1
|
Roy S, Pramanik P, Bhattacharya S. Exploring the role of G-quadruplex DNA, and their structural polymorphism, in targeting small molecules for the design of anticancer therapeutics: Progress, challenges, and future directions. Biochimie 2025; 234:120-145. [PMID: 40250703 DOI: 10.1016/j.biochi.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Selective stabilization of non-canonical G-quadruplex DNA structures by small molecules can be a potential target for anticancer therapeutics. The primary motivation for the molecular design of these G-quadruplex binders is to restrict the transcriptional machinery, which can impede cancer cell progression. This review article comprises the structural diversity of different G-quadruplex DNA, the design strategy for targeting these structures with small molecules, and various G-quadruplex binding ligands which have been expanded by the chemists and biologists over the past few decades. Further, the existence of G-quadruplex structures inside human cells, the significant challenges for designing these selective G-quadruplex binding ligands, current status, and progress towards achieving this goal have also been discussed.
Collapse
Affiliation(s)
- Soma Roy
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India; School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Pulakesh Pramanik
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India; School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India; Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata, 700032, India; Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati, 517619, India.
| |
Collapse
|
2
|
Zhao X, Jiang S, Yan J, Bu L, Li G, Huang J. Photocaged fluorescent probes for spatiotemporally monitoring G-Quadruplex DNA in live cells. Bioorg Chem 2025; 160:108446. [PMID: 40209353 DOI: 10.1016/j.bioorg.2025.108446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/03/2025] [Accepted: 04/05/2025] [Indexed: 04/12/2025]
Abstract
G-quadruplexes (G4s) are important in biological processes such as gene transcription, telomere maintenance, and chromosome stability, and they hold promise as therapeutic targets in cancer research. Current G4 probes face challenges, including high background fluorescence, low regulation efficiency, and lack of spatiotemporal control. Photocaged technology offers precise temporal control and minimal background interference, making it a promising solution to these issues. Herein, we developed two photocaged G4 fluorescent probes, Nv-N-CQ and Nv-O-CQ, which use a photoremovable protecting group to block the fluorescence of coumarin-quinazoline (CQ) and its ability to bind to G4s. Upon UV light activation, Nv-O-CQ efficiently converted to CQ with minimal byproduct formation. It selectively bound to G4 structures, such as c-MYC, and enhanced their thermal stability. In cellular experiments, the probe demonstrated light-controlled fluorescence release and spatiotemporal specificity towards G4s in the cytoplasm. These findings highlight the potential of Nv-O-CQ for biological imaging, probe development, and spatiotemporal studies.
Collapse
Affiliation(s)
- Xuzi Zhao
- State Key Laboratory of Chemo and Biosensing, School of Biomedical Sciences, Hunan University, Changsha 410082, China; Affiliated Hospital of Hunan University/ Xiangtan Central Hospital, Xiangtan 411100, China
| | - Shan Jiang
- State Key Laboratory of Chemo and Biosensing, School of Biomedical Sciences, Hunan University, Changsha 410082, China; Affiliated Hospital of Hunan University/ Xiangtan Central Hospital, Xiangtan 411100, China
| | - Jiangyu Yan
- State Key Laboratory of Chemo and Biosensing, School of Biomedical Sciences, Hunan University, Changsha 410082, China; Affiliated Hospital of Hunan University/ Xiangtan Central Hospital, Xiangtan 411100, China
| | - Lingli Bu
- Henan Linker Technology Key Laboratory, College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, China
| | - Guorui Li
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China.
| | - Jing Huang
- State Key Laboratory of Chemo and Biosensing, School of Biomedical Sciences, Hunan University, Changsha 410082, China; Affiliated Hospital of Hunan University/ Xiangtan Central Hospital, Xiangtan 411100, China.
