1
|
Cagiada M, Ovchinnikov S, Lindorff‐Larsen K. Predicting absolute protein folding stability using generative models. Protein Sci 2025; 34:e5233. [PMID: 39673466 PMCID: PMC11645669 DOI: 10.1002/pro.5233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 12/16/2024]
Abstract
While there has been substantial progress in our ability to predict changes in protein stability due to amino acid substitutions, progress has been slower in methods to predict the absolute stability of a protein. Here, we show how a generative model for protein sequence can be leveraged to predict absolute protein stability. We benchmark our predictions across a broad set of proteins and find a mean error of 1.5 kcal/mol and a correlation coefficient of 0.7 for the absolute stability across a range of natural, small- to medium-sized proteins up to ca. 150 amino acid residues. We analyze current limitations and future directions including how such a model may be useful for predicting conformational free energies. Our approach is simple to use and freely available at an online implementation available via https://github.com/KULL-Centre/_2024_cagiada_stability.
Collapse
Affiliation(s)
- Matteo Cagiada
- Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Sergey Ovchinnikov
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Kresten Lindorff‐Larsen
- Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
2
|
Coricello A, Nardone AJ, Lupia A, Gratteri C, Vos M, Chaptal V, Alcaro S, Zhu W, Takagi Y, Richards NGJ. 3D variability analysis reveals a hidden conformational change controlling ammonia transport in human asparagine synthetase. Nat Commun 2024; 15:10538. [PMID: 39627226 PMCID: PMC11615228 DOI: 10.1038/s41467-024-54912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
Advances in X-ray crystallography and cryogenic electron microscopy (cryo-EM) offer the promise of elucidating functionally relevant conformational changes that are not easily studied by other biophysical methods. Here we show that 3D variability analysis (3DVA) of the cryo-EM map for wild-type (WT) human asparagine synthetase (ASNS) identifies a functional role for the Arg-142 side chain and test this hypothesis experimentally by characterizing the R142I variant in which Arg-142 is replaced by isoleucine. Support for Arg-142 playing a role in the intramolecular translocation of ammonia between the active site of the enzyme is provided by the glutamine-dependent synthetase activity of the R142 variant relative to WT ASNS, and MD simulations provide a possible molecular mechanism for these findings. Combining 3DVA with MD simulations is a generally applicable approach to generate testable hypotheses of how conformational changes in buried side chains might regulate function in enzymes.
Collapse
Affiliation(s)
- Adriana Coricello
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Alanya J Nardone
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Antonio Lupia
- Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Dipartimento di Scienze della vita e dell'ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - Carmen Gratteri
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy
| | - Matthijn Vos
- NanoImaging Core Facility, Centre de Resources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Vincent Chaptal
- Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, Lyon, France
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy.
- Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy.
| | - Wen Zhu
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, USA.
| | - Yuichiro Takagi
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Nigel G J Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff, UK.
- Foundation for Applied Molecular Evolution, Alachua, FL, USA.
| |
Collapse
|
3
|
Herranz-Trillo F, Sørensen HV, Dicko C, Pérez J, Lenton S, Foderà V, Fornell A, Skepö M, Plivelic TS, Berntsson O, Andersson M, Magkakis K, Orädd F, Ahn B, Appio R, Da Silva J, Da Silva V, Lerato M, Terry AE. Time-resolved scattering methods for biological samples at the CoSAXS beamline, MAX IV Laboratory. Methods Enzymol 2024; 709:245-296. [PMID: 39608946 DOI: 10.1016/bs.mie.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
CoSAXS is a state-of-the-art SAXS/WAXS beamline exploiting the high brilliance of the MAX IV 3 GeV synchrotron. By coupling advances in sample environment control with fast X-ray detectors, millisecond time-resolved scattering methods can follow structural dynamics of proteins in solution. In the present work, four sample environments are discussed. A sample environment for combined SAXS with UV-vis and fluorescence spectroscopy (SUrF) enables a comprehensive understanding of the time evolution of conformation in a model protein upon acid-driven denaturation. The use of microfluidic chips with SAXS allows the mapping of concentration with very small sample volumes. For highly reproducible sequences of mixing of components, it is possible using stopped-flow and SAXS to access the initial effects of mixing at 2 millisecond timescales with good signal to noise to allow structural interpretation. The intermediate structures in a protein are explored under light and temperature perturbations by using lasers to "pump" the protein and SAXS as the "probe". The methods described demonstrate that features at low q, corresponding to cooperative motions of the atoms in a protein, could be extracted at millisecond timescales, which results from CoSAXS being a highly-stable, low background, dedicated SAXS beamline.
Collapse
Affiliation(s)
| | - Henrik Vinther Sørensen
- MAX IV Laboratory, Lund University, Lund, Sweden; Department of Chemistry, Division of Computational Chemistry, Lund University, Lund, Sweden
| | - Cedric Dicko
- Division of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Javier Pérez
- Synchrotron SOLEIL, Saint-Aubin - BP, Gif sur Yvette Cedex, France
| | - Samuel Lenton
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
| | - Vito Foderà
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
| | - Anna Fornell
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marie Skepö
- Department of Chemistry, Division of Computational Chemistry, Lund University, Lund, Sweden
| | | | | | | | | | - Fredrik Orädd
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Byungnam Ahn
- MAX IV Laboratory, Lund University, Lund, Sweden
| | | | | | | | - Marco Lerato
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - Ann E Terry
- MAX IV Laboratory, Lund University, Lund, Sweden.
| |
Collapse
|
4
|
Coricello A, Nardone AJ, Lupia A, Gratteri C, Vos M, Chaptal V, Alcaro S, Zhu W, Takagi Y, Richards NGJ. 3D Variability Analysis Reveals a Hidden Conformational Change Controlling Ammonia Transport in Human Asparagine Synthetase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.16.541009. [PMID: 37292727 PMCID: PMC10245805 DOI: 10.1101/2023.05.16.541009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
How motions in enzymes might be linked to catalytic function is of considerable general interest. Advances in X-ray crystallography and cryogenic electron microscopy (cryo-EM) offer the promise of elucidating functionally relevant conformational changes that are not easily studied by other biophysical methods. Here we use 3D variability analysis (3DVA) of the cryo-EM map for wild-type (WT) human asparagine synthetase (ASNS) to identify a functional role for the Arg-142 side chain as a gate that mediates ammonia access to a catalytically relevant intramolecular tunnel. Our 3DVA-derived hypothesis is assessed experimentally, using the R142I variant in which Arg-142 is replaced by isoleucine, and by molecular dynamics (MD) simulations on independent, computational models of the WT human ASNS monomer and its catalytically relevant, ternary complex with β-aspartyl-AMP and MgPPi. Residue fluctuations in the MD trajectories for the human ASNS monomer are consistent with those determined for 3DVA-derived structures. These MD simulations also indicate that the gating function of Arg-142 is separate from the molecular events that form a continuous tunnel linking the two active sites. Experimental support for Arg-142 playing a role in intramolecular ammonia translocation is provided by the glutamine-dependent synthetase activity of the R142 variant relative to WT ASNS. MD simulations of computational models for the R142I variant and the R142I/β-aspartyl-AMP/MgPPi ternary complex provide a possible molecular basis for this observation. Overall, the combination of 3DVA with MD simulations is a generally applicable approach to generate testable hypotheses of how conformational changes in buried side chains might regulate function in enzymes.
Collapse
Affiliation(s)
- Adriana Coricello
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
- Present address: Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Alanya. J. Nardone
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Antonio Lupia
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
- Present address: Dipartimento di Scienze della vita e dell’ambiente, Università degli Studi di Cagliari, 09042 Cagliari, Italy
| | - Carmen Gratteri
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
| | - Matthijn Vos
- NanoImaging Core Facility, Centre de Resources et Recherches Technologiques, Institut Pasteur, 75015 Paris, France
| | - Vincent Chaptal
- Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, 69367 Lyon, France
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
| | - Wen Zhu
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Yuichiro Takagi
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nigel G. J. Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
- Foundation for Applied Molecular Evolution, Alachua, FL 32615, USA
| |
Collapse
|
5
|
Magkakis K, Orädd F, Ahn B, Da Silva V, Appio R, Plivelic TS, Andersson M. Real-time structural characterization of protein response to a caged compound by fast detector readout and high-brilliance synchrotron radiation. Structure 2024; 32:1519-1527.e3. [PMID: 38889721 DOI: 10.1016/j.str.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/19/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Protein dynamics are essential to biological function, and methods to determine such structural rearrangements constitute a frontier in structural biology. Synchrotron radiation can track real-time protein dynamics, but accessibility to dedicated high-flux single X-ray pulse time-resolved beamlines is scarce and protein targets amendable to such characterization are limited. These limitations can be alleviated by triggering the reaction by laser-induced activation of a caged compound and probing the structural dynamics by fast-readout detectors. In this work, we established time-resolved X-ray solution scattering (TR-XSS) at the CoSAXS beamline at the MAX IV Laboratory synchrotron. Laser-induced activation of caged ATP initiated phosphoryl transfer in the adenylate kinase (AdK) enzyme, and the reaction was monitored up to 50 ms with a 2-ms temporal resolution achieved by the detector readout. The time-resolved structural signal of the protein showed minimal radiation damage effects and excellent agreement to data collected by a single X-ray pulse approach.
