-glucan. Time-correlated single-photon counting (TCSPC) of DMSO solutions and two-photon fluorescence-lifetime imaging microscopy (FLIM) techniques allowed an insight into the probes' interaction with their environment. Their cellular uptake and distributions were imaged using laser scanning confocal fluorescence microscopy under single- and two-photon excitation regimes (λmax 910 nm). FLIM facilitated the estimation of the impact of the probe's cellular surroundings using the fluorophore lifetime. The extent to which this was mediated by the β-d-glucan was visualised by 2-photon FLIM in living cells. The fluorescence lifetime observed under a range of temperatures varied appreciably, indicating that changes in the environment can be sensed by these probes. In all cases, the cellular membrane penetration of these new probes was remarkable even under variable temperature conditions and localisation was widely concentrated in the cellular cytoplasm, without specific organelle trapping: we conclude that these new probes show promise for cellular imaging in living cancer cells.
Collapse
Affiliation(s)
- Megan J Green
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
| | - Haobo Ge
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
| | - Stephen E Flower
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
| | - Charareh Pourzand
- Department of Life Sciences, University of Bath BA2 7AY UK
- Centre for Therapeutic Innovation, University of Bath BA2 7AY UK
| | - Stanley W Botchway
- STFC Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus Harwell Oxfordshire OX11 0QX UK
| | - Hui-Chen Wang
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
| | | | - Gabriele Kociok-Köhn
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
- Materials and Chemical Characterisation Facility (MC2), University of Bath Calverton Down Bath BA2 7AY UK
| | - Meng Li
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Suying Xu
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University Baoding 071003 P. R. China
| | - Tony D James
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
| | - Sofia I Pascu
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
- Centre for Therapeutic Innovation, University of Bath BA2 7AY UK
| |
Collapse
|
17
|
Kim KR, Oh J, Hong JI. A photoluminescent and electrochemiluminescent probe based on an iridium(III) complex with a boronic acid-functionalised ancillary ligand for the selective detection of mercury(II) ions. Analyst 2023; 148:5619-5626. [PMID: 37840468 DOI: 10.1039/d3an01266b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Exposure to mercury(II) ions (Hg2+) can cause various diseases such as Minamata disease, acrodynia, Alzheimer's disease, and Hunter-Russell syndrome, and even organ damage. Therefore, real-time and accurate monitoring of Hg2+ in environmental samples is crucial. In this study, we report a photoluminescent (PL) and electrochemiluminescent (ECL) probe based on a cyclometalated Ir(III) complex for the selective detection of Hg2+. The introduction of a reaction site, o-aminomethylphenylboronic acid, on the ancillary ligands allowed a prompt transmetalation reaction to take place between Hg2+ and boronic acid. This reaction resulted in significant decreases of the PL and ECL signals due to the photo-induced electron transfer from the Ir(III) complex to the Hg2+ ions. The probe was applied to the selective detection of Hg2+, and the signal changes revealed a linear correlation with Hg2+ concentrations in the range of 0-10 μM (LOD = 0.72 μM for PL, 8.03 nM for ECL). The designed probe allowed the successful quantification of Hg2+ in tap water samples, which proves its potential for the selective detection of Hg2+ in environmental samples.
Collapse
Affiliation(s)
- Kyoung-Rok Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Korea.
| | - Jinrok Oh
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Korea.
| | - Jong-In Hong
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Korea.
| |
Collapse
|
18
|
You L. Dual reactivity based dynamic covalent chemistry: mechanisms and applications. Chem Commun (Camb) 2023; 59:12943-12958. [PMID: 37772969 DOI: 10.1039/d3cc04022d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Dynamic covalent chemistry (DCC) focuses on the reversible formation, breakage, and exchange of covalent bonds and assemblies, setting a bridge between irreversible organic synthesis and supramolecular chemistry and finding wide utility. In order to enhance structural and functional diversity and complexity, different types of dynamic covalent reactions (DCRs) are placed in one vessel, encompassing orthogonal DCC without crosstalk and communicating DCC with a shared reactive functional group. As a means of adding tautomers, widespread in chemistry, to interconnected DCRs and combining the features of orthogonal and communicating DCRs, a concept of dual reactivity based DCC and underlying structural and mechanistic insights are summarized. The manipulation of the distinct reactivity of structurally diverse ring-chain tautomers allows selective activation and switching of reaction pathways and corresponding DCRs (C-N, C-O, and C-S) and assemblies. The coupling with photoswitches further enables light-mediated formation and scission of multiple types of reversible covalent bonds. To showcase the capability of dual reactivity based DCC, the versatile applications in dynamic polymers and luminescent materials are presented, paving the way for future functionalization studies.
Collapse
Affiliation(s)
- Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
19
|
Winer L, Motiei L, Margulies D. Fluorescent Investigation of Proteins Using DNA-Synthetic Ligand Conjugates. Bioconjug Chem 2023; 34:1509-1522. [PMID: 37556353 PMCID: PMC10515487 DOI: 10.1021/acs.bioconjchem.3c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/27/2023] [Indexed: 08/11/2023]
Abstract
The unfathomable role that fluorescence detection plays in the life sciences has prompted the development of countless fluorescent labels, sensors, and analytical techniques that can be used to detect and image proteins or investigate their properties. Motivated by the demand for simple-to-produce, modular, and versatile fluorescent tools to study proteins, many research groups have harnessed the advantages of oligodeoxynucleotides (ODNs) for scaffolding such probes. Tight control over the valency and position of protein binders and fluorescent dyes decorating the polynucleotide chain and the ability to predict molecular architectures through self-assembly, inherent solubility, and stability are, in a nutshell, the important properties of DNA probes. This paper reviews the progress in developing DNA-based, fluorescent sensors or labels that navigate toward their protein targets through small-molecule (SM) or peptide ligands. By describing the design, operating principles, and applications of such systems, we aim to highlight the versatility and modularity of this approach and the ability to use ODN-SM or ODN-peptide conjugates for various applications such as protein modification, labeling, and imaging, as well as for biomarker detection, protein surface characterization, and the investigation of multivalency.