| |
Collapse
|
3
|
Karatayeva N, Hegedus L, Bhattacharjee A, Nemeth E, Poti A, Pongor L, Juhasz G, Szuts D, Burkovics P. The effect of prolonged G-quadruplex stabilization on the functions of human cells. Sci Rep 2025; 15:19699. [PMID: 40467867 PMCID: PMC12137815 DOI: 10.1038/s41598-025-04791-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 05/29/2025] [Indexed: 06/11/2025] Open
Abstract
Guanine-rich DNA sequences have a propensity to form G-quadruplex structures. These structures play several important biological roles and are potential targets for anticancer drugs. However, no G-quadruplex-stabilizing agent has yet been approved for clinical use. Given that G-quadruplex stabilization is quite promising as a mechanism for novel anticancer therapies, it is crucial to elucidate its effects on healthy human cells. In our study, we modeled a potential human treatment using G4 -stabilizing agents and analyzed their effects on genome integrity, transcriptomic changes, and mitochondrial function focusing on non-cancerous cells to predict potential side effects of such treatments. We found that G-quadruplex stabilization does not compromise genome integrity. However, it can induce persistent alterations in the transcriptomic profile of human cells, including genes encoded on the mitochondrial genome. Notably, certain G-quadruplex-stabilizing agents triggered mitophagy in both human cells and Drosophila melanogaster. In summary, our findings indicate that while G-quadruplex stabilization does not cause genome instability, it may pose potential risks due to its long-term effects on transcription and its ability to induce mitophagy. Therefore, we recommend that all potential drug candidates be thoroughly evaluated for their ability to induce mitophagy and to promote cancer formation in animal models prior to clinical trials.
Collapse
Affiliation(s)
- Nargis Karatayeva
- Institute of Genetics, HUN-REN, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Lili Hegedus
- Institute of Genetics, HUN-REN, Biological Research Centre, Szeged, Hungary
| | - Arindam Bhattacharjee
- Institute of Genetics, HUN-REN, Biological Research Centre, Szeged, Hungary
- Developmental Biology Group, Agharkar Research Institute, Pune, India
| | - Eszter Nemeth
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Adam Poti
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Lorinc Pongor
- Cancer Genomics and Epigenetics Core Group, Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary
| | - Gabor Juhasz
- Institute of Genetics, HUN-REN, Biological Research Centre, Szeged, Hungary
| | - David Szuts
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Peter Burkovics
- Institute of Genetics, HUN-REN, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
4
|
Wu Y, Lam JYL, Pitoulias M, Böken D, Zhang Z, Chintapalli R, Fertan E, Xia Z, Danial JSH, Tsang-Pells G, Fysh E, Julian L, Brindle KM, Mair R, Klenerman D. Detection of p53 aggregates in plasma of glioma patients. COMMUNICATIONS MEDICINE 2025; 5:195. [PMID: 40410530 PMCID: PMC12102397 DOI: 10.1038/s43856-025-00918-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 05/13/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND The tumour-suppressor protein p53 can form amyloid aggregates resulting in loss of tumour-suppressing functions and leading to tumour formation. The detection of p53 aggregates in cancer cells has been demonstrated but these aggregates have not been detected in liquid biopsies to date, due to the lack of sufficiently sensitive methods. METHODS We developed an ultrasensitive immunoassay based on the single-molecule array (SiMoA) technology to detect p53 aggregates in plasma, based on antibody capture of the aggregates. We confirmed that the assay detects p53 aggregates using super-resolution imaging. We then investigated the p53 aggregate concentrations in the plasma of 190 pre-surgery glioblastoma (GB) patients and 22 controls using this assay. RESULTS We found that the plasma p53 aggregate levels are significantly elevated in pre-surgery GB patients' plasma compared to controls. Longitudinal study further reveals that p53 aggregate levels may increase before GB recurrence and decrease following treatment. We also observed raised p53 aggregate concentrations in the plasma of cancer patients with brain metastases. CONCLUSIONS This study demonstrates the detection of p53 aggregates in liquid biopsies. Our findings highlight the potential of p53 aggregates as a novel biomarker for glioblastoma.
Collapse
Affiliation(s)
- Yunzhao Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Jeff Y L Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Matthaios Pitoulias
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Dorothea Böken
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Ziwei Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Renuka Chintapalli
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Emre Fertan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Zengjie Xia
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - John S H Danial
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Gemma Tsang-Pells
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Emily Fysh
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Linda Julian
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Richard Mair
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Ou YF, Chen S, Lei Q, Shen Y, Tang N, Zhou Y, Yin SF, Kambe N, Yuan L, Qiu R. Mechanism-Driven Bioactive Indazole Frameworks: Photoinitiated Demethylation-Aromatization Synthesis and Biosensing Applications. Angew Chem Int Ed Engl 2025:e202507163. [PMID: 40397525 DOI: 10.1002/anie.202507163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/15/2025] [Accepted: 05/19/2025] [Indexed: 05/23/2025]
Abstract
Indazole frameworks are pivotal in medicinal chemistry and fluorescent conjugate design. Herein, we reported a photochemical strategy enabling efficient N-demethylation and aromatic cyclization of N-methyl amines via UV-induced nitroso intermediates, offering an environmentally benign route to structurally diverse 2H-indazole scaffolds. Diverging from conventional methods, this protocol demonstrates exceptional substrate compatibility with various alkyl/aryl amines, facilitating streamlined assembly of functionalized 2H-indazole modules. The methodology has been successfully applied to synthesize modified drugs and tumor-specific fluorescent probes targeting G-quadruplexes. Preliminary evaluations of physiological toxicity and cellular fluorescence imaging highlight their biomedical potential, establishing these strategies as potential tools for pharmacological development and bioimaging research.