Collapse
Affiliation(s)
| | - Fredrik Orädd
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Byungnam Ahn
- MAX IV Laboratory, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
6
|
Nijhawan AK, Leshchev D, Hsu DJ, Chan AM, Rimmerman D, Hong J, Kosheleva I, Henning R, Kohlstedt KL, Chen LX. Unlocking the unfolded structure of ubiquitin: Combining time-resolved x-ray solution scattering and molecular dynamics to generate unfolded ensembles. J Chem Phys 2024; 161:035101. [PMID: 39007394 PMCID: PMC11257700 DOI: 10.1063/5.0217013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/04/2024] [Indexed: 07/16/2024] Open
Abstract
The unfolding dynamics of ubiquitin were studied using a combination of x-ray solution scattering (XSS) and molecular dynamics (MD) simulations. The kinetic analysis of the XSS ubiquitin signals showed that the protein unfolds through a two-state process, independent of the presence of destabilizing salts. In order to characterize the ensemble of unfolded states in atomic detail, the experimental XSS results were used as a constraint in the MD simulations through the incorporation of x-ray scattering derived potential to drive the folded ubiquitin structure toward sampling unfolded states consistent with the XSS signals. We detail how biased MD simulations provide insight into unfolded states that are otherwise difficult to resolve and underscore how experimental XSS data can be combined with MD to efficiently sample structures away from the native state. Our results indicate that ubiquitin samples unfolded in states with a high degree of loss in secondary structure yet without a collapse to a molten globule or fully solvated extended chain. Finally, we propose how using biased-MD can significantly decrease the computational time and resources required to sample experimentally relevant nonequilibrium states.
Collapse
Affiliation(s)
- Adam K. Nijhawan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Denis Leshchev
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Darren J. Hsu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Arnold M. Chan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Dolev Rimmerman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Jiyun Hong
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kevin L. Kohlstedt
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Lin X. Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
7
|
Wankowicz SA, Fraser JS. Comprehensive encoding of conformational and compositional protein structural ensembles through the mmCIF data structure. IUCRJ 2024; 11:494-501. [PMID: 38958015 PMCID: PMC11220883 DOI: 10.1107/s2052252524005098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/29/2024] [Indexed: 07/04/2024]
Abstract
In the folded state, biomolecules exchange between multiple conformational states crucial for their function. However, most structural models derived from experiments and computational predictions only encode a single state. To represent biomolecules accurately, we must move towards modeling and predicting structural ensembles. Information about structural ensembles exists within experimental data from X-ray crystallography and cryo-electron microscopy. Although new tools are available to detect conformational and compositional heterogeneity within these ensembles, the legacy PDB data structure does not robustly encapsulate this complexity. We propose modifications to the macromolecular crystallographic information file (mmCIF) to improve the representation and interrelation of conformational and compositional heterogeneity. These modifications will enable the capture of macromolecular ensembles in a human and machine-interpretable way, potentially catalyzing breakthroughs for ensemble-function predictions, analogous to the achievements of AlphaFold with single-structure prediction.
Collapse
Affiliation(s)
- Stephanie A. Wankowicz
- Department of Bioengineering and Therapeutic ScienceUniversity of CaliforniaSan FranciscoCA94117USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic ScienceUniversity of CaliforniaSan FranciscoCA94117USA
| |
Collapse
|
8
|
Chen LX, Yano J. Deciphering Photoinduced Catalytic Reaction Mechanisms in Natural and Artificial Photosynthetic Systems on Multiple Temporal and Spatial Scales Using X-ray Probes. Chem Rev 2024; 124:5421-5469. [PMID: 38663009 DOI: 10.1021/acs.chemrev.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Utilization of renewable energies for catalytically generating value-added chemicals is highly desirable in this era of rising energy demands and climate change impacts. Artificial photosynthetic systems or photocatalysts utilize light to convert abundant CO2, H2O, and O2 to fuels, such as carbohydrates and hydrogen, thus converting light energy to storable chemical resources. The emergence of intense X-ray pulses from synchrotrons, ultrafast X-ray pulses from X-ray free electron lasers, and table-top laser-driven sources over the past decades opens new frontiers in deciphering photoinduced catalytic reaction mechanisms on the multiple temporal and spatial scales. Operando X-ray spectroscopic methods offer a new set of electronic transitions in probing the oxidation states, coordinating geometry, and spin states of the metal catalytic center and photosensitizers with unprecedented energy and time resolution. Operando X-ray scattering methods enable previously elusive reaction steps to be characterized on different length scales and time scales. The methodological progress and their application examples collected in this review will offer a glimpse into the accomplishments and current state in deciphering reaction mechanisms for both natural and synthetic systems. Looking forward, there are still many challenges and opportunities at the frontier of catalytic research that will require further advancement of the characterization techniques.
Collapse
Affiliation(s)
- Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junko Yano
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Luo CM, Ke LF, Huang XY, Zhuang XY, Guo ZW, Xiao Q, Chen J, Chen FQ, Yang QM, Ru Y, Weng HF, Xiao AF, Zhang YH. Efficient biosynthesis of prunin in methanol cosolvent system by an organic solvent-tolerant α-L-rhamnosidase from Spirochaeta thermophila. Enzyme Microb Technol 2024; 175:110410. [PMID: 38340378 DOI: 10.1016/j.enzmictec.2024.110410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Prunin of desirable bioactivity and bioavailability can be transformed from plant-derived naringin by the key enzyme α-L-rhamnosidase. However, the production was limited by unsatisfactory properties of α-L-rhamnosidase such as thermostability and organic solvent tolerance. In this study, biochemical characteristics, and hydrolysis capacity of a novel α-L-rhamnosidase from Spirochaeta thermophila (St-Rha) were investigated, which was the first characterized α-L-rhamnosidase for Spirochaeta genus. St-Rha showed a higher substrate specificity towards naringin and exhibited excellent thermostability and methanol tolerance. The Km of St-Rha in the methanol cosolvent system was decreased 7.2-fold comparing that in the aqueous phase system, while kcat/Km value of St-Rha was enhanced 9.3-fold. Meanwhile, a preliminary conformational study was implemented through comparative molecular dynamics simulation analysis to explore the mechanism underlying the methanol tolerance of St-Rha for the first time. Furthermore, the catalytic ability of St-Rha for prunin preparation in the 20% methanol cosolvent system was explored, and 200 g/L naringin was transformed into 125.5 g/L prunin for 24 h reaction with a corresponding space-time yield of 5.2 g/L/h. These results indicated that St-Rha was a novel α-L-rhamnosidase suitable for hydrolyzing naringin in the methanol cosolvent system and provided a better alternative for improving the efficient production yield of prunin.
Collapse
Affiliation(s)
- Chen-Mu Luo
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Li-Fan Ke
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiang-Yu Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiao-Yan Zhuang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Ze-Wang Guo
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Qiong Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Jun Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Fu-Quan Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Qiu-Ming Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Yi Ru
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Hui-Fen Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - An-Feng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China.
| | - Yong-Hui Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China.
| |
Collapse
|
10
|
Zinovjev K, Guénon P, Ramos-Guzmán CA, Ruiz-Pernía JJ, Laage D, Tuñón I. Activation and friction in enzymatic loop opening and closing dynamics. Nat Commun 2024; 15:2490. [PMID: 38509080 PMCID: PMC10955111 DOI: 10.1038/s41467-024-46723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Protein loop dynamics have recently been recognized as central to enzymatic activity, specificity and stability. However, the factors controlling loop opening and closing kinetics have remained elusive. Here, we combine molecular dynamics simulations with string-method determination of complex reaction coordinates to elucidate the molecular mechanism and rate-limiting step for WPD-loop dynamics in the PTP1B enzyme. While protein conformational dynamics is often represented as diffusive motion hindered by solvent viscosity and internal friction, we demonstrate that loop opening and closing is activated. It is governed by torsional rearrangement around a single loop peptide group and by significant friction caused by backbone adjustments, which can dynamically trap the loop. Considering both torsional barrier and time-dependent friction, our calculated rate constants exhibit very good agreement with experimental measurements, reproducing the change in loop opening kinetics between proteins. Furthermore, we demonstrate the applicability of our results to other enzymatic loops, including the M20 DHFR loop, thereby offering prospects for loop engineering potentially leading to enhanced designs.
Collapse
Affiliation(s)
- Kirill Zinovjev
- Departamento de Química Física, Universidad de Valencia, 46100, Burjasot, Spain
| | - Paul Guénon
- Departamento de Química Física, Universidad de Valencia, 46100, Burjasot, Spain
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Carlos A Ramos-Guzmán
- Departamento de Química Física, Universidad de Valencia, 46100, Burjasot, Spain
- Instituto de Materiales Avanzados, Universidad Jaume I, 12071, Castelló, Spain
| | | | - Damien Laage
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Iñaki Tuñón
- Departamento de Química Física, Universidad de Valencia, 46100, Burjasot, Spain.
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
11
|
Khusainov G, Standfuss J, Weinert T. The time revolution in macromolecular crystallography. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:020901. [PMID: 38616866 PMCID: PMC11015943 DOI: 10.1063/4.0000247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Macromolecular crystallography has historically provided the atomic structures of proteins fundamental to cellular functions. However, the advent of cryo-electron microscopy for structure determination of large and increasingly smaller and flexible proteins signaled a paradigm shift in structural biology. The extensive structural and sequence data from crystallography and advanced sequencing techniques have been pivotal for training computational models for accurate structure prediction, unveiling the general fold of most proteins. Here, we present a perspective on the rise of time-resolved crystallography as the new frontier of macromolecular structure determination. We trace the evolution from the pioneering time-resolved crystallography methods to modern serial crystallography, highlighting the synergy between rapid detection technologies and state-of-the-art x-ray sources. These innovations are redefining our exploration of protein dynamics, with high-resolution crystallography uniquely positioned to elucidate rapid dynamic processes at ambient temperatures, thus deepening our understanding of protein functionality. We propose that the integration of dynamic structural data with machine learning advancements will unlock predictive capabilities for protein kinetics, revolutionizing dynamics like macromolecular crystallography revolutionized structural biology.