Collapse
Affiliation(s)
- Lulu Winer
- Department of Chemical and
Structural Biology, Weizmann Institute of
Science, Rehovot, 76100, Israel
| | - Leila Motiei
- Department of Chemical and
Structural Biology, Weizmann Institute of
Science, Rehovot, 76100, Israel
| | - David Margulies
- Department of Chemical and
Structural Biology, Weizmann Institute of
Science, Rehovot, 76100, Israel
| |
Collapse
|
20
|
Mohamed MA, Abd El-Rahman MK, Mousavi MPS. Electrospun nanofibers: promising nanomaterials for biomedical applications. ELECTROCHEMISTRY 2023:225-260. [DOI: 10.1039/bk9781839169366-00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
With the rapid development of nanotechnology and nanomaterials science, electrospun nanofibers emerged as a new material with great potential for a variety of applications. Electrospinning is a simple and adaptable process for generation of nanofibers from a viscoelastic fluid using electrostatic repulsion between surface charges. Electrospinning has been used to manufacture nanofibers with low diameters from a wide range of materials. Electrospinning may also be used to construct nanofibers with a variety of secondary structures, including those having a porous, hollow, or core–sheath structure. Due to many attributes including their large specific surface area and high porosity, electrospun nanofibers are suitable for biosensing and environmental monitoring. This book chapter discusses the different methods of nanofiber preparations and the challenges involved, recent research progress in electrospun nanofibers, and the ways to commercialize these nanofiber materials.
Collapse
Affiliation(s)
- Mona A. Mohamed
- Pharmaceutical Chemistry Department, Egyptian Drug Authority Giza Egypt
- Biomedical Engineering University of Southern California Los Angeles USA
| | - Mohamed K. Abd El-Rahman
- Analytical Chemistry Department, Faculty of Pharmacy Cairo University, Kasr-El Aini Street Cairo 11562 Egypt
| | - Maral P. S. Mousavi
- Analytical Chemistry Department, Faculty of Pharmacy Cairo University, Kasr-El Aini Street Cairo 11562 Egypt
| |
Collapse
|
21
|
Motiei L, Margulies D. Molecules that Generate Fingerprints: A New Class of Fluorescent Sensors for Chemical Biology, Medical Diagnosis, and Cryptography. Acc Chem Res 2023. [PMID: 37335975 DOI: 10.1021/acs.accounts.3c00162] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
ConspectusFluorescent molecular sensors, often referred to as "turn-on" or "turn-off" fluorescent probes, are synthetic agents that change their fluorescence signal in response to analyte binding. Although these sensors have become powerful analytical tools in a wide range of research fields, they are generally limited to detecting only one or a few analytes. Pattern-generating fluorescent probes, which can generate unique identification (ID) fingerprints for different analytes, have recently emerged as a new class of luminescent sensors that can address this limitation. A unique characteristic of these probes, termed ID-probes, is that they integrate the qualities of conventional small-molecule-based fluorescent sensors and cross-reactive sensor arrays (often referred to as chemical, optical, or electronic noses/tongues). On the one hand, ID-probes can discriminate between various analytes and their combinations, akin to array-based analytical devices. On the other hand, their minute size enables them to analyze small-volume samples, track dynamic changes in a single solution, and operate in the microscopic world, which the macroscopic arrays cannot access.Here, we describe the principles underlying the ID-probe technology, as well as provide an overview of different ID-probes that have been developed to date and the ways they can be applied to a wide range of research fields. We describe, for example, ID-probes that can identify combinations of protein biomarkers in biofluids and in living cells, screen for several protein inhibitors simultaneously, analyze the content of Aβ aggregates, as well as ensure the quality of small-molecule and biological drugs. These examples highlight the relevance of this technology to medical diagnosis, bioassay development, cell and chemical biology, and pharmaceutical quality assurance, among others. ID-probes that can authorize users and protect secret data are also presented and the mechanisms that enable them to hide (steganography), encrypt (cryptography), and prevent access to (password protection) information are discussed.The versatility of this technology is further demonstrated by describing two types of probes: unimolecular ID-probes and self-assembled ID-probes. Probes from the first type can operate inside living cells, be recycled, and their initial patterns can be more easily obtained in a reproducible manner. The second type of probes can be readily modified and optimized, allowing one to prepare various different probes from a much wider range of fluorescent reporters and supramolecular recognition elements. Taken together, these developments indicate that the ID-probe sensing methodology is generally applicable, and that such probes can better characterize analyte mixtures or process chemically encoded information than can the conventional fluorescent molecular sensors. We therefore hope that this review will inspire the development of new types of pattern-generating probes, which would extend the fluorescence molecular toolbox currently used in the analytical sciences.
Collapse
Affiliation(s)
- Leila Motiei
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Margulies
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
22
|
Nan K, Jiang YN, Li M, Wang B. Recent Progress in Diboronic-Acid-Based Glucose Sensors. BIOSENSORS 2023; 13:618. [PMID: 37366983 DOI: 10.3390/bios13060618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Non-enzymatic sensors with the capability of long-term stability and low cost are promising in glucose monitoring applications. Boronic acid (BA) derivatives offer a reversible and covalent binding mechanism for glucose recognition, which enables continuous glucose monitoring and responsive insulin release. To improve selectivity to glucose, a diboronic acid (DBA) structure design has been explored and has become a hot research topic for real-time glucose sensing in recent decades. This paper reviews the glucose recognition mechanism of boronic acids and discusses different glucose sensing strategies based on DBA-derivatives-based sensors reported in the past 10 years. The tunable pKa, electron-withdrawing properties, and modifiable group of phenylboronic acids were explored to develop various sensing strategies, including optical, electrochemical, and other methods. However, compared to the numerous monoboronic acid molecules and methods developed for glucose monitoring, the diversity of DBA molecules and applied sensing strategies remains limited. The challenges and opportunities are also highlighted for the future of glucose sensing strategies, which need to consider practicability, advanced medical equipment fitment, patient compliance, as well as better selectivity and tolerance to interferences.