Collapse
Affiliation(s)
- Yi-Feng Ou
- State Key laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Songhua Chen
- State Key laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Qian Lei
- State Key laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Yang Shen
- State Key laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Niu Tang
- State Key laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Yongbo Zhou
- State Key laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Shuang-Feng Yin
- State Key laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Nobuaki Kambe
- State Key laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
| | - Lin Yuan
- State Key laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Renhua Qiu
- State Key laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| |
Collapse
|
6
|
Glover C, Fairbanks S, Robertson CC, Richard Keene F, Green NH, Thomas JA. An optical ratiometric approach using enantiopure luminescent metal complexes indicates changes in the average quadruplex DNA content as primary cells undergo multiple divisions. Dalton Trans 2025; 54:8241-8250. [PMID: 40100080 DOI: 10.1039/d4dt03238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The three stereoisomers of a previously reported dinuclear ruthenium(II) complex have been quantitatively separated using cation-exchange chromatography and the individual crystal structures of the racemic pair are reported. Cell-based studies on the three stereoisomers disclosed differences in the rate of uptake of the two chiral forms of the rac diastereoisomer with the ΛΛ-enantiomer being taken up noticeably more rapidly than the ΔΔ-form. Cell viability studies reveal that the three cations show identical cytotoxicity over 24 hours, but over more extended exposure periods, the meso-ΔΛ stereoisomer becomes slightly less active. More significantly, microscopy studies revealed that although both isomers display a near infra-red "light-switch" effect associated with binding to duplex DNA on binding to chromatin in live MCF7 and L5178-R cells, only the ΛΛ enantiomer displays a distinctive, blue-shifted component associated with binding to quadruplex DNA. An analysis of the ratio of "quadruplex emission" compared to "duplex emission" for the ΛΛ-enantiomer indicated that there was a decrease in the average quadruplex DNA content within live primary cells as they undergo multiple cell divisions.
Collapse
Affiliation(s)
- Caroline Glover
- Chemistry, School of Mathematics and, Physical Sciences, Dainton Building, University of Sheffield, Sheffield, S3 7HF, UK.
- School of Chemical, Materials and Biological Engineering, Sir Robert Hadfield Building, University of Sheffield, Sheffield, S1 3JD, UK
| | - Simon Fairbanks
- Chemistry, School of Mathematics and, Physical Sciences, Dainton Building, University of Sheffield, Sheffield, S3 7HF, UK.
| | - Craig C Robertson
- Chemistry, School of Mathematics and, Physical Sciences, Dainton Building, University of Sheffield, Sheffield, S3 7HF, UK.
| | - F Richard Keene
- Discipline of Chemistry, School of Chemistry, Physics & Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Nicola H Green
- School of Chemical, Materials and Biological Engineering, Sir Robert Hadfield Building, University of Sheffield, Sheffield, S1 3JD, UK
| | - Jim A Thomas
- Chemistry, School of Mathematics and, Physical Sciences, Dainton Building, University of Sheffield, Sheffield, S3 7HF, UK.
| |
Collapse
|
7
|
Li H, Jin Z, Gao S, Kuang S, Lei C, Nie Z. Precise detection of G-quadruplexs in living systems: principles, applications, and perspectives. Chem Sci 2025:d5sc00918a. [PMID: 40417301 PMCID: PMC12096178 DOI: 10.1039/d5sc00918a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025] Open
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acid secondary structures that play a crucial role in regulating essential cellular processes such as replication, transcription, and translation. The formation of G4s is dynamically controlled by the physiological state of the cell. Accurate detection of G4 structures in live cells, as well as studies of their dynamic changes and the kinetics of specific G4s, are essential for understanding their biological roles, exploring potential links between aberrant G4 expression and disease, and developing G4-targeted diagnostic and therapeutic strategies. This perspective briefly overviews G4 formation mechanisms and their known biological functions. We then summarize the leading techniques and methodologies available for G4 detection, discussing the principles and applications of each approach. In addition, we outline strategies for the global detection of intracellular G4s, methods for conformational recognition, and approaches for targeting specific sequences. Finally, we discuss the technical limitations and challenges currently facing the field of G4 detection and offer perspectives on potential future directions. We hope this review will inspire further research into the biological functions of G4s and their applications in disease diagnosis and therapy.