Collapse
Affiliation(s)
- Georgii Khusainov
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Joerg Standfuss
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| |
Collapse
|
12
|
Bennett AL, Edwards R, Kosheleva I, Saunders C, Bililign Y, Williams A, Bubphamala P, Manosouri K, Anasti K, Saunders KO, Alam SM, Haynes BF, Acharya P, Henderson R. Microsecond dynamics control the HIV-1 Envelope conformation. SCIENCE ADVANCES 2024; 10:eadj0396. [PMID: 38306419 PMCID: PMC10836732 DOI: 10.1126/sciadv.adj0396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
The HIV-1 Envelope (Env) glycoprotein facilitates host cell fusion through a complex series of receptor-induced structural changes. Although remarkable progress has been made in understanding the structures of various Env conformations, microsecond timescale dynamics have not been studied experimentally. Here, we used time-resolved, temperature-jump small-angle x-ray scattering to monitor structural rearrangements in an HIV-1 Env SOSIP ectodomain construct with microsecond precision. In two distinct Env variants, we detected a transition that correlated with known Env structure rearrangements with a time constant in the hundreds of microseconds range. A previously unknown structural transition was also observed, which occurred with a time constant below 10 μs, and involved an order-to-disorder transition in the trimer apex. Using this information, we engineered an Env SOSIP construct that locks the trimer in the prefusion closed state by connecting adjacent protomers via disulfides. Our findings show that the microsecond timescale structural dynamics play an essential role in controlling the Env conformation with impacts on vaccine design.
Collapse
Affiliation(s)
- Ashley L. Bennett
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Robert Edwards
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Irina Kosheleva
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Ave, Bld 434B, Lemont, IL 60439, USA
| | - Carrie Saunders
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Yishak Bililign
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Ashliegh Williams
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Pimthada Bubphamala
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Katayoun Manosouri
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Ave, Bld 434B, Lemont, IL 60439, USA
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Rory Henderson
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
13
|
Henning RW, Kosheleva I, Šrajer V, Kim IS, Zoellner E, Ranganathan R. BioCARS: Synchrotron facility for probing structural dynamics of biological macromolecules. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:014301. [PMID: 38304444 PMCID: PMC10834067 DOI: 10.1063/4.0000238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
A major goal in biomedical science is to move beyond static images of proteins and other biological macromolecules to the internal dynamics underlying their function. This level of study is necessary to understand how these molecules work and to engineer new functions and modulators of function. Stemming from a visionary commitment to this problem by Keith Moffat decades ago, a community of structural biologists has now enabled a set of x-ray scattering technologies for observing intramolecular dynamics in biological macromolecules at atomic resolution and over the broad range of timescales over which motions are functionally relevant. Many of these techniques are provided by BioCARS, a cutting-edge synchrotron radiation facility built under Moffat leadership and located at the Advanced Photon Source at Argonne National Laboratory. BioCARS enables experimental studies of molecular dynamics with time resolutions spanning from 100 ps to seconds and provides both time-resolved x-ray crystallography and small- and wide-angle x-ray scattering. Structural changes can be initiated by several methods-UV/Vis pumping with tunable picosecond and nanosecond laser pulses, substrate diffusion, and global perturbations, such as electric field and temperature jumps. Studies of dynamics typically involve subtle perturbations to molecular structures, requiring specialized computational techniques for data processing and interpretation. In this review, we present the challenges in experimental macromolecular dynamics and describe the current state of experimental capabilities at this facility. As Moffat imagined years ago, BioCARS is now positioned to catalyze the scientific community to make fundamental advances in understanding proteins and other complex biological macromolecules.
Collapse
Affiliation(s)
- Robert W. Henning
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - Irina Kosheleva
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - Vukica Šrajer
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - In-Sik Kim
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - Eric Zoellner
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - Rama Ranganathan
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
14
|
Wolff AM, Nango E, Young ID, Brewster AS, Kubo M, Nomura T, Sugahara M, Owada S, Barad BA, Ito K, Bhowmick A, Carbajo S, Hino T, Holton JM, Im D, O'Riordan LJ, Tanaka T, Tanaka R, Sierra RG, Yumoto F, Tono K, Iwata S, Sauter NK, Fraser JS, Thompson MC. Mapping protein dynamics at high spatial resolution with temperature-jump X-ray crystallography. Nat Chem 2023; 15:1549-1558. [PMID: 37723259 PMCID: PMC10624634 DOI: 10.1038/s41557-023-01329-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/17/2023] [Indexed: 09/20/2023]
Abstract
Understanding and controlling protein motion at atomic resolution is a hallmark challenge for structural biologists and protein engineers because conformational dynamics are essential for complex functions such as enzyme catalysis and allosteric regulation. Time-resolved crystallography offers a window into protein motions, yet without a universal perturbation to initiate conformational changes the method has been limited in scope. Here we couple a solvent-based temperature jump with time-resolved crystallography to visualize structural motions in lysozyme, a dynamic enzyme. We observed widespread atomic vibrations on the nanosecond timescale, which evolve on the submillisecond timescale into localized structural fluctuations that are coupled to the active site. An orthogonal perturbation to the enzyme, inhibitor binding, altered these dynamics by blocking key motions that allow energy to dissipate from vibrations into functional movements linked to the catalytic cycle. Because temperature jump is a universal method for perturbing molecular motion, the method demonstrated here is broadly applicable for studying protein dynamics.
Collapse
Affiliation(s)
- Alexander M Wolff
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
| | - Eriko Nango
- RIKEN SPring-8 Center, Sayo-gun, Japan.
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Japan.
| | - Iris D Young
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aaron S Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Minoru Kubo
- RIKEN SPring-8 Center, Sayo-gun, Japan
- Department of Life Science, Graduate School of Science, University of Hyogo, Hyogo, Japan
| | - Takashi Nomura
- RIKEN SPring-8 Center, Sayo-gun, Japan
- Department of Life Science, Graduate School of Science, University of Hyogo, Hyogo, Japan
| | | | | | - Benjamin A Barad
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, San Diego, CA, USA
| | - Kazutaka Ito
- Laboratory for Drug Discovery, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni-shi, Japan
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sergio Carbajo
- SLAC National Accelerator Laboratory, Linac Coherent Light Source, Menlo Park, CA, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tomoya Hino
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - James M Holton
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Dohyun Im
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Japan
| | - Lee J O'Riordan
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tomoyuki Tanaka
- RIKEN SPring-8 Center, Sayo-gun, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, Sayo-gun, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Japan
| | - Raymond G Sierra
- SLAC National Accelerator Laboratory, Linac Coherent Light Source, Menlo Park, CA, USA
| | - Fumiaki Yumoto
- Structural Biology Research Center, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, Tsukuba, Japan
- Ginward Japan K.K., Tokyo, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, Sayo-gun, Japan
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - So Iwata
- RIKEN SPring-8 Center, Sayo-gun, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Japan
| | - Nicholas K Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Michael C Thompson
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA.
| |
Collapse
|
15
|
Visualization of protein motions using temperature-jump crystallography. Nat Chem 2023; 15:1497-1498. [PMID: 37723260 DOI: 10.1038/s41557-023-01331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
|
16
|
Bolik-Coulon N, Zachrdla M, Bouvignies G, Pelupessy P, Ferrage F. Comprehensive analysis of relaxation decays from high-resolution relaxometry. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 355:107555. [PMID: 37797558 DOI: 10.1016/j.jmr.2023.107555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023]
Abstract
Relaxometry consists in measuring relaxation rates over orders of magnitude of magnetic fields to probe motions of complex systems. High-resolution relaxometry (HRR) experiments can be performed on conventional high-field NMR magnets equipped with a sample shuttle. During the experiment, the sample shuttle transfers the sample between the high-field magnetic center and a chosen position in the stray field for relaxation during a variable delay, thus using the stray field as a variable field. As the relaxation delay occurs outside of the probe, HRR experiments cannot rely on the control of cross-relaxation pathways, which is standard in high-field relaxation pulse sequences. Thus, decay rates are not pure relaxation rates, which may impair a reliable description of the dynamics. Previously, we took into account cross-relaxation effects in the analysis of high-resolution relaxometry data by applying a correction factor to relaxometry decay rates in order to estimate relaxation rates. These correction factors were obtained from the iterative simulation of the relaxation decay while the sample lies outside of the probe and a preceding analysis of relaxation rates which relies on the approximation of a priori multi-exponential decays by mono-exponential functions. However, an analysis protocol matching directly experimental and simulated relaxometry decays should be more self consistent and more generally applicable as it can accommodate deviations from mono-exponential decays. Here, we introduce Matching INtensities for the Optimization of Timescales and Amplitudes of motions Under Relaxometry (MINOTAUR), a framework for the analysis of high-resolution relaxometry that takes as input the intensity decays at all fields. This approach uses the full relaxation matrix to calculate intensity decays, allowing complex relaxation pathways to be taken into account. Therefore, it eliminates the need for a correction of decay rates and for fitting multi-exponential decays with mono-exponential functions. The MINOTAUR software is designed as a flexible framework where relaxation matrices and spectral density functions corresponding to various models of motions can be defined on a case-by-case basis. The agreement with our previous analyses of protein side-chain dynamics from carbon-13 relaxation is excellent, while providing a more robust analysis tool. We expect MINOTAUR to become the tool of choice for the analysis of high-resolution relaxometry.
Collapse
Affiliation(s)
- Nicolas Bolik-Coulon
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France.
| | - Milan Zachrdla
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Guillaume Bouvignies
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Philippe Pelupessy
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Fabien Ferrage
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France.
| |
Collapse
|
17
|
Pounot K, Schirò G, Levantino M. Tracking the structural dynamics of proteins with time-resolved X-ray solution scattering. Curr Opin Struct Biol 2023; 82:102661. [PMID: 37536065 DOI: 10.1016/j.sbi.2023.102661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/03/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023]
Abstract
Relevant events during protein function such as ligand binding/release and interaction with substrates or with light are often accompanied by out-of-equilibrium structural dynamics. Time-resolved experimental techniques have been developed to follow protein structural changes as they happen in real time after a given reaction-triggering event. Time-resolved X-ray solution scattering is a promising approach that bears structural sensitivity with temporal resolution in the femto-to-millisecond time range, depending on the X-ray source characteristics and the triggering method. Here we present the basic principles of the technique together with a description of the most relevant results recently published and a discussion on the computational methods currently developed to achieve a structural interpretation of the time-resolved X-ray solution scattering experimental data.