Collapse
Affiliation(s)
- Ke Nan
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
| | - Yu-Na Jiang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
| | - Meng Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Bing Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
- International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| |
Collapse
|
23
|
Teng S, Ng EWH, Zhang Z, Soon CN, Xu H, Li R, Hirao H, Loh TP. Alkynone β-trifluoroborates: A new class of amine-specific biocompatible click reagents. SCIENCE ADVANCES 2023; 9:eadg4924. [PMID: 37126553 PMCID: PMC10132755 DOI: 10.1126/sciadv.adg4924] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Amine-targeting reactions that work under biocompatible conditions or in water are green processes that are extremely useful for the synthesis of functional materials and biotherapeutics. Unfortunately, despite the usefulness of this reaction, there are very few good amine-specific click methods reported thus far. Here, we report an amine-specific click reagent using alkynone β-trifluoroborates as the electrophiles. These boron-containing alkynyl reagents exhibit extremely high chemoselectivity toward amines even in the presence of thiols. The resulting oxaboracycle products are bench-stable, displaying the reactivities of both organoborates and enaminones. Intrinsic advantages of this methodology include benign reaction conditions, operational simplicity, remarkable product stability, and excellent chemoselectivity, which satisfy the criteria of click chemistry and demonstrate the high potential in bioconjugation. Hence, this water-based chemical approach is also applicable to the modification of native amino acids, peptides, and proteins. Ultimately, the essential role of water during the reaction was elucidated.
Collapse
Affiliation(s)
- Shenghan Teng
- 100 Lianhua Street, Zhongyuan District, Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Elvis Wang Hei Ng
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Zhenguo Zhang
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Chee Ning Soon
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hailun Xu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ruifang Li
- 100 Lianhua Street, Zhongyuan District, Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Teck-Peng Loh
- 100 Lianhua Street, Zhongyuan District, Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
24
|
Jin S, Li Y, Yang L, Li W, Zhou P. Analysis of tri-benzeneboronic esters of monosaccharides formed in aqueous solution by MALDI-TOF MS and DFT calculations. Anal Bioanal Chem 2023; 415:2775-2780. [PMID: 37071139 DOI: 10.1007/s00216-023-04685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/22/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023]
Abstract
The affinity interactions between boronic acids and sugars have been successfully exploited in many fields, such as the sensing of saccharides, selective enrichment of glycoconjugates, and drug delivery. However, despite multiple techniques having been adopted to investigate the reaction of boronate affinity, the pathway of boronate esters formation under aqueous conditions remains controversial. We report a MALDI-MS approach to investigate the interactions between phenylboronic acid and monosaccharides in neutral aqueous solution by using polylevodopa as an innovative substrate instead of conventional matrix. A series of unusual tri-benzeneboronic esters were then revealed. The mass spectrometry data indicate that they bear a dibenzenepyroboronate cyclic ester moiety with seven-membered ring or eight-membered ring. With the aid of theoretical computations, their most likely geometrical structures are elucidated, and these tri-benzeneboronic esters are proposed to be formed via a boroxine binding monosaccharide pathway. This work provides more insight into the mechanism of boronate affinity interaction between boronic acid and sugars and proves the developed MALDI-MS approach is promising for studying interactions between small molecules.
Collapse
Affiliation(s)
- Shanxia Jin
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yaqin Li
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Liuquan Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei Li
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Ping Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
- Center of Analysis and Testing, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
25
|
Wang K, Zhang R, Zhao X, Ma Y, Ren L, Ren Y, Chen G, Ye D, Wu J, Hu X, Guo Y, Xi R, Meng M, Yao Q, Li P, Chen Q, James TD. Reversible Recognition-Based Boronic Acid Probes for Glucose Detection in Live Cells and Zebrafish. J Am Chem Soc 2023. [PMID: 37023253 PMCID: PMC10119935 DOI: 10.1021/jacs.2c13694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Glucose, a critical source of energy, directly determines the homeostasis of the human body. However, due to the lack of robust imaging probes, the mechanism underlying the changes of glucose homeostasis in the human body remains unclear. Herein, diboronic acid probes with good biocompatibility and high sensitivity were synthesized based on an ortho-aminomethylphenylboronic acid probe, phenyl(di)boronic acid (PDBA). Significantly, by introducing the water-solubilizing group -CN directly opposite the boronic acid group and -COOCH3 or -COOH groups to the β site of the anthracene in PDBA, we obtained the water-soluble probe Mc-CDBA with sensitive response (F/F0 = 47.8, detection limit (LOD) = 1.37 μM) and Ca-CDBA with the highest affinity for glucose (Ka = 4.5 × 103 M-1). On this basis, Mc-CDBA was used to identify glucose heterogeneity between normal and tumor cells. Finally, Mc-CDBA and Ca-CDBA were used for imaging glucose in zebrafish. Our research provides a new strategy for designing efficient boronic acid glucose probes and powerful new tools for the evaluation of glucose-related diseases.