Collapse
Affiliation(s)
- Huanhuan Li
- State Key Laboratory of Chemo and Biosensing, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 People's Republic of China
| | - Zelong Jin
- State Key Laboratory of Chemo and Biosensing, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 People's Republic of China
| | - Shuxin Gao
- State Key Laboratory of Chemo and Biosensing, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 People's Republic of China
| | - Shi Kuang
- State Key Laboratory of Chemo and Biosensing, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 People's Republic of China
| | - Chunyang Lei
- State Key Laboratory of Chemo and Biosensing, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 People's Republic of China
| | - Zhou Nie
- State Key Laboratory of Chemo and Biosensing, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 People's Republic of China
| |
Collapse
|
8
|
Pal S, Dobson JF, Boström M. Attractive and repulsive terms in multi-filament dispersion interactions. Phys Chem Chem Phys 2025; 27:10291-10301. [PMID: 40314698 DOI: 10.1039/d5cp01117e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Filamentary objects such as nano-wires, nanotubes and DNA are of current interest in physics, nanoscience, chemistry, biology and medicine. They can interact via strong, exceptionally long-ranged many-object van der Waals (vdW, dispersion) forces, causing them to cluster into multi-object bundles. We analyse their vdW interactions perturbatively, predicting N-object vdW energy contributions that alternate in sign with increasing N. Our findings are confirmed here via the first detailed analysis of a 4-cylinder vdW model. We also provide novel insights permitting these tendencies to be understood simply in terms of electronic screening and anti-screening. Our results suggest that a non-perturbative calculation will be required for reliable prediction of dispersion interactions in these ubiquitous systems.
Collapse
Affiliation(s)
- Subhojit Pal
- Dipartimento di Fisica e Chimica, Emilio Segrè, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy.
| | - John F Dobson
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia.
| | - Mathias Boström
- Centre of Excellence ENSEMBLE3 Sp. z o. o., Wolczynska Str. 133, Warsaw, 01-919, Poland.
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| |
Collapse
|
9
|
Xu Y, Wang L, Du J, Shiu-Hin Chan D, Wu L, Jia M, Liu JB, Wong CY, Yang K, Leung CH, Wang W. A Bivalent Iridium(III) Complex Toolkit for Mitochondrial DNA G-Quadruplex-Targeted Theranostics. Chemistry 2025; 31:e202403853. [PMID: 40072230 DOI: 10.1002/chem.202403853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
The G-quadruplex (G4) is an important diagnostic and therapeutic target in cancers, but the development of theranostic probes for subcellular G4 s remains challenging. In this work, we report three G4-targeted theranostic probes by conjugating a pyridostatin-derived G4 ligand to G4-specific iridium(III) complexes with desirable photophysical properties. These probes showed specifically enhanced luminescence to mitochondrial G4 in triple-negative breast cancer (TNBC) cells. Of note, complex 3 exhibited NIR emission and the ability to discriminate TNBC cells and normal breast cells. Furthermore, these probes showed much higher PDT toxicity in TNBC cells through ROS-induced apoptosis, where complex 3 exhibited a type I/II hybrid PDT effect with the potential to overcome hypoxia. These results demonstrate that these complexes are multicolor and modular phototheranostic probes for DNA G4s. We believe that this work offers a multifunctional theranostic toolkit for unmasking subcellular DNA G-quadruplex functions.
Collapse
Affiliation(s)
- Yiwen Xu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, China
| | - Ling Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Jianxiong Du
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Daniel Shiu-Hin Chan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Lei Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Mengzhao Jia
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, China
| | - Jin-Biao Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Kai Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
10
|
Zhang X, Dhir S, Melidis L, Chen Y, Yu Z, Simeone A, Spiegel J, Adhikari S, Balasubramanian S. Optical control of gene expression using a DNA G-quadruplex targeting reversible photoswitch. Nat Chem 2025:10.1038/s41557-025-01792-1. [PMID: 40181150 DOI: 10.1038/s41557-025-01792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
Transcriptional regulation is a dynamic process that coordinates diverse cellular activities, and the use of small molecules to perturb gene expression has propelled our understanding of the fundamental regulatory mechanisms. However, small molecules typically lack the spatiotemporal precision required in highly non-invasive, controlled settings. Here we present the development of a cell-permeable small-molecule DNA G-quadruplex (G4) binder, termed G4switch, that can be reversibly toggled on and off by visible light. We have biophysically characterized the light-mediated control of G4 binding in vitro, followed by cellular, genomic mapping of G4switch to G4 targets in chromatin to confirm G4-selective, light-dependent binding in a cellular context. By deploying G4switch in living cells, we show spatiotemporal control over the expression of a set of G4-containing genes and G4-associated cell proliferation. Our studies demonstrate a chemical tool and approach to interrogate the dynamics of key biological processes directly at the molecular level in cells.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Somdutta Dhir
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Larry Melidis
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Yuqi Chen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Zutao Yu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Angela Simeone
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Jochen Spiegel
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Santosh Adhikari
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Shankar Balasubramanian
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK.