Collapse
Affiliation(s)
- Kevin Pounot
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
| | - Giorgio Schirò
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France.
| | - Matteo Levantino
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France.
| |
Collapse
|
18
|
Aldama LA, Dalton KM, Hekstra DR. Correcting systematic errors in diffraction data with modern scaling algorithms. Acta Crystallogr D Struct Biol 2023; 79:796-805. [PMID: 37584427 PMCID: PMC10478637 DOI: 10.1107/s2059798323005776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/30/2023] [Indexed: 08/17/2023] Open
Abstract
X-ray diffraction enables the routine determination of the atomic structure of materials. Key to its success are data-processing algorithms that allow experimenters to determine the electron density of a sample from its diffraction pattern. Scaling, the estimation and correction of systematic errors in diffraction intensities, is an essential step in this process. These errors arise from sample heterogeneity, radiation damage, instrument limitations and other aspects of the experiment. New X-ray sources and sample-delivery methods, along with new experiments focused on changes in structure as a function of perturbations, have led to new demands on scaling algorithms. Classically, scaling algorithms use least-squares optimization to fit a model of common error sources to the observed diffraction intensities to force these intensities onto the same empirical scale. Recently, an alternative approach has been demonstrated which uses a Bayesian optimization method, variational inference, to simultaneously infer merged data along with corrections, or scale factors, for the systematic errors. Owing to its flexibility, this approach proves to be advantageous in certain scenarios. This perspective briefly reviews the history of scaling algorithms and contrasts them with variational inference. Finally, appropriate use cases are identified for the first such algorithm, Careless, guidance is offered on its use and some speculations are made about future variational scaling methods.
Collapse
Affiliation(s)
- Luis A. Aldama
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
- Biophysics Graduate Program, Harvard University, Cambridge, Massachusetts, USA
| | - Kevin M. Dalton
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Doeke R. Hekstra
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Abstract
A survey of protein databases indicates that the majority of enzymes exist in oligomeric forms, with about half of those found in the UniProt database being homodimeric. Understanding why many enzymes are in their dimeric form is imperative. Recent developments in experimental and computational techniques have allowed for a deeper comprehension of the cooperative interactions between the subunits of dimeric enzymes. This review aims to succinctly summarize these recent advancements by providing an overview of experimental and theoretical methods, as well as an understanding of cooperativity in substrate binding and the molecular mechanisms of cooperative catalysis within homodimeric enzymes. Focus is set upon the beneficial effects of dimerization and cooperative catalysis. These advancements not only provide essential case studies and theoretical support for comprehending dimeric enzyme catalysis but also serve as a foundation for designing highly efficient catalysts, such as dimeric organic catalysts. Moreover, these developments have significant implications for drug design, as exemplified by Paxlovid, which was designed for the homodimeric main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Ke-Wei Chen
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
20
|
Makita H, Zhang M, Yano J, Kern J. Room temperature crystallography and X-ray spectroscopy of metalloenzymes. Methods Enzymol 2023; 688:307-348. [PMID: 37748830 PMCID: PMC10799221 DOI: 10.1016/bs.mie.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The ultrashort (10s of femtoseconds) X-ray pulses generated by X-ray free electron lasers enable the measurement of X-ray diffraction and spectroscopic data from radiation-sensitive metalloenzymes at room temperature while mostly avoiding the effects of radiation damage usually encountered when performing such experiments at synchrotron sources. Here we discuss an approach to measure both X-ray emission and X-ray crystallographic data at the same time from the same sample volume. The droplet-on-tape setup described allows for efficient sample use and the integration of different reaction triggering options in order to conduct time-resolved studies with limited sample amounts. The approach is illustrated by two examples, photosystem II that catalyzes the light-driven oxidation of water to oxygen, and isopenicillin N synthase, an enzyme that catalyzes the double ring cyclization of a tripeptide precursor into the β-lactam isopenicillin and can be activated by oxygen exposure. We describe the necessary steps to obtain microcrystals of both proteins as well as the operation procedure for the drop-on-tape setup and details of the data acquisition and processing involved in this experiment. At the end, we present how the combination of time-resolved X-ray emission spectra and diffraction data can be used to improve the knowledge about the enzyme reaction mechanism.
Collapse
Affiliation(s)
- Hiroki Makita
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Miao Zhang
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
21
|
Thompson MC. Combining temperature perturbations with X-ray crystallography to study dynamic macromolecules: A thorough discussion of experimental methods. Methods Enzymol 2023; 688:255-305. [PMID: 37748829 DOI: 10.1016/bs.mie.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Temperature is an important state variable that governs the behavior of microscopic systems, yet crystallographers rarely exploit temperature changes to study the structure and dynamics of biological macromolecules. In fact, approximately 90% of crystal structures in the Protein Data Bank were determined under cryogenic conditions, because sample cryocooling makes crystals robust to X-ray radiation damage and facilitates data collection. On the other hand, cryocooling can introduce artifacts into macromolecular structures, and can suppress conformational dynamics that are critical for function. Fortunately, recent advances in X-ray detector technology, X-ray sources, and computational data processing algorithms make non-cryogenic X-ray crystallography easier and more broadly applicable than ever before. Without the reliance on cryocooling, high-resolution crystallography can be combined with various temperature perturbations to gain deep insight into the conformational landscapes of macromolecules. This Chapter reviews the historical reasons for the prevalence of cryocooling in macromolecular crystallography, and discusses its potential drawbacks. Next, the Chapter summarizes technological developments and methodologies that facilitate non-cryogenic crystallography experiments. Finally, the chapter discusses the theoretical underpinnings and practical aspects of multi-temperature and temperature-jump crystallography experiments, which are powerful tools for understanding the relationship between the structure, dynamics, and function of proteins and other biological macromolecules.
Collapse
Affiliation(s)
- Michael C Thompson
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, United States.
| |
Collapse
|
22
|
Couture N, Cui W, Lippl M, Ostic R, Fandio DJJ, Yalavarthi EK, Vishnuradhan A, Gamouras A, Joly NY, Ménard JM. Single-pulse terahertz spectroscopy monitoring sub-millisecond time dynamics at a rate of 50 kHz. Nat Commun 2023; 14:2595. [PMID: 37147407 PMCID: PMC10163249 DOI: 10.1038/s41467-023-38354-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
Slow motion movies allow us to see intricate details of the mechanical dynamics of complex phenomena. If the images in each frame are replaced by terahertz (THz) waves, such movies can monitor low-energy resonances and reveal fast structural or chemical transitions. Here, we combine THz spectroscopy as a non-invasive optical probe with a real-time monitoring technique to demonstrate the ability to resolve non-reproducible phenomena at 50k frames per second, extracting each of the generated THz waveforms every 20 μs. The concept, based on a photonic time-stretch technique to achieve unprecedented data acquisition speeds, is demonstrated by monitoring sub-millisecond dynamics of hot carriers injected in silicon by successive resonant pulses as a saturation density is established. Our experimental configuration will play a crucial role in revealing fast irreversible physical and chemical processes at THz frequencies with microsecond resolution to enable new applications in fundamental research as well as in industry.
Collapse
Affiliation(s)
- Nicolas Couture
- Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
- Max Planck Centre for Extreme and Quantum Photonics, Ottawa, ON, K1N 6N5, Canada.
| | - Wei Cui
- Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- Max Planck Centre for Extreme and Quantum Photonics, Ottawa, ON, K1N 6N5, Canada
| | - Markus Lippl
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Department of Physics, University of Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Rachel Ostic
- Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- Max Planck Centre for Extreme and Quantum Photonics, Ottawa, ON, K1N 6N5, Canada
| | - Défi Junior Jubgang Fandio
- Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- Max Planck Centre for Extreme and Quantum Photonics, Ottawa, ON, K1N 6N5, Canada
| | - Eeswar Kumar Yalavarthi
- Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- Max Planck Centre for Extreme and Quantum Photonics, Ottawa, ON, K1N 6N5, Canada
| | - Aswin Vishnuradhan
- Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- Max Planck Centre for Extreme and Quantum Photonics, Ottawa, ON, K1N 6N5, Canada
| | - Angela Gamouras
- Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Nicolas Y Joly
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Department of Physics, University of Erlangen-Nürnberg, 91058, Erlangen, Germany
- Interdisciplinary Center for Nanostructured Films, 91058, Erlangen, Germany
| | - Jean-Michel Ménard
- Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
- Max Planck Centre for Extreme and Quantum Photonics, Ottawa, ON, K1N 6N5, Canada.
- National Research Council Canada, Ottawa, ON, K1A 0R6, Canada.
| |
Collapse
|
23
|
Zielinski KA, Katz AM, Calvey GD, Pabit SA, Milano SK, Aplin C, San Emeterio J, Cerione RA, Pollack L. Chaotic advection mixer for capturing transient states of diverse biological macromolecular systems with time-resolved small-angle X-ray scattering. IUCRJ 2023; 10:363-375. [PMID: 37144817 PMCID: PMC10161774 DOI: 10.1107/s2052252523003482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
Advances in time-resolved structural techniques, mainly in macromolecular crystallography and small-angle X-ray scattering (SAXS), allow for a detailed view of the dynamics of biological macromolecules and reactions between binding partners. Of particular promise, are mix-and-inject techniques, which offer a wide range of experimental possibility as microfluidic mixers are used to rapidly combine two species just prior to data collection. Most mix-and-inject approaches rely on diffusive mixers, which have been effectively used within crystallography and SAXS for a variety of systems, but their success is dependent on a specific set of conditions to facilitate fast diffusion for mixing. The use of a new chaotic advection mixer designed for microfluidic applications helps to further broaden the types of systems compatible with time-resolved mixing experiments. The chaotic advection mixer can create ultra-thin, alternating layers of liquid, enabling faster diffusion so that even more slowly diffusing molecules, like proteins or nucleic acids, can achieve fast mixing on timescales relevant to biological reactions. This mixer was first used in UV-vis absorbance and SAXS experiments with systems of a variety of molecular weights, and thus diffusion speeds. Careful effort was also dedicated to making a loop-loading sample-delivery system that consumes as little sample as possible, enabling the study of precious, laboratory-purified samples. The combination of the versatile mixer with low sample consumption opens the door to many new applications for mix-and-inject studies.