Collapse
Affiliation(s)
- Kai Wang
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Ruixiao Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Xiujie Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Yan Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Lijuan Ren
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
| | - Youxiao Ren
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
| | - Gaofei Chen
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
| | - Dingming Ye
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
| | - Jinfang Wu
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
| | - Xinyuan Hu
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Rimo Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Qingqiang Yao
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Qixin Chen
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| |
Collapse
|
26
|
Du Y, Yang Z, Kang S, Yu DG, Chen X, Shao J. A Sequential Electrospinning of a Coaxial and Blending Process for Creating Double-Layer Hybrid Films to Sense Glucose. SENSORS (BASEL, SWITZERLAND) 2023; 23:3685. [PMID: 37050745 PMCID: PMC10099372 DOI: 10.3390/s23073685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 05/21/2023]
Abstract
This study presents a glucose biosensor based on electrospun core-sheath nanofibers. Two types of film were fabricated using different electrospinning procedures. Film F1 was composed solely of core-sheath nanofibers fabricated using a modified coaxial electrospinning process. Film F2 was a double-layer hybrid film fabricated through a sequential electrospinning and blending process. The bottom layer of F2 comprised core-sheath nanofibers fabricated using a modified process, in which pure polymethacrylate type A (Eudragit L100) was used as the core section and water-soluble lignin (WSL) and phenol were loaded as the sheath section. The top layer of F2 contained glucose oxidase (GOx) and gold nanoparticles, which were distributed throughout the polyvinylpyrrolidone K90 (PVP K90) nanofibers through a single-fluid blending electrospinning process. The study investigated the sequential electrospinning process in detail. The experimental results demonstrated that the F2 hybrid film had a higher degradation efficiency of β-D-glucose than F1, reaching a maximum of over 70% after 12 h within the concentration range of 10-40 mmol/L. The hybrid film F2 is used for colorimetric sensing of β-D-glucose in the range of 1-15 mmol/L. The solution exhibited a color that deepened gradually with an increase in β-D-glucose concentration. Electrospinning is flexible in creating structures for bio-cascade reactions, and the double-layer hybrid film can provide a simple template for developing other sensing nanomaterials.
Collapse
Affiliation(s)
- Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.D.); (Z.Y.)
| | - Zili Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.D.); (Z.Y.)
| | - Shixiong Kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.D.); (Z.Y.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.D.); (Z.Y.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - Xiren Chen
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China
| | - Jun Shao
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China
| |
Collapse
|
27
|
Yan C, Dai J, Yao Y, Fu W, Tian H, Zhu WH, Guo Z. Preparation of near-infrared AIEgen-active fluorescent probes for mapping amyloid-β plaques in brain tissues and living mice. Nat Protoc 2023; 18:1316-1336. [PMID: 36697872 DOI: 10.1038/s41596-022-00789-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/21/2022] [Indexed: 01/26/2023]
Abstract
Fibrillar aggregates of the amyloid-β protein (Aβ) are the main component of the senile plaques found in brains of patients with Alzheimer's disease (AD). Development of probes allowing the noninvasive and high-fidelity mapping of Aβ plaques in vivo is critical for AD early detection, drug screening and biomedical research. QM-FN-SO3 (quinoline-malononitrile-thiophene-(dimethylamino)phenylsulfonate) is a near-infrared aggregation-induced-emission-active fluorescent probe capable of crossing the blood-brain barrier (BBB) and ultrasensitively lighting up Aβ plaques in living mice. Herein, we describe detailed procedures for the two-stage synthesis of QM-FN-SO3 and its applications for mapping Aβ plaques in brain tissues and living mice. Compared with commercial thioflavin (Th) derivatives ThT and ThS (the gold standard for detection of Aβ aggregates) and other reported Aβ plaque fluorescent probes, QM-FN-SO3 confers several advantages, such as long emission wavelength, large Stokes shift, ultrahigh sensitivity, good BBB penetrability and miscibility in aqueous biological media. The preparation of QM-FN-SO3 takes ~2 d, and the confocal imaging experiments for Aβ plaque visualization, including the preparation for mouse brain sections, take ~7 d. Notably, acquisition and analyses for in vivo visualization of Aβ plaques in mice can be completed within 1 h and require only a basic knowledge of spectroscopy and chemistry.
Collapse
Affiliation(s)
- Chenxu Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Jianfeng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yongkang Yao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Fu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
28
|
Ortega-Valdovinos LR, Yatsimirsky AK. Probing the Role of the Bridging Nitrogen in the Signaling Mechanism of an Anthracene-Boronic Acid Sugar Sensor and a Different Version of the PET-Based Mechanism. J Org Chem 2023; 88:4662-4674. [PMID: 36929906 DOI: 10.1021/acs.joc.3c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The N-quaternized derivative 5 of the James-Shinkai anthracene-boronic acid fluorescence sugar sensor 1 was prepared to probe the role of the bridging nitrogen in the signaling mechanism of 1. Both 5 and 1 contain positively charged bridging groups NMe+ or NH+, respectively, but 5 lacks the ability to form the intramolecular ammonium-boronate doubly ionic hydrogen bond present in 1. Receptors 1 and 5 display opposite fluorescence vs pH profiles with a small turn-on effect of the sugar binding to the zwitterion of 5 in contrast to a large effect observed with 1. It is concluded that the ammonium-boronate hydrogen bond is essential for the signaling mechanism of 1. Its possible function is enabling the PET quenching effect by shifting the NH+ proton toward boronate anion inside the hydrogen bond, the degree of which is modulated by the ester formation with diols affecting the basicity of boronate anion. This mechanism agrees with observed signaling selectivity of 1 toward a series of di- and polyols of variable structures as well as with the behavior of 1 in buffered D2O and methanol solvents at controlled pH and provides an addition to the established "loose bolt" mechanism signaling mode essential for receptors with nonpolar fluorophores.
Collapse
Affiliation(s)
| | - Anatoly K Yatsimirsky
- Facultad de Química, Universidad Nacional Autónoma de México, 04510 México D.F., Mexico
| |
Collapse
|
29
|
Lagneau N, Terriac L, Tournier P, Helesbeux JJ, Viault G, Séraphin D, Halgand B, Loll F, Garnier C, Jonchère C, Rivière M, Tessier A, Lebreton J, Maugars Y, Guicheux J, Le Visage C, Delplace V. A new boronate ester-based crosslinking strategy allows the design of nonswelling and long-term stable dynamic covalent hydrogels. Biomater Sci 2023; 11:2033-2045. [PMID: 36752615 DOI: 10.1039/d2bm01690g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dynamic hydrogels are viscoelastic materials that can be designed to be self-healing, malleable, and injectable, making them particularly interesting for a variety of biomedical applications. To design dynamic hydrogels, dynamic covalent crosslinking reactions are attracting increasing attention. However, dynamic covalent hydrogels tend to swell, and often lack stability. Boronate ester-based hydrogels, which result from the dynamic covalent reaction between a phenylboronic acid (PBA) derivative and a diol, are based on stable precursors, and can therefore address these limitations. Yet, boronate ester formation hardly occurs at physiological pH. To produce dynamic covalent hydrogels at physiological pH, we performed a molecular screening of PBA derivatives in association with a variety of diols, using hyaluronic acid as a polymer of interest. The combination of Wulff-type PBA (wPBA) and glucamine stood out as a unique couple to obtain the desired hydrogels. We showed that optimized wPBA/glucamine hydrogels are minimally- to non-swelling, stable long term (over months), tunable in terms of mechanical properties, and cytocompatible. We further characterized their viscoelastic and self-healing properties, highlighting their potential for biomedical applications.