- School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Hashimoto Y, Shil S, Tsuruta M, Kawauchi K, Miyoshi D. Three- and four-stranded nucleic acid structures and their ligands. RSC Chem Biol 2025; 6:466-491. [PMID: 40007865 PMCID: PMC11848209 DOI: 10.1039/d4cb00287c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Nucleic acids have the potential to form not only duplexes, but also various non-canonical secondary structures in living cells. Non-canonical structures play regulatory functions mainly in the central dogma. Therefore, nucleic acid targeting molecules are potential novel therapeutic drugs that can target 'undruggable' proteins in various diseases. One of the concerns of small molecules targeting nucleic acids is selectivity, because nucleic acids have only four different building blocks. Three- and four-stranded non-canonical structures, triplexes and quadruplexes, respectively, are promising targets of small molecules because their three-dimensional structures are significantly different from the canonical duplexes, which are the most abundant in cells. Here, we describe some basic properties of the triplexes and quadruplexes and small molecules targeting the triplexes and tetraplexes.
Collapse
Affiliation(s)
- Yoshiki Hashimoto
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Sumit Shil
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Mitsuki Tsuruta
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Keiko Kawauchi
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Daisuke Miyoshi
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| |
Collapse
|
12
|
Fertan E, Lam JYL, Albertini G, Dewilde M, Wu Y, Akingbade OES, Böken D, English EA, De Strooper B, Klenerman D. Lecanemab preferentially binds to smaller aggregates present at early Alzheimer's disease. Alzheimers Dement 2025; 21:e70086. [PMID: 40237235 PMCID: PMC12001052 DOI: 10.1002/alz.70086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 04/18/2025]
Abstract
INTRODUCTION The monoclonal antibodies Aducanumab, Lecanemab, Gantenerumab, and Donanemab were developed for the treatment of Alzheimer's disease (AD). METHODS We used single-molecule detection and super-resolution imaging to characterize the binding of these antibodies to diffusible amyloid beta (Aβ) aggregates generated in-vitro and harvested from human brains. RESULTS Lecanemab showed the best performance in terms of binding to the small-diffusible Aβ aggregates, affinity, aggregate coating, and the ability to bind to post-translationally modified species, providing an explanation for its therapeutic success. We observed a Braak stage-dependent increase in small-diffusible aggregate quantity and size, which was detectable with Aducanumab and Gantenerumab, but not Lecanemab, showing that the diffusible Aβ aggregates change with disease progression and the smaller aggregates to which Lecanemab preferably binds exist at higher quantities during earlier stages. DISCUSSION These findings provide an explanation for the success of Lecanemab in clinical trials and suggests that Lecanemab will be more effective when used in early-stage AD. HIGHLIGHTS Anti amyloid beta therapeutics are compared by their diffusible aggregate binding characteristics. In-vitro and brain-derived aggregates are tested using single-molecule detection. Lecanemab shows therapeutic success by binding to aggregates formed in early disease. Lecanemab binds to these aggregates with high affinity and coats them better.