Collapse
Affiliation(s)
- Kara A. Zielinski
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York USA
| | - Andrea M. Katz
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York USA
| | - George D. Calvey
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York USA
| | - Suzette A. Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York USA
| | - Shawn K. Milano
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York USA
| | - Cody Aplin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York USA
| | - Josue San Emeterio
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York USA
| | - Richard A. Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York USA
- Department of Molecular Medicine, Cornell University, Ithaca, New York USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York USA
| |
Collapse
|
24
|
Kosheleva I, Henning R, Kim I, Kim SO, Kusel M, Srajer V. Sample-minimizing co-flow cell for time-resolved pump-probe X-ray solution scattering. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:490-499. [PMID: 36891863 PMCID: PMC10000795 DOI: 10.1107/s1600577522012127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/22/2022] [Indexed: 06/10/2023]
Abstract
A fundamental problem in biological sciences is understanding how macromolecular machines work and how the structural changes of a molecule are connected to its function. Time-resolved techniques are vital in this regard and essential for understanding the structural dynamics of biomolecules. Time-resolved small- and wide-angle X-ray solution scattering has the capability to provide a multitude of information about the kinetics and global structural changes of molecules under their physiological conditions. However, standard protocols for such time-resolved measurements often require significant amounts of sample, which frequently render time-resolved measurements impossible. A cytometry-type sheath co-flow cell, developed at the BioCARS 14-ID beamline at the Advanced Photon Source, USA, allows time-resolved pump-probe X-ray solution scattering measurements to be conducted with sample consumption reduced by more than ten times compared with standard sample cells and protocols. The comparative capabilities of the standard and co-flow experimental setups were demonstrated by studying time-resolved signals in photoactive yellow protein.
Collapse
Affiliation(s)
- Irina Kosheleva
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Ave, Bld 434B, Lemont, IL 60439, USA
| | - Robert Henning
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Ave, Bld 434B, Lemont, IL 60439, USA
| | - Insik Kim
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Ave, Bld 434B, Lemont, IL 60439, USA
| | - Seong Ok Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, E6-6 #513, 291 Daehak-ro, Daejeon, Yuseong-gu 34141, Republic of Korea
| | - Michael Kusel
- Kusel Design, 12 Coghlan Street, Niddrie, Wurundjeri Country 3042, Australia
| | - Vukica Srajer
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Ave, Bld 434B, Lemont, IL 60439, USA
| |
Collapse
|
25
|
Chan AM, Nijhawan AK, Hsu DJ, Leshchev D, Rimmerman D, Kosheleva I, Kohlstedt KL, Chen LX. The Role of Transient Intermediate Structures in the Unfolding of the Trp-Cage Fast-Folding Protein: Generating Ensembles from Time-Resolved X-ray Solution Scattering with Genetic Algorithms. J Phys Chem Lett 2023; 14:1133-1139. [PMID: 36705525 PMCID: PMC10167713 DOI: 10.1021/acs.jpclett.2c03680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The Trp-cage miniprotein is one of the smallest systems to exhibit a stable secondary structure and fast-folding dynamics, serving as an apt model system to study transient intermediates with both experimental and computational analyses. Previous spectroscopic characterizations that have been done on Trp-cage have inferred a single stable intermediate on a pathway from folded to unfolded basins. We aim to bridge the understanding of Trp-cage structural folding dynamics on microsecond-time scales, by utilizing time-resolved X-ray solution scattering to probe the temperature-induced unfolding pathway. Our results indicate the formation of a conformationally extended intermediate on the time scale of 1 μs, which undergoes complete unfolding within 5 μs. We further investigated the atomistic structural details of the unfolding pathway using a genetic algorithm to generate ensemble model fits to the scattering profiles. This analysis paves the way for direct benchmarking of theoretical models of protein folding ensembles produced with molecular dynamics simulations.
Collapse
Affiliation(s)
- Arnold M Chan
- Department of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Adam K Nijhawan
- Department of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Darren J Hsu
- Department of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Denis Leshchev
- Department of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Dolev Rimmerman
- Department of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois60637, United States
| | - Kevin L Kohlstedt
- Department of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| |
Collapse
|
26
|
Mehrabi P, Schulz EC. Sample Preparation for Time-Resolved Serial Crystallography: Practical Considerations. Methods Mol Biol 2023; 2652:361-379. [PMID: 37093487 DOI: 10.1007/978-1-0716-3147-8_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Time-resolved serial crystallography is an emerging method to elucidate the structure-function relationship of biomolecular systems at up to atomic resolution. However, to make this demanding method a success, a number of experimental requirements have to be met. In this chapter, we summarize general guidelines and protocols towards performing time-resolved crystallography experiments, with a particular emphasis on sample requirements and preparation but also a brief excursion into reaction initiation.
Collapse
Affiliation(s)
- Pedram Mehrabi
- Institute for Nanostructure and Solid State Physics, Universität Hamburg, Hamburg, Germany.
- Max Planck Institute for Structure and Dynamics of Matter, Hamburg, Germany.
| | - Eike C Schulz
- Max Planck Institute for Structure and Dynamics of Matter, Hamburg, Germany.
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
27
|
Sun Y, Li X, Chen R, Liu F, Wei S. Recent advances in structural characterization of biomacromolecules in foods via small-angle X-ray scattering. Front Nutr 2022; 9:1039762. [PMID: 36466419 PMCID: PMC9714470 DOI: 10.3389/fnut.2022.1039762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/03/2022] [Indexed: 08/04/2023] Open
Abstract
Small-angle X-ray scattering (SAXS) is a method for examining the solution structure, oligomeric state, conformational changes, and flexibility of biomacromolecules at a scale ranging from a few Angstroms to hundreds of nanometers. Wide time scales ranging from real time (milliseconds) to minutes can be also covered by SAXS. With many advantages, SAXS has been extensively used, it is widely used in the structural characterization of biomacromolecules in food science and technology. However, the application of SAXS in charactering the structure of food biomacromolecules has not been reviewed so far. In the current review, the principle, theoretical calculations and modeling programs are summarized, technical advances in the experimental setups and corresponding applications of in situ capabilities: combination of chromatography, time-resolved, temperature, pressure, flow-through are elaborated. Recent applications of SAXS for monitoring structural properties of biomacromolecules in food including protein, carbohydrate and lipid are also highlighted, and limitations and prospects for developing SAXS based on facility upgraded and artificial intelligence to study the structural properties of biomacromolecules are finally discussed. Future research should focus on extending machine time, simplifying SAXS data treatment, optimizing modeling methods in order to achieve an integrated structural biology based on SAXS as a practical tool for investigating the structure-function relationship of biomacromolecules in food industry.
Collapse
Affiliation(s)
- Yang Sun
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Xiujuan Li
- Pharmaceutical Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Ruixin Chen
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Fei Liu
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Song Wei
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| |
Collapse
|
28
|
Prabhu GRD, Yang TH, Shiu RT, Witek HA, Urban PL. Scanning pH-metry for Observing Reversibility in Protein Folding. Biochemistry 2022; 61:2377-2389. [PMID: 36251331 DOI: 10.1021/acs.biochem.2c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One of the main factors affecting protein structure in solution is pH. Traditionally, to study pH-dependent conformational changes in proteins, the concentration of the H+ ions is adjusted manually, complicating real-time analyses, hampering dynamic pH regulation, and consequently leading to a limited number of tested pH levels. Here, we present a programmable device, a scanning pH-meter, that can automatically generate different types of pH ramps and waveforms in a solution. A feedback loop algorithm calculates the required flow rates of the acid/base titrants, allowing one, for example, to generate periodic pH sine waveforms to study the reversibility of protein folding by fluorescence spectroscopy. Interestingly, for some proteins, the fluorescence intensity profiles recorded in such a periodically oscillating pH environment display hysteretic behavior indicating an asymmetry in the sequence of the protein unfolding/refolding events, which can most likely be attributed to their distinct kinetics. Another useful application of the scanning pH-meter concerns coupling it with an electrospray ionization mass spectrometer to observe pH-induced structural changes in proteins as revealed by their varying charge-state distributions. We anticipate a broad range of applications of the scanning pH-meter developed here, including protein folding studies, determination of the optimum pH for achieving maximum fluorescence intensity, and characterization of fluorescent dyes and other synthetic materials.