Collapse
Affiliation(s)
- N Lagneau
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.
| | - L Terriac
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.
| | - P Tournier
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.
| | - J-J Helesbeux
- Substances d'Origine Naturelle et Analogues Structuraux, SFR4207 QUASAV, Université d'Angers, Angers, France
| | - G Viault
- Substances d'Origine Naturelle et Analogues Structuraux, SFR4207 QUASAV, Université d'Angers, Angers, France
| | - D Séraphin
- Substances d'Origine Naturelle et Analogues Structuraux, SFR4207 QUASAV, Université d'Angers, Angers, France
| | - B Halgand
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.
| | - F Loll
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.
| | - C Garnier
- INRAE, UR1268 Biopolymères Interactions Assemblages, F-44300 Nantes, France
| | - C Jonchère
- INRAE, UR1268 Biopolymères Interactions Assemblages, F-44300 Nantes, France
| | - M Rivière
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - A Tessier
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - J Lebreton
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Y Maugars
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.
| | - J Guicheux
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.
| | - C Le Visage
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.
| | - V Delplace
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.
| |
Collapse
|
30
|
Markham GD, Rostami H, Larkin JD, Bock CW. Models for boronic acid receptors II: a computational structural, bonding, and thermochemical investigation of the RB(OH)2∙H2O∙NH3 and RB(−OCH2CH2O−)∙NH3∙H2O potential energy surfaces (R = H, methyl, phenyl, and ortho-methyl-phenyl). Struct Chem 2023. [DOI: 10.1007/s11224-023-02131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
31
|
Luminescent lanthanide metallogel as a sensor array to efficiently discriminate various saccharides. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
32
|
Komori Y, Sugimoto S, Sato T, Okawara H, Watanabe R, Takano Y, Kitaoka S, Egawa Y. A New Boron-Rhodamine-Containing Carboxylic Acid as a Sugar Chemosensor. SENSORS (BASEL, SWITZERLAND) 2023; 23:1528. [PMID: 36772569 PMCID: PMC9921257 DOI: 10.3390/s23031528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
We propose a boron-rhodamine-containing carboxylic acid (BRhoC) substance as a new sugar chemosensor. BRhoC was obtained by the Friedel-Crafts reaction of 4-formylbenzoic acid and N,N-dimethylphenylboronic acid, followed by chloranil oxidation. In an aqueous buffer solution at pH 7.4, BRhoC exhibited an absorption maximum (Absmax) at 621 nm. Its molar absorption coefficient at Absmax was calculated to be 1.4 × 105 M-1 cm-1, and it exhibited an emission maximum (Emmax) at 644 nm for the excitation at 621 nm. The quantum yield of BRhoC in CH3OH was calculated to be 0.16. The borinate group of BRhoC reacted with a diol moiety of sugar to form a cyclic ester, which induced a change in the absorbance and fluorescence spectra. An increase in the D-fructose (Fru) concentration resulted in the red shift of the Absmax (621 nm without sugar and 637 nm with 100 mM Fru) and Emmax (644 nm without sugar and 658 nm with 100 mM Fru) peaks. From the curve fitting of the plots of the fluorescence intensity ratio at 644 nm and 658 nm, the binding constants (K) were determined to be 2.3 × 102 M-1 and 3.1 M-1 for Fru and D-glucose, respectively. The sugar-binding ability and presence of a carboxyl group render BRhoC a suitable building block for the fabrication of highly advanced chemosensors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuya Egawa
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan
| |
Collapse
|
33
|
Jovaišaitė J, Baronas P, Jonusauskas G, Gudeika D, Gruodis A, Gražulevičius JV, Juršėnas S. TICT compounds by design: comparison of two naphthalimide-π-dimethylaniline conjugates of different lengths and ground state geometries. Phys Chem Chem Phys 2023; 25:2411-2419. [PMID: 36598166 DOI: 10.1039/d2cp04250a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two new twisted intramolecular charge transfer (TICT) donor-π-acceptor compounds were designed by combining a well-known electron acceptor naphthalimide unit with a classic electron donor dimethylaniline through two types of different rigid linkers. The combined steady-state and time-resolved spectroscopy of molecules in solvents of different polarities in comparison to solid-state solvation experiments of doped polymer matrixes of different polarities allowed distinguishing between solvation and conformation determined processes. The photophysical measurements revealed that non-polar solutions possess high fluorescence quantum yields of up to 70% which is a property of pre-twisted/planar molecules in the excited charge transfer (CT) states. The increase of polarity allows tuning the Stokes shift through all the visible wavelength range up to 8601 cm-1 which is accompanied by a three orders of magnitude drop of fluorescence quantum yields. This is a result of the emerged TICT states as dimethylaniline twists to a perpendicular position against the naphthalimide core. The TICT reaction of molecules enables an additional non-radiative excitation decay channel, which is not present if the twisting is forbidden in a rigid polymer matrix. Transient absorption spectroscopy was employed to visualize the excited state dynamics and to obtain the excited state reaction constants, revealing that TICT may occur from both the Franck-Condon region and the solvated pre-twisted/planar CT states. Both molecules undergo the same photophysical processes, however, a longer linker and thus a higher excited state dipole moment determines the faster excited state reactions.