Collapse
Affiliation(s)
- Emre Fertan
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
- UK Dementia Research Institute at University of CambridgeCambridgeUK
| | - Jeff Y. L. Lam
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
- UK Dementia Research Institute at University of CambridgeCambridgeUK
- Division of Life Science, The Hong Kong University of Science and TechnologyHong Kong
| | - Giulia Albertini
- Department of NeurosciencesVIB‐KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
| | - Maarten Dewilde
- Laboraory for Therapeutic and Diagnostic AntibodiesKU LeuvenLeuvenBelgium
- The KU Leuven Antibody CentrePharmABSLeuvenBelgium
| | - Yunzhao Wu
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
- UK Dementia Research Institute at University of CambridgeCambridgeUK
| | - Oluwatomi E. S. Akingbade
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
- UK Dementia Research Institute at University of CambridgeCambridgeUK
| | - Dorothea Böken
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
- UK Dementia Research Institute at University of CambridgeCambridgeUK
| | - Elizabeth A. English
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
- UK Dementia Research Institute at University of CambridgeCambridgeUK
| | - Bart De Strooper
- Department of NeurosciencesVIB‐KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
- UK Dementia Research Institute at University College LondonLondonUK
| | - David Klenerman
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
- UK Dementia Research Institute at University of CambridgeCambridgeUK
| |
Collapse
|
13
|
Garabet A, Prislan I, Poklar Ulrih N, Wells JW, Chalikian TV. Conformational Propensities of a DNA Hairpin with a Stem Sequence from the c-MYC Promoter. Biomolecules 2025; 15:483. [PMID: 40305258 PMCID: PMC12024889 DOI: 10.3390/biom15040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
G-quadruplexes and i-motifs are four-stranded non-canonical structures of DNA. They exist in the cell, where they are implicated in the conformational regulation of cellular events, such as transcription, translation, DNA replication, telomere homeostasis, and genomic instability. Formation of the G-quadruplex and i-motif conformations in the genome is controlled by their competition with the pre-existing duplex. The fate of that competition depends upon the relative stabilities of the competing conformations, leading ultimately to a distribution of double helical, tetrahelical, and coiled conformations that coexist in dynamic equilibrium with each other. We previously developed a CD spectroscopy-based procedure to characterize the distribution of conformations adopted by equimolar mixtures of complementary G- and C-rich DNA strands from the promoter regions of the c-MYC, VEGF, and Bcl-2 oncogenes. In those bimolecular systems, duplex-to-tetraplex and duplex-to-coil transitions are accompanied by strand separation and an associated entropic cost. This situation is distinct from the pseudo-monomolecular nature of conformational transformations within the genome, where strand separation does not occur. To mimic better the situation in the genome, we here extend our studies to a monomolecular DNA construct-a hairpin-in which complementary G- and C-rich strands featuring sequences from the promoter region of the c-MYC oncogene are linked by a dT11 loop. We used our CD-based procedure to quantify the distribution of conformational states sampled by the hairpin at pH 5.0 and 7.0 as a function of temperature and the concentration of KCl. The data were analyzed according to a thermodynamic model based on equilibria between the different conformational states to evaluate the thermodynamic properties of the duplex-to-coil, G-quadruplex-to-coil, and i-motif-to-coil transitions of the hairpin. The results have implications for the modulation of such transitions as a means of therapeutic intervention.
Collapse
Affiliation(s)
- Arees Garabet
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada; (A.G.); (J.W.W.)
| | - Iztok Prislan
- Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (I.P.); (N.P.U.)
| | - Nataša Poklar Ulrih
- Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (I.P.); (N.P.U.)
| | - James W. Wells
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada; (A.G.); (J.W.W.)
| | - Tigran V. Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada; (A.G.); (J.W.W.)
| |
Collapse
|
14
|
Cueny R, Voter A, McKenzie A, Morgenstern M, Myers K, Place M, Peters J, Coon J, Keck J. Altering translation allows E. coli to overcome G-quadruplex stabilizers. Nucleic Acids Res 2025; 53:gkaf264. [PMID: 40193707 PMCID: PMC11975287 DOI: 10.1093/nar/gkaf264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/09/2025] Open
Abstract
G-quadruplex (G4) structures can form in guanine-rich DNA or RNA and have been found to modulate cellular processes, including replication, transcription, and translation. Many studies on the cellular roles of G4s have focused on eukaryotic systems, with far fewer probing bacterial G4s. Using a chemical-genetic approach, we identified genes in Escherichia coli that are important for growth in G4-stabilizing conditions. Reducing levels of translation elongation factor Tu or slowing translation initiation or elongation with kasugamycin, chloramphenicol, or spectinomycin suppress the effects of G4-stabilizing compounds. In contrast, reducing the expression of specific translation termination or ribosome recycling proteins is detrimental to growth in G4-stabilizing conditions. Proteomic and transcriptomic analyses reveal decreased protein and transcript levels, respectively, for ribosome assembly factors and proteins associated with translation in the presence of G4 stabilizer. Our results support a model in which reducing the rate of translation by altering translation initiation, translation elongation, or ribosome assembly can compensate for G4-related stress in E. coli.