Collapse
Affiliation(s)
- Gurpur Rakesh D Prabhu
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Road, Hsinchu300044, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu300093, Taiwan
| | - Tzu-Hsin Yang
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Road, Hsinchu300044, Taiwan
| | - Ruei-Tzung Shiu
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Road, Hsinchu300044, Taiwan
| | - Henryk A Witek
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu300093, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Road, Hsinchu300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Sec 2, Kuang-Fu Road, Hsinchu300044, Taiwan
| |
Collapse
|
29
|
San Emeterio J, Pabit SA, Pollack L. Contrast variation SAXS: Sample preparation protocols, experimental procedures, and data analysis. Methods Enzymol 2022; 677:41-83. [PMID: 36410957 PMCID: PMC10015503 DOI: 10.1016/bs.mie.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proteins and nucleic acids, alone and in complex are among the essential building blocks of living organisms. Obtaining a molecular level understanding of their structures, and the changes that occur as they interact, is critical for expanding our knowledge of life processes or disease progression. Here, we motivate and describe an application of solution small angle X-ray scattering (SAXS) which provides valuable information about the structures, ensembles, compositions and dynamics of protein-nucleic acid complexes in solution, in equilibrium and time-resolved studies. Contrast variation (CV-) SAXS permits the visualization of the distinct molecular constituents (protein and/or nucleic acid) within a complex. CV-SAXS can be implemented in two modes. In the simplest, the protein within the complex is effectively rendered invisible by the addition of an inert contrast agent at an appropriate concentration. Under these conditions, the structure, or structural changes of only the nucleic acid component of the complex can be studied in detail. The second mode permits observation of both components of the complex: the protein and the nucleic acid. This approach requires the acquisition of SAXS profiles on the complex at different concentrations of a contrast agent. Here, we review CV-SAXS as applied to protein-nucleic acid complexes in both modes. We provide some theoretical framework for CV-SAXS but focus primarily on providing the necessary information required to implement a successful experiment including experimental design, sample quality assessment, and data analysis.
Collapse
Affiliation(s)
- Josue San Emeterio
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | - Suzette A Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
30
|
Malla TN, Schmidt M. Transient state measurements on proteins by time-resolved crystallography. Curr Opin Struct Biol 2022; 74:102376. [DOI: 10.1016/j.sbi.2022.102376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022]
|
31
|
Abstract
Temperature impacts biological systems across all length and timescales. Cells and the enzymes that comprise them respond to temperature fluctuations on short timescales, and temperature can affect protein folding, the molecular composition of cells, and volume expansion. Entire ecosystems exhibit temperature-dependent behaviors, and global warming threatens to disrupt thermal homeostasis in microbes that are important for human and planetary health. Intriguingly, the growth rate of most species follows the Arrhenius law of equilibrium thermodynamics, with an activation energy similar to that of individual enzymes but with maximal growth rates and over temperature ranges that are species specific. In this review, we discuss how the temperature dependence of critical cellular processes, such as the central dogma and membrane fluidity, contributes to the temperature dependence of growth. We conclude with a discussion of adaptation to temperature shifts and the effects of temperature on evolution and on the properties of microbial ecosystems.
Collapse
Affiliation(s)
- Benjamin D Knapp
- Biophysics Program, Stanford University School of Medicine, Stanford, California, USA;
| | - Kerwyn Casey Huang
- Biophysics Program, Stanford University School of Medicine, Stanford, California, USA; .,Department of Bioengineering, Stanford University, Stanford, California, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA.,Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
32
|
Berntsson O, Terry AE, Plivelic TS. A setup for millisecond time-resolved X-ray solution scattering experiments at the CoSAXS beamline at the MAX IV Laboratory. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:555-562. [PMID: 35254321 PMCID: PMC8900842 DOI: 10.1107/s1600577522000996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The function of biomolecules is tightly linked to their structure, and changes therein. Time-resolved X-ray solution scattering has proven a powerful technique for interrogating structural changes and signal transduction in photoreceptor proteins. However, these only represent a small fraction of the biological macromolecules of interest. More recently, laser-induced temperature jumps have been introduced as a more general means of initiating structural changes in biomolecules. Here we present the development of a setup for millisecond time-resolved X-ray solution scattering experiments at the CoSAXS beamline, primarily using infrared laser light to trigger a temperature increase, and structural changes. We present results that highlight the characteristics of this setup along with data showing structural changes in lysozyme caused by a temperature jump. Further developments and applications of the setup are also discussed.
Collapse
Affiliation(s)
| | - Ann E. Terry
- MAX IV Laboratory, Lund University, Lund, Sweden
| | | |
Collapse
|
33
|
Potential of Time-Resolved Serial Femtosecond Crystallography Using High Repetition Rate XFEL Sources. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This perspective review describes emerging techniques and future opportunities for time-resolved serial femtosecond crystallography (TR-SFX) experiments using high repetition rate XFEL sources. High repetition rate sources are becoming more available with the European XFEL in operation and the recently upgraded LCLS-II will be available in the near future. One efficient use of these facilities for TR-SFX relies on pump–probe experiments using a laser to trigger a reaction of light-responsive proteins or mix-and-inject experiments for light-unresponsive proteins. With the view to widen the application of TR-SFX, the promising field of photocaged compounds is under development, which allows the very fast laser triggering of reactions that is no longer limited to naturally light-responsive samples. In addition to reaction triggering, a key concern when performing an SFX experiment is efficient sample usage, which is a main focus of new high repetition rate-compatible sample delivery methods.
Collapse
|
34
|
Cadet XF, Gelly JC, van Noord A, Cadet F, Acevedo-Rocha CG. Learning Strategies in Protein Directed Evolution. Methods Mol Biol 2022; 2461:225-275. [PMID: 35727454 DOI: 10.1007/978-1-0716-2152-3_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synthetic biology is a fast-evolving research field that combines biology and engineering principles to develop new biological systems for medical, pharmacological, and industrial applications. Synthetic biologists use iterative "design, build, test, and learn" cycles to efficiently engineer genetic systems that are reliable, reproducible, and predictable. Protein engineering by directed evolution can benefit from such a systematic engineering approach for various reasons. Learning can be carried out before starting, throughout or after finalizing a directed evolution project. Computational tools, bioinformatics, and scanning mutagenesis methods can be excellent starting points, while molecular dynamics simulations and other strategies can guide engineering efforts. Similarly, studying protein intermediates along evolutionary pathways offers fascinating insights into the molecular mechanisms shaped by evolution. The learning step of the cycle is not only crucial for proteins or enzymes that are not suitable for high-throughput screening or selection systems, but it is also valuable for any platform that can generate a large amount of data that can be aided by machine learning algorithms. The main challenge in protein engineering is to predict the effect of a single mutation on one functional parameter-to say nothing of several mutations on multiple parameters. This is largely due to nonadditive mutational interactions, known as epistatic effects-beneficial mutations present in a genetic background may not be beneficial in another genetic background. In this work, we provide an overview of experimental and computational strategies that can guide the user to learn protein function at different stages in a directed evolution project. We also discuss how epistatic effects can influence the success of directed evolution projects. Since machine learning is gaining momentum in protein engineering and the field is becoming more interdisciplinary thanks to collaboration between mathematicians, computational scientists, engineers, molecular biologists, and chemists, we provide a general workflow that familiarizes nonexperts with the basic concepts, dataset requirements, learning approaches, model capabilities and performance metrics of this intriguing area. Finally, we also provide some practical recommendations on how machine learning can harness epistatic effects for engineering proteins in an "outside-the-box" way.
Collapse
Affiliation(s)
- Xavier F Cadet
- PEACCEL, Artificial Intelligence Department, Paris, France
| | - Jean Christophe Gelly
- Laboratoire d'Excellence GR-Ex, Paris, France
- BIGR, DSIMB, UMR_S1134, INSERM, University of Paris & University of Reunion, Paris, France
| | | | - Frédéric Cadet
- Laboratoire d'Excellence GR-Ex, Paris, France
- BIGR, DSIMB, UMR_S1134, INSERM, University of Paris & University of Reunion, Paris, France
| | | |
Collapse
|
35
|
Sagar A, Bernadó P. Disentangling polydisperse biomolecular systems by Chemometrics decomposition of SAS data. Methods Enzymol 2022; 677:531-555. [DOI: 10.1016/bs.mie.2022.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Choi EH, Lee Y, Heo J, Ihee H. Reaction dynamics studied via femtosecond X-ray liquidography at X-ray free-electron lasers. Chem Sci 2022; 13:8457-8490. [PMID: 35974755 PMCID: PMC9337737 DOI: 10.1039/d2sc00502f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
X-ray free-electron lasers (XFELs) provide femtosecond X-ray pulses suitable for pump–probe time-resolved studies with a femtosecond time resolution. Since the advent of the first XFEL in 2009, recent years have witnessed a great number of applications with various pump–probe techniques at XFELs. Among these, time-resolved X-ray liquidography (TRXL) is a powerful method for visualizing structural dynamics in the liquid solution phase. Here, we classify various chemical and biological molecular systems studied via femtosecond TRXL (fs-TRXL) at XFELs, depending on the focus of the studied process, into (i) bond cleavage and formation, (ii) charge distribution and electron transfer, (iii) orientational dynamics, (iv) solvation dynamics, (v) coherent nuclear wavepacket dynamics, and (vi) protein structural dynamics, and provide a brief review on each category. We also lay out a plausible roadmap for future fs-TRXL studies for areas that have not been explored yet. Femtosecond X-ray liquidography using X-ray free-electron lasers (XFELs) visualizes various aspects of reaction dynamics.![]()
Collapse
Affiliation(s)
- Eun Hyuk Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Yunbeom Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jun Heo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
37
|
Jian Y, Han Y, Fu Z, Xia M, Jiang G, Lu D, Wu J, Liu Z. The role of conformational dynamics on the activity of polymer-conjugated CalB in organic solvents. Phys Chem Chem Phys 2022; 24:22028-22037. [DOI: 10.1039/d2cp02208g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A perennial interest in enzyme catalysis has been expanding its applicability from aqueous phase where enzymes are naturally evolved to organic solvents in which the majority of industrial chemical synthesis...