Collapse
Affiliation(s)
- Justina Jovaišaitė
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
| | - Paulius Baronas
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
| | - Gediminas Jonusauskas
- Laboratoire Ondes et Matiére d'Aquitaine, Bordeaux University, UMR CNRS 5798, 351 cours de la Libération, 33405 Talence, France
| | - Dalius Gudeika
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilėnų rd. 19, LT-50254 Kaunas, Lithuania
| | - Alytis Gruodis
- Institute of Chemical Physics, Vilnius University, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Juozas V Gražulevičius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilėnų rd. 19, LT-50254 Kaunas, Lithuania
| | - Saulius Juršėnas
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
34
|
Zhang V, Kang B, Accardo JV, Kalow JA. Structure-Reactivity-Property Relationships in Covalent Adaptable Networks. J Am Chem Soc 2022; 144:22358-22377. [PMID: 36445040 PMCID: PMC9812368 DOI: 10.1021/jacs.2c08104] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymer networks built out of dynamic covalent bonds offer the potential to translate the control and tunability of chemical reactions to macroscopic physical properties. Under conditions at which these reactions occur, the topology of covalent adaptable networks (CANs) can rearrange, meaning that they can flow, self-heal, be remolded, and respond to stimuli. Materials with these properties are necessary to fields ranging from sustainability to tissue engineering; thus the conditions and time scale of network rearrangement must be compatible with the intended use. The mechanical properties of CANs are based on the thermodynamics and kinetics of their constituent bonds. Therefore, strategies are needed that connect the molecular and macroscopic worlds. In this Perspective, we analyze structure-reactivity-property relationships for several classes of CANs, illustrating both general design principles and the predictive potential of linear free energy relationships (LFERs) applied to CANs. We discuss opportunities in the field to develop quantitative structure-reactivity-property relationships and open challenges.
Collapse
Affiliation(s)
| | | | | | - Julia A. Kalow
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| |
Collapse
|
35
|
Valenzuela SA, Howard JR, Park HM, Darbha S, Anslyn EV. 11B NMR Spectroscopy: Structural Analysis of the Acidity and Reactivity of Phenyl Boronic Acid-Diol Condensations. J Org Chem 2022; 87:15071-15076. [PMID: 36318490 DOI: 10.1021/acs.joc.2c01514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Phenyl boronic acids are valuable for medical diagnostics and biochemistry studies due to their ability to readily bind with carbohydrates in water. Incorporated in carbohydrates are 1,2-diols, which react with boronic acids through a reversible covalent condensation pathway. A wide variety of boronic acids have been employed for diol binding with differing substitution of the phenyl ring, with the goals of simplifying their synthesis and altering their thermodynamics of complexation. One method for monitoring their pKa's and binding is 11B NMR spectroscopy. Herein, we report a comprehensive study employing 11B NMR spectroscopy to determine the pKa of the most commonly used phenyl boronic acids and their binding with catechol or d,l-hydrobenzoin as prototypical diols. The chemical shift of the boronic acid transforming into the boronate ester was monitored at pHs ranging from 2 to 10. With each boronic acid, the results confirm (1) the necessity to use pHs above their pKa's to induce complexation, (2) that the pKa's change in the presence of diols, and (3) that 11B NMR spectroscopy is a particularly convenient tool for monitoring these interconnected acidity and binding phenomena.
Collapse
Affiliation(s)
- Stephanie A Valenzuela
- Department of Chemistry, University of Texas at Austin, 100 E 24th Street, Norman Hackerman Building (Room 114A), Austin, Texas78712, United States
| | - James R Howard
- Department of Chemistry, University of Texas at Austin, 100 E 24th Street, Norman Hackerman Building (Room 114A), Austin, Texas78712, United States
| | - Hyun Meen Park
- Department of Chemistry, University of Texas at Austin, 100 E 24th Street, Norman Hackerman Building (Room 114A), Austin, Texas78712, United States
| | - Sriranjani Darbha
- Department of Chemistry, University of Texas at Austin, 100 E 24th Street, Norman Hackerman Building (Room 114A), Austin, Texas78712, United States
| | - Eric V Anslyn
- Department of Chemistry, University of Texas at Austin, 100 E 24th Street, Norman Hackerman Building (Room 114A), Austin, Texas78712, United States
| |
Collapse
|
36
|
Pauwels J, Fijałkowska D, Eyckerman S, Gevaert K. Mass spectrometry and the cellular surfaceome. MASS SPECTROMETRY REVIEWS 2022; 41:804-841. [PMID: 33655572 DOI: 10.1002/mas.21690] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The collection of exposed plasma membrane proteins, collectively termed the surfaceome, is involved in multiple vital cellular processes, such as the communication of cells with their surroundings and the regulation of transport across the lipid bilayer. The surfaceome also plays key roles in the immune system by recognizing and presenting antigens, with its possible malfunctioning linked to disease. Surface proteins have long been explored as potential cell markers, disease biomarkers, and therapeutic drug targets. Despite its importance, a detailed study of the surfaceome continues to pose major challenges for mass spectrometry-driven proteomics due to the inherent biophysical characteristics of surface proteins. Their inefficient extraction from hydrophobic membranes to an aqueous medium and their lower abundance compared to intracellular proteins hamper the analysis of surface proteins, which are therefore usually underrepresented in proteomic datasets. To tackle such problems, several innovative analytical methodologies have been developed. This review aims at providing an extensive overview of the different methods for surfaceome analysis, with respective considerations for downstream mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Jarne Pauwels
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Sven Eyckerman
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
37
|
Miki R, Yamaki T, Uchida M, Natsume H. Hydrogen peroxide-responsive micellar transition from spherical to worm-like in cetyltrimethylammonium bromide/3-fluorophenylboronic acid/fructose system. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
De los Santos ZA, Lynch CC, Wolf C. Dynamic Covalent Optical Chirality Sensing with a Sterically Encumbered Aminoborane. Chemistry 2022; 28:e202202028. [DOI: 10.1002/chem.202202028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 11/07/2022]
Affiliation(s)
| | - Ciarán C. Lynch
- Department of Chemistry Georgetown University Washington DC 20057 USA
| | - Christian Wolf
- Department of Chemistry Georgetown University Washington DC 20057 USA
| |
Collapse
|
39
|
Ohno Y, Tanaka R, Suzuki Y, Sugaya T, Iwatsuki S, Inamo M, Ishihara K. Detailed Reaction Mechanism of Bis‐(
o
‐Aminomethylphenylboronic Acid)‐based Receptors with Various Length Methylene‐chain Linkers with D‐Glucose. ChemistrySelect 2022. [DOI: 10.1002/slct.202200603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuki Ohno
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University, Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Rei Tanaka