Collapse
Affiliation(s)
- Rachel R Cueny
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706 United States
| | - Andrew F Voter
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706 United States
| | - Aidan M McKenzie
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706 United States
| | - Marcel Morgenstern
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706 United States
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI, 53706 United States
| | - Kevin S Myers
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726 United States
| | - Michael M Place
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726 United States
| | - Jason M Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53706 United States
| | - Joshua J Coon
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706 United States
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI, 53706 United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706 United States
- Morgridge Institute for Research, Madison, WI, 53715 United States
| | - James L Keck
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706 United States
| |
Collapse
|
15
|
Sahayasheela VJ, Ooga M, Kumagai T, Sugiyama H. Z-DNA at the crossroads: untangling its role in genome dynamics. Trends Biochem Sci 2025; 50:267-279. [PMID: 39875265 DOI: 10.1016/j.tibs.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
DNA can fold into noncanonical left-handed Z-DNA conformation beyond the right-handed B-DNA. While its crystal structure was discovered nearly four decades ago, it was predominantly considered a structural curiosity. Recent evidence suggests that Z-DNA formation occurs in nuclear and mitochondrial DNA (mtDNA), with significant biological implications. However, our understanding of its roles remains in its infancy, primarily due to a lack of study tools. In this review we summarize the structure and function of Z-DNA within the genome while addressing the difficulties associated with identifying and investigating its role(s). We then critically evaluate several intracellular factors that can modulate and regulate Z-DNA. Additionally, we discuss the recent technological and methodological advances that may overcome the challenges and enhance our understanding of Z-DNA.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan; Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo 160-8582, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiyacho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Mitsuharu Ooga
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Tomotaka Kumagai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiyacho, Sakyo-Ku, Kyoto 606-8501, Japan.
| |
Collapse
|
16
|
Barr J, Cadoni E, Schellinck S, Laudadio E, Martins JC, Madder A. Locking up G-Quadruplexes with Light-Triggered Staples Leads to Increased Topological, Thermodynamic, and Metabolic Stability. Angew Chem Int Ed Engl 2025; 64:e202420592. [PMID: 39585944 DOI: 10.1002/anie.202420592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
G-quadruplexes (G4 s) are secondary, tetraplexed DNA structures abundant in non-coding regions of the genome, implicated in gene transcription processes and currently firmly recognised as important potential therapeutic targets. Given their affinity for human proteins, G4 structures are investigated as potential decoys and aptamers. However, G4 s tend to adopt different conformations depending on the exact environmental conditions, and often only one displays the specifically desired biological activity. Their less intensively studied counterparts, the elusive tetraplexed intercalated-motifs (IMs) are typically unstable at neutral pH, hampering the investigation of their potential involvement in a biological context. We herein report on a photochemical method for "stapling" such tetraplexed-structures, to increase their stability, lock their topology and enhance their enzymatic resistance, while maintaining biological activity. The chemical structure and topology of the stapled Thrombin Binding Aptamer (TBA) was spectroscopically characterised and rationalised in silico. The method was then extended to other biologically relevant G4- and IM-prone sequences, hinting towards potential application of such stapled structures in a therapeutic context.
Collapse
Affiliation(s)
- Jack Barr
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000, Gent, Belgium
| | - Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000, Gent, Belgium
| | - Sofie Schellinck
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000, Gent, Belgium
| | - Emiliano Laudadio
- Department of Science and Engineering of Matter, Environment and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche 12, 60131, Ancona, Italy
| | - José C Martins
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000, Gent, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000, Gent, Belgium
| |
Collapse
|
17
|
Yan B, Suen MC, Xu N, Lu C, Liu C, Zhu G. G-Quadruplex Structures Formed by Human Telomere and C9orf72 GGGGCC Repeats. Int J Mol Sci 2025; 26:1591. [PMID: 40004056 PMCID: PMC11855686 DOI: 10.3390/ijms26041591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
G-quadruplexes (G4s) are unique nucleic acid structures composed of guanine-rich (G-rich) sequences that can form diverse topologies based on the arrangement of their four strands. G4s have attracted attention for their potential roles in various biological processes and human diseases. In this review, we focus on the G4 structures formed by human telomeric sequences, (GGGTTA)n, and the hexanucleotide repeat expansion, (GGGGCC)n, in the first intron region of the chromosome 9 open reading frame 72 (C9orf72) gene, highlighting their structural diversity and biological significance. Human telomeric G4s play crucial roles in telomere retention and gene regulation. In particular, we provide an in-depth summary of known telomeric G4s and focus on our recently discovered chair-type conformation, which exhibits distinct folding patterns. The chair-type G4s represent a novel folding pattern with unique characteristics, expanding our knowledge of telomeric G4 structural diversity and potential biological functions. Specifically, we emphasize the G4s formed by the (GGGGCC)n sequence of the C9orf72 gene, which represents the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The thorough structural analysis in this review advances our comprehension of the disease mechanism and provides valuable insights into developing targeted therapeutic strategies in ALS/FTD.