Collapse
|
38
|
Orädd F, Ravishankar H, Goodman J, Rogne P, Backman L, Duelli A, Nors Pedersen M, Levantino M, Wulff M, Wolf-Watz M, Andersson M. Tracking the ATP-binding response in adenylate kinase in real time. SCIENCE ADVANCES 2021; 7:eabi5514. [PMID: 34788091 PMCID: PMC8597995 DOI: 10.1126/sciadv.abi5514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/27/2021] [Indexed: 05/25/2023]
Abstract
The biological function of proteins is critically dependent on dynamics inherent to the native structure. Such structural dynamics obey a predefined order and temporal timing to execute the specific reaction. Determination of the cooperativity of key structural rearrangements requires monitoring protein reactions in real time. In this work, we used time-resolved x-ray solution scattering (TR-XSS) to visualize structural changes in the Escherichia coli adenylate kinase (AdK) enzyme upon laser-induced activation of a protected ATP substrate. A 4.3-ms transient intermediate showed partial closing of both the ATP- and AMP-binding domains, which indicates a cooperative closing mechanism. The ATP-binding domain also showed local unfolding and breaking of an Arg131-Asp146 salt bridge. Nuclear magnetic resonance spectroscopy data identified similar unfolding in an Arg131Ala AdK mutant, which refolded in a closed, substrate-binding conformation. The observed structural dynamics agree with a “cracking mechanism” proposed to underlie global structural transformation, such as allostery, in proteins.
Collapse
Affiliation(s)
- Fredrik Orädd
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| | - Harsha Ravishankar
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| | - Jack Goodman
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| | - Per Rogne
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| | - Lars Backman
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| | - Annette Duelli
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Martin Nors Pedersen
- ESRF—The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble, Cedex 9, France
| | - Matteo Levantino
- ESRF—The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble, Cedex 9, France
| | - Michael Wulff
- ESRF—The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble, Cedex 9, France
| | - Magnus Wolf-Watz
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| | - Magnus Andersson
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| |
Collapse
|
39
|
Nijhawan AK, Chan AM, Hsu DJ, Chen LX, Kohlstedt KL. Resolving Dynamics in the Ensemble: Finding Paths through Intermediate States and Disordered Protein Structures. J Phys Chem B 2021; 125:12401-12412. [PMID: 34748336 PMCID: PMC9096987 DOI: 10.1021/acs.jpcb.1c05820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteins have been found to inhabit a diverse set of three-dimensional structures. The dynamics that govern protein interconversion between structures happen over a wide range of time scales─picoseconds to seconds. Our understanding of protein functions and dynamics is largely reliant upon our ability to elucidate physically populated structures. From an experimental structural characterization perspective, we are often limited to measuring the ensemble-averaged structure both in the steady-state and time-resolved regimes. Generating kinetic models and understanding protein structure-function relationships require atomistic knowledge of the populated states in the ensemble. In this Perspective, we present ensemble refinement methodologies that integrate time-resolved experimental signals with molecular dynamics models. We first discuss integration of experimental structural restraints to molecular models in disordered protein systems that adhere to the principle of maximum entropy for creating a complete set of ensemble structures. We then propose strategies to find kinetic pathways between the refined structures, using time-resolved inputs to guide molecular dynamics trajectories and the use of inference to generate tailored stimuli to prepare a desired ensemble of protein states.
Collapse
Affiliation(s)
- Adam K Nijhawan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Arnold M Chan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Darren J Hsu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Kevin L Kohlstedt
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
40
|
Almohammedi A, Shaban M, Mostafa H, Rabia M. Nanoporous TiN/TiO 2/Alumina Membrane for Photoelectrochemical Hydrogen Production from Sewage Water. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2617. [PMID: 34685061 PMCID: PMC8540468 DOI: 10.3390/nano11102617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022]
Abstract
An aluminum oxide, Al2O3, template is prepared using a novel Ni imprinting method with high hexagonal pore accuracy and order. The pore diameter after the widening process is about 320 nm. TiO2 layer is deposited inside the template using atomic layer deposition (ALD) followed by the deposition of 6 nm TiN thin film over the TiO2 using a direct current (DC) sputtering unit. The prepared nanotubular TiN/TiO2/Al2O3 was fully characterized using different analytical tools such as X-ray diffraction (XRD), Energy-dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM), and optical UV-Vis spectroscopy. Exploring the current-voltage relationships under different light intensities, wavelengths, and temperatures was used to investigate the electrode's application before and after Au coating for H2 production from sewage water splitting without the use of any sacrificing agents. All thermodynamic parameters were determined, as well as quantum efficiency (QE) and incident photon to current conversion efficiency (IPCE). The QE was 0.25% and 0.34% at 400 mW·cm-2 for the photoelectrode before and after Au coating, respectively. Also, the activation energy was 27.22 and 18.84 kJ·mol-1, the enthalpy was 24.26 and 15.77 J·mol-1, and the entropy was 238.1 and 211.5 kJ-1·mol-1 before and after Au coating, respectively. Because of its high stability and low cost, the prepared photoelectrode may be suitable for industrial applications.
Collapse
Affiliation(s)
- Abdullah Almohammedi
- Department of Physics, Faculty of Science, Islamic University in Madinah, Al-Madinah Al-Munawarah 42351, Saudi Arabia;
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University in Madinah, Al-Madinah Al-Munawarah 42351, Saudi Arabia;
| | - Huda Mostafa
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (H.M.); (M.R.)
| | - Mohamed Rabia
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (H.M.); (M.R.)
- Polymer Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
41
|
Cho HS, Schotte F, Stadnytskyi V, Anfinrud P. Time-resolved X-ray scattering studies of proteins. Curr Opin Struct Biol 2021; 70:99-107. [PMID: 34175665 PMCID: PMC8530917 DOI: 10.1016/j.sbi.2021.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 11/24/2022]
Abstract
Time-resolved small- and wide-angle X-ray scattering studies of proteins in solution based on the pump-probe approach unveil structural information from intermediates over a broad range of length and time scales. In spite of the promise of this methodology, only a fraction of the wealth of information encoded in scattering data has been extracted in studies performed thus far. Here, we discuss the methodology, summarize results from recent time-resolved X-ray scattering studies, and examine the potential to extract additional information from these scattering curves.
Collapse
Affiliation(s)
- Hyun Sun Cho
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Friedrich Schotte
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Valentyn Stadnytskyi
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Philip Anfinrud
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
42
|
Monteiro DCF, Amoah E, Rogers C, Pearson AR. Using photocaging for fast time-resolved structural biology studies. Acta Crystallogr D Struct Biol 2021; 77:1218-1232. [PMID: 34605426 PMCID: PMC8489231 DOI: 10.1107/s2059798321008809] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Careful selection of photocaging approaches is critical to achieve fast and well synchronized reaction initiation and perform successful time-resolved structural biology experiments. This review summarizes the best characterized and most relevant photocaging groups previously described in the literature. It also provides a walkthrough of the essential factors to consider in designing a suitable photocaged molecule to address specific biological questions, focusing on photocaging groups with well characterized spectroscopic properties. The relationships between decay rates (k in s-1), quantum yields (ϕ) and molar extinction coefficients (ϵmax in M-1 cm-1) are highlighted for different groups. The effects of the nature of the photocaged group on these properties is also discussed. Four main photocaging scaffolds are presented in detail, o-nitrobenzyls, p-hydroxyphenyls, coumarinyls and nitrodibenzofuranyls, along with three examples of the use of this technology. Furthermore, a subset of specialty photocages are highlighted: photoacids, molecular photoswitches and metal-containing photocages. These extend the range of photocaging approaches by, for example, controlling pH or generating conformationally locked molecules.
Collapse
Affiliation(s)
- Diana C. F. Monteiro
- Hauptman–Woodward Medical Research Institute, 700 Ellicot Street, Buffalo, NY 14203, USA
| | - Emmanuel Amoah
- Hauptman–Woodward Medical Research Institute, 700 Ellicot Street, Buffalo, NY 14203, USA
| | - Cromarte Rogers
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Arwen R. Pearson
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
43
|
Brändén G, Neutze R. Advances and challenges in time-resolved macromolecular crystallography. Science 2021; 373:373/6558/eaba0954. [PMID: 34446579 DOI: 10.1126/science.aba0954] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Conformational changes within biological macromolecules control a vast array of chemical reactions in living cells. Time-resolved crystallography can reveal time-dependent structural changes that occur within protein crystals, yielding chemical insights in unparalleled detail. Serial crystallography approaches developed at x-ray free-electron lasers are now routinely used for time-resolved diffraction studies of macromolecules. These techniques are increasingly being applied at synchrotron radiation sources and to a growing diversity of macromolecules. Here, we review recent progress in the field, including visualizing ultrafast structural changes that guide the initial trajectories of light-driven reactions as well as capturing biologically important conformational changes on slower time scales, for which bacteriorhodopsin and photosystem II are presented as illustrative case studies.
Collapse
Affiliation(s)
- Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
44
|
Miton CM, Buda K, Tokuriki N. Epistasis and intramolecular networks in protein evolution. Curr Opin Struct Biol 2021; 69:160-168. [PMID: 34077895 DOI: 10.1016/j.sbi.2021.04.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 12/01/2022]
Abstract
Proteins are molecular machines composed of complex, highly connected amino acid networks. Their functional optimization requires the reorganization of these intramolecular networks by evolution. In this review, we discuss the mechanisms by which epistasis, that is, the dependence of the effect of a mutation on the genetic background, rewires intramolecular interactions to alter protein function. Deciphering the biophysical basis of epistasis is crucial to our understanding of evolutionary dynamics and the elucidation of sequence-structure-function relationships. We featured recent studies that provide insights into the molecular mechanisms giving rise to epistasis, particularly at the structural level. These studies illustrate the convoluted and fascinating nature of the intramolecular networks co-opted by epistasis during the evolution of protein function.