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University, Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Yota Suzuki
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University, Okubo, Shinjuku-ku Tokyo 169-8555 Japan
- Department of Materials and Life Sciences Faculty of Science and Technology Sophia University, Kioi-cho, Chiyoda-ku Tokyo 102-8554 Japan
| | - Tomoaki Sugaya
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University, Okubo, Shinjuku-ku Tokyo 169-8555 Japan
- Education Center Faculty of Engineering Chiba Institute of Technology Narashino Chiba 275-0023 Japan
| | - Satoshi Iwatsuki
- Department of Chemistry Konan University, Higashinada-ku Kobe 658-8501 Japan
| | - Masahiko Inamo
- Department of Chemistry Aichi University of Education Kariya 448-8542 Japan
| | - Koji Ishihara
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University, Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| |
Collapse
|
40
|
Hu Q, Hu S, Li S, Liu S, Liang Y, Cao X, Luo Y, Xu W, Wang H, Wan J, Feng W, Niu L. Boronate Affinity-Based Electrochemical Aptasensor for Point-of-Care Glycoprotein Detection. Anal Chem 2022; 94:10206-10212. [DOI: 10.1021/acs.analchem.2c01699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qiong Hu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shuhan Hu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shiqi Li
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Sijie Liu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yiyi Liang
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xiaojing Cao
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yilin Luo
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wanjing Xu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Haocheng Wang
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jianwen Wan
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wenxing Feng
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
41
|
Wang S, Cui J, Fan Q, Gan J, Liu C, Wang Y, Yang T, Wang J, Yang C. Reversible and Highly Ordered Biointerfaces for Efficient Capture and Nondestructive Release of Circulating Tumor Cells. Anal Chem 2022; 94:9450-9458. [PMID: 35732056 DOI: 10.1021/acs.analchem.2c01743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The engineering strategy of artificial biointerfaces is vital for governing their performances in bioanalysis and diagnosis. Highly ordered arrangement of affinity ligands on the interface surface facilitates efficient interaction with target molecules, whereas biointerfaces aimed at drug delivery or rare cell isolation require sophisticated stimuli-response mechanisms. However, it is still challenging to facilely fabricate biointerfaces possessing the two features. Herein, we endow a biointerface with both reversibility and capability to orderly assemble affinity ligands by introducing boronic acid moieties alone. By boronate conjugation via glycosylation sites, avidin was well arranged at the surface of boronic acid-decorated carbon nitride nanosheets for the assembly of biotinylated aptamers. The ordered orientation of aptamers largely relieved their inactivation caused by inter-strand entanglement, facilitating significant increase in cell affinity for the isolation of circulating tumor cells (CTCs). The reversible boronate conjugation also facilitated mild release of CTCs by acid fructose with high cell viability. This engineered interface was capable of isolating CTCs from the peripheral blood of tumor-bearing mice and cancer patients. The successful utilization of the isolated CTCs in the downstream drug susceptibility test and mutation analysis demonstrated the clinical potential of this biointerface for the early diagnosis of cancers and precision medicine.
Collapse
Affiliation(s)
- Siyi Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jiasen Cui
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Pathology, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Qian Fan
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.,Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jiaxing Gan
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Pathology, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Chunran Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Pathology, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Yuanhe Wang
- Department of Gastrointestinal Cancer, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang 110042, China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
42
|
Barsoum DN, Kirinda VC, Kang B, Kalow JA. Remote-Controlled Exchange Rates by Photoswitchable Internal Catalysis of Dynamic Covalent Bonds. J Am Chem Soc 2022; 144:10168-10173. [PMID: 35640074 DOI: 10.1021/jacs.2c04658] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The transesterification rate of boronate esters with diols is tunable over 14 orders of magnitude. Rate acceleration is achieved by internal base catalysis, which lowers the barrier for proton transfer. Here we report a photoswitchable internal catalyst that tunes the rate of boronic ester/diol exchange over 4 orders of magnitude. We employed an acylhydrazone molecular photoswitch, which forms a thermally stable but photoreversible intramolecular H-bond, to gate the activity of the internal base catalyst in 8-quinoline boronic ester. The photoswitch is bidirectional and can be cycled repeatedly. The intramolecular H-bond is found to be essential to the design of this photoswitchable internal catalyst, as protonating the quinoline with external sources of acid has little effect on the exchange rate.
Collapse
Affiliation(s)
- David N Barsoum
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Viraj C Kirinda
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Boyeong Kang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
43
|
Li T, Liu J, Sun XL, Wan WM, Xiao L, Qian Q. Boronic acid-containing polymeric nanomaterials via polymerization induced self-assembly as fructose sensor. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Adamczyk-Woźniak A, Sporzyński A. Merging Electron Deficient Boronic Centers with Electron-Withdrawing Fluorine Substituents Results in Unique Properties of Fluorinated Phenylboronic Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113427. [PMID: 35684365 PMCID: PMC9182515 DOI: 10.3390/molecules27113427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Fluorinated boron species are a very important group of organoboron compounds used first of all as receptors of important bioanalytes, as well as biologically active substances, including Tavaborole as an antifungal drug. The presence of substituents containing fluorine atoms increases the acidity of boronic compounds, which is crucial from the point of view of their interactions with analytes or certain pathogen's enzymes. The review discusses the electron acceptor properties of fluorinated boronic species using both the acidity constant (pKa) and acceptor number (AN) in connection with their structural parameters. The NMR spectroscopic data are also presented, with particular emphasis on 19F resonance due to the wide range of information that can be obtained from this technique. Equilibria in solutions, such as the dehydration of boronic acid to form boroxines and their esterification or cyclization with the formation of 3-hydroxyl benzoxaboroles, are discussed. The results of the latest research on the biological activity of boronic compounds by experimental in vitro methods and theoretical calculations using docking studies are also discussed.