Collapse
Affiliation(s)
- Charlotte M Miton
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| | - Karol Buda
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada.
| |
Collapse
|
45
|
Jakob LA, Beyer B, Janeiro Ferreira C, Lingg N, Jungbauer A, Tscheließnig R. Protein-protein interactions and reduced excluded volume increase dynamic binding capacity of dual salt systems in hydrophobic interaction chromatography. J Chromatogr A 2021; 1649:462231. [PMID: 34038776 DOI: 10.1016/j.chroma.2021.462231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Deploying two salts in hydrophobic interaction chromatography can significantly increase dynamic binding capacities. Nevertheless, the mechanistic understanding of this phenomenon is lacking. Here, we investigate whether surface tension or ionic strength govern dynamic binding capacities of the chromatographic resin Toyopearl Butyl-650 M in dual salt systems. Small-angle X-ray scattering was employed to analyze the model proteins and the protein-resin adduct in the respective dual salt systems. The dual salt systems incorporate sodium citrate and a secondary sodium salt (acetate, sulfate, or phosphate). As model proteins, we used lysozyme, GFP, and a monoclonal antibody (adalimumab). Moreover, for the protein-resin adduct, we determined the model parameters of a self-avoiding random walk model fitted into the pair density distribution function of the SAXS data. Ionic strength is more predictive for dynamic binding capacities in HIC dual salt systems than surface tension. However, dynamic binding capacities still differ by up to 30 % between the investigated dual salt systems. The proteins exhibit extensive protein-protein interactions in the studied dual salt HIC buffers. We found a correlation of protein-protein interactions with the well-known Hofmeister series. For systems with elevated protein-protein interactions, adsorption isotherms deviate from Langmuirian behavior. This highlights the importance of lateral protein-protein interactions in protein adsorption, where monomolecular protein layers are usually assumed. SAXS analysis of the protein-resin adduct indicates an inverse correlation of the binding capacity and the excluded volume parameter. This is indicative of the deposition of proteins in the cavities of the stationary phase. We hypothesize that increasing protein-protein interactions allow the formation of attractive clusters and multilayers in the cavities, respectively.
Collapse
Affiliation(s)
- Leo A Jakob
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190, Austria
| | - Beate Beyer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190, Austria; Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna A-1190, Austria
| | | | - Nico Lingg
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190, Austria; Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna A-1190, Austria
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190, Austria; Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna A-1190, Austria.
| | - Rupert Tscheließnig
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190, Austria
| |
Collapse
|
46
|
Poddar H, Heyes DJ, Schirò G, Weik M, Leys D, Scrutton NS. A guide to time-resolved structural analysis of light-activated proteins. FEBS J 2021; 289:576-595. [PMID: 33864718 DOI: 10.1111/febs.15880] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 01/08/2023]
Abstract
Dynamical changes in protein structures are essential for protein function and occur over femtoseconds to seconds timescales. X-ray free electron lasers have facilitated investigations of structural dynamics in proteins with unprecedented temporal and spatial resolution. Light-activated proteins are attractive targets for time-resolved structural studies, as the reaction chemistry and associated protein structural changes can be triggered by short laser pulses. Proteins with different light-absorbing centres have evolved to detect light and harness photon energy to bring about downstream chemical and biological output responses. Following light absorption, rapid chemical/small-scale structural changes are typically localised around the chromophore. These localised changes are followed by larger structural changes propagated throughout the photoreceptor/photocatalyst that enables the desired chemical and/or biological output response. Time-resolved serial femtosecond crystallography (SFX) and solution scattering techniques enable direct visualisation of early chemical change in light-activated proteins on timescales previously inaccessible, whereas scattering gives access to slower timescales associated with more global structural change. Here, we review how advances in time-resolved SFX and solution scattering techniques have uncovered mechanisms of photochemistry and its coupling to output responses. We also provide a prospective on how these time-resolved structural approaches might impact on other photoreceptors/photoenzymes that have not yet been studied by these methods.
Collapse
Affiliation(s)
- Harshwardhan Poddar
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| | - Derren J Heyes
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| | - Giorgio Schirò
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Martin Weik
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - David Leys
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| |
Collapse
|
47
|
Hsu DJ, Leshchev D, Kosheleva I, Kohlstedt KL, Chen LX. Unfolding bovine α-lactalbumin with T-jump: Characterizing disordered intermediates via time-resolved x-ray solution scattering and molecular dynamics simulations. J Chem Phys 2021; 154:105101. [PMID: 33722011 PMCID: PMC7943248 DOI: 10.1063/5.0039194] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
The protein folding process often proceeds through partially folded transient states. Therefore, a structural understanding of these disordered states is crucial for developing mechanistic models of the folding process. Characterization of unfolded states remains challenging due to their disordered nature, and incorporating multiple methods is necessary. Combining the time-resolved x-ray solution scattering (TRXSS) signal with molecular dynamics (MD), we are able to characterize transient partially folded states of bovine α-lactalbumin, a model system widely used for investigation of molten globule states, during its unfolding triggered by a temperature jump. We track the unfolding process between 20 µs and 70 ms and demonstrate that it passes through three distinct kinetic states. The scattering signals associated with these transient species are then analyzed with TRXSS constrained MD simulations to produce protein structures that are compatible with the input signals. Without utilizing any experimentally extracted kinetic information, the constrained MD simulation successfully drove the protein to an intermediate molten globule state; signals for two later disordered states are refined to terminal unfolded states. From our examination of the structural characteristics of these disordered states, we discuss the implications disordered states have on the folding process, especially on the folding pathway. Finally, we discuss the potential applications and limitations of this method.
Collapse
Affiliation(s)
- Darren J. Hsu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Denis Leshchev
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kevin L. Kohlstedt
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Lin X. Chen
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
48
|
Meisburger SP, Xu D, Ando N. REGALS: a general method to deconvolve X-ray scattering data from evolving mixtures. IUCRJ 2021; 8:225-237. [PMID: 33708400 PMCID: PMC7924237 DOI: 10.1107/s2052252521000555] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/14/2021] [Indexed: 06/10/2023]
Abstract
Mixtures of biological macromolecules are inherently difficult to study using structural methods, as increasing complexity presents new challenges for data analysis. Recently, there has been growing interest in studying evolving mixtures using small-angle X-ray scattering (SAXS) in conjunction with time-resolved, high-throughput or chromatography-coupled setups. Deconvolution and interpretation of the resulting datasets, however, are nontrivial when neither the scattering components nor the way in which they evolve are known a priori. To address this issue, the REGALS method (regularized alternating least squares) is introduced, which incorporates simple expectations about the data as prior knowledge, and utilizes parameterization and regularization to provide robust deconvolution solutions. The restraints used by REGALS are general properties such as smoothness of profiles and maximum dimensions of species, making it well suited for exploring datasets with unknown species. Here, REGALS is applied to the analysis of experimental data from four types of SAXS experiment: anion-exchange (AEX) coupled SAXS, ligand titration, time-resolved mixing and time-resolved temperature jump. Based on its performance with these challenging datasets, it is anticipated that REGALS will be a valuable addition to the SAXS analysis toolkit and enable new experiments. The software is implemented in both MATLAB and Python and is available freely as an open-source software package.
Collapse
Affiliation(s)
- Steve P. Meisburger
- Department of Chemistry and Chemical Biology, Cornell University, 259 East Avenue, Ithaca, NY 14853, USA
| | - Da Xu
- Department of Chemistry and Chemical Biology, Cornell University, 259 East Avenue, Ithaca, NY 14853, USA
| | - Nozomi Ando
- Department of Chemistry and Chemical Biology, Cornell University, 259 East Avenue, Ithaca, NY 14853, USA
| |
Collapse
|
49
|
Li WL, Head-Gordon T. Catalytic Principles from Natural Enzymes and Translational Design Strategies for Synthetic Catalysts. ACS CENTRAL SCIENCE 2021; 7:72-80. [PMID: 33532570 PMCID: PMC7844850 DOI: 10.1021/acscentsci.0c01556] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Indexed: 05/19/2023]
Abstract
As biocatalysts, enzymes are characterized by their high catalytic efficiency and strong specificity but are relatively fragile by requiring narrow and specific reactive conditions for activity. Synthetic catalysts offer an opportunity for more chemical versatility operating over a wider range of conditions but currently do not reach the remarkable performance of natural enzymes. Here we consider some new design strategies based on the contributions of nonlocal electric fields and thermodynamic fluctuations to both improve the catalytic step and turnover for rate acceleration in arbitrary synthetic catalysts through bioinspired studies of natural enzymes. With a focus on the enzyme as a whole catalytic construct, we illustrate the translational impact of natural enzyme principles to synthetic enzymes, supramolecular capsules, and electrocatalytic surfaces.
Collapse
Affiliation(s)
- Wan-Lu Li
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Department of Chemical and Biomolecular Engineering, and Department of
Bioengineering, University of California
Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
50
|
Dynamic Structural Biology Experiments at XFEL or Synchrotron Sources. Methods Mol Biol 2021; 2305:203-228. [PMID: 33950392 DOI: 10.1007/978-1-0716-1406-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Macromolecular crystallography (MX) leverages the methods of physics and the language of chemistry to reveal fundamental insights into biology. Often beautifully artistic images present MX results to support profound functional hypotheses that are vital to entire life science research community. Over the past several decades, synchrotrons around the world have been the workhorses for X-ray diffraction data collection at many highly automated beamlines. The newest tools include X-ray-free electron lasers (XFELs) located at facilities in the USA, Japan, Korea, Switzerland, and Germany that deliver about nine orders of magnitude higher brightness in discrete femtosecond long pulses. At each of these facilities, new serial femtosecond crystallography (SFX) strategies exploit slurries of micron-size crystals by rapidly delivering individual crystals into the XFEL X-ray interaction region, from which one diffraction pattern is collected per crystal before it is destroyed by the intense X-ray pulse. Relatively simple adaptions to SFX methods produce time-resolved data collection strategies wherein reactions are triggered by visible light illumination or by chemical diffusion/mixing. Thus, XFELs provide new opportunities for high temporal and spatial resolution studies of systems engaged in function at physiological temperature. In this chapter, we summarize various issues related to microcrystal slurry preparation, sample delivery into the X-ray interaction region, and some emerging strategies for time-resolved SFX data collection.
Collapse
|