Collapse
Affiliation(s)
- Agnieszka Adamczyk-Woźniak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Correspondence: (A.A.-W.); (A.S.); Tel.: +48-22-2345737 (A.A.-W.)
| | - Andrzej Sporzyński
- Faculty of Agriculture and Forestry, University of Warmia and Mazury, Oczapowskiego 2, 10-719 Olsztyn, Poland
- Correspondence: (A.A.-W.); (A.S.); Tel.: +48-22-2345737 (A.A.-W.)
| |
Collapse
|
45
|
Katashima T, Kudo R, Naito M, Nagatoishi S, Miyata K, Chung UI, Tsumoto K, Sakai T. Experimental Comparison of Bond Lifetime and Viscoelastic Relaxation in Transient Networks with Well-Controlled Structures. ACS Macro Lett 2022; 11:753-759. [PMID: 35594190 DOI: 10.1021/acsmacrolett.2c00152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We demonstrate an experimental comparison of the bond lifetime, estimated using surface plasmon resonance (SPR), and the viscoelastic relaxation time of transient networks with well-controlled structures (dynamically cross-linked Tetra-PEG gel). SPR and viscoelastic measurements revealed that the temperature dependences of the two characteristic times are in agreement, while the viscoelastic response is delayed with respect to the lifetime by a factor of 2-3, dependent on the network strand length. Polymers cross-linked by temporary interactions form transient networks, which show fascinating viscoelasticity with a single relaxation mode. However, the molecular understanding of such simple viscoelasticity has remained incomplete because of the difficulty of experimentally evaluating bond lifetimes and heterogeneous structures in conventional transient networks. Our results suggest that bond dissociation and recombination both contribute to the macromechanical response. This report on direct bond-lifetime-viscoelastic-relaxation time comparison provides important information for the molecular design of transient network materials.
Collapse
Affiliation(s)
- Takuya Katashima
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryota Kudo
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satoru Nagatoishi
- Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ung-il Chung
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
46
|
Prossnitz AN, Pun SH. Modulating Boronic Ester Stability in Block Copolymer Micelles via the Neighbor Effect of Copolymerized Tertiary Amines for Controlled Release of Polyphenolic Drugs. ACS Macro Lett 2022; 11:276-283. [PMID: 35575376 DOI: 10.1021/acsmacrolett.1c00751] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The traceless and pH-sensitive properties of boronic esters are attractive for the synthesis of polymer-drug conjugates, but current platforms suffer from both low stability under physiologically relevant conditions and synthetically demanding optimization to tune drug release profiles. We hypothesized that the high catechol affinity and stability of Wulff-type boronic acids could be mimicked by copolymerization of phenyl boronic acid with a tertiary amine and subsequent micellization. This strategy yielded a versatile platform for the preparation of reversible polymer-drug conjugates, which more than doubled the oxidative stability of encapsulated polyphenolic drug cargo at physiologically relevant pH and enabled simple and incremental tuning of drug release kinetics. Moreover, we validated, with 19F NMR, that these copolymers exhibit uniquely high catechol affinity that could not be replicated by combinations of similarly functionalized small molecules. Overall, this report demonstrates that copolymerization of boronic acid and tertiary amine monomers is a powerful and modular approach to improving boronic ester chemistry for drug delivery applications.
Collapse
Affiliation(s)
- Alexander N. Prossnitz
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Suzie H. Pun
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
47
|
Abstract
In dynamic materials, the reversible condensation between boronic acids and diols provides adaptability, self-healing ability, and responsiveness to small molecules and pH. The thermodynamics and kinetics of bond exchange determine the mechanical properties of dynamic polymer networks. Here, we investigate the effects of diol structure and salt additives on the rate of boronic acid-diol bond exchange, binding affinity, and the mechanical properties of the corresponding polymer networks. We find that proximal amides used to conjugate diols to polymers and buffering anions induce significant rate acceleration, consistent with an internal and external catalysis, respectively. This rate acceleration is reflected in the stress relaxation of the gels. These findings contribute to the fundamental understanding of the boronic ester dynamic bond and offer molecular strategies to tune the macromolecular properties of dynamic materials.
Collapse
Affiliation(s)
- Boyeong Kang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Julia A. Kalow
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
48
|
Harders P, Griebenow T, Businski A, Kaus AJ, Pietsch L, Näther C, McConnell A. The Dynamic Covalent Chemistry of Amidoboronates: Tuning the rac5/rac6 Ratio via the B‑N and B‐O Dynamic Covalent Bonds. Chempluschem 2022; 87:e202200022. [DOI: 10.1002/cplu.202200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/07/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Patrick Harders
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Thomas Griebenow
- Christian Albrechts Universität zu Kiel: Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Artjom Businski
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Anton J. Kaus
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Lorenz Pietsch
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Christian Näther
- Christian-Albrechts-Universitat zu Kiel Institute of Inorganic Chemistry GERMANY
| | - Anna McConnell
- Kiel University Institute of Organic Chemistry Otto-Hahn-Platz 4 24098 Kiel GERMANY
| |
Collapse
|
49
|
Chen J, Hao L, Hu J, Zhu K, Li Y, Xiong S, Huang X, Xiong Y, Tang BZ. A Universal Boronate‐Affinity Crosslinking‐Amplified Dynamic Light Scattering Immunoassay for Point‐of‐Care Glycoprotein Detection. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jing Chen
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Liangwen Hao
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Jiaqi Hu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Kang Zhu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Yu Li
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Sicheng Xiong
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
- Jiangxi-OAI Joint Research Institute Nanchang University Nanchang 330047 China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology School of Science and Engineering The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| |
Collapse
|
50
|
Garget TA, Kiefel MJ, Houston TA. A remarkable divergent fluorescence response to epimeric monosaccharides by an isoquinoline-derived diboronate. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|