Collapse
Affiliation(s)
- Bing Yan
- State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; (B.Y.); (M.C.S.); (N.X.)
| | - Monica Ching Suen
- State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; (B.Y.); (M.C.S.); (N.X.)
| | - Naining Xu
- State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; (B.Y.); (M.C.S.); (N.X.)
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| | - Chao Lu
- Department of Chemistry, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China;
| | - Changdong Liu
- State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; (B.Y.); (M.C.S.); (N.X.)
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| | - Guang Zhu
- State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; (B.Y.); (M.C.S.); (N.X.)
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| |
Collapse
|
18
|
Guo XC, Shi DZ, Huang S, Zhang YH, Zhang WY, Chen J, Huang Z, Wu H, Hou JQ, Jin FJ, Chen XC, Wong WL, Lu YJ. PET Imaging of Solid Tumors with a G-Quadruplex-Targeting 18F-Labeled Peptide Probe. J Med Chem 2025; 68:2804-2814. [PMID: 39807685 DOI: 10.1021/acs.jmedchem.4c02121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Positron emission tomography (PET) is a common imaging technique and can provide accurate information about the size, shape, and location of tumors. Recent evidence has shown that G-quadruplex structures (G4s) are identified in human oncogenes, and these special structures are recognized as diagnostic cancer markers and drug targets for anticancer therapies. Although a number of techniques for in vivo imaging of G4s have been developed, achieving sufficient sensitivity and selectivity in vivo remains challenging. Herein, we have engineered and developed a radiolabeled peptide probe [18F]AlF-NOTA-RHAU18 targeting mitochondrial DNA G4s for in vivo PET imaging. The results of the study indicate that this probe is able to visualize and detect solid tumors in living homozygous mice. In addition, the distribution of the probe in cancer cells was investigated using FITC-RHAU18. This work may offer new insights into the development of cancer diagnostic tools by targeting in vivo G4s.
Collapse
Affiliation(s)
- Xiao-Chun Guo
- Guangdong Medicine-Engineering Interdisciplinary Technology Research Center, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Da-Zhi Shi
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shun Huang
- Department of Nuclear Medicine, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
| | - Yi-Han Zhang
- Guangdong Medicine-Engineering Interdisciplinary Technology Research Center, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wan-Ying Zhang
- Guangdong Medicine-Engineering Interdisciplinary Technology Research Center, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jing Chen
- Guangdong Medicine-Engineering Interdisciplinary Technology Research Center, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zebin Huang
- Guangdong Medicine-Engineering Interdisciplinary Technology Research Center, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Hubing Wu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jin-Qiang Hou
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
- Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario P7B 6 V4, Canada
| | - Fu-Jun Jin
- Guangdong Medicine-Engineering Interdisciplinary Technology Research Center, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiu-Cai Chen
- Guangdong Medicine-Engineering Interdisciplinary Technology Research Center, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Yu-Jing Lu
- Guangdong Medicine-Engineering Interdisciplinary Technology Research Center, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
19
|
Zou Y, Jin H, Ma Q, Zheng Z, Weng S, Kolataj K, Acuna G, Bald I, Garoli D. Advances and applications of dynamic surface-enhanced Raman spectroscopy (SERS) for single molecule studies. NANOSCALE 2025; 17:3656-3670. [PMID: 39745189 DOI: 10.1039/d4nr04239e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Dynamic surface-enhanced Raman spectroscopy (SERS) is nowadays one of the most interesting applications of SERS, in particular for single molecule studies. In fact, it enables the study of real-time processes at the molecular level. This review summarizes the latest developments in dynamic SERS techniques and their applications, focusing on new instrumentation, data analysis methods, temporal resolution and sensitivity improvements, and novel substrates. We highlight the progress and applications of single-molecule dynamic SERS in monitoring chemical reactions, catalysis, biomolecular interactions, conformational dynamics, and real-time sensing and detection. We aim to provide a comprehensive review on its advancements, applications as well as its current challenges and development frontiers.
Collapse
Affiliation(s)
- Yanqiu Zou
- College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Huaizhou Jin
- Key Laboratory of Quantum Precision Measurement, College of Physics, Zhejiang University of Technology, Hangzhou, China
| | - Qifei Ma
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| | - Zhenrong Zheng
- College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Shukun Weng
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Karol Kolataj
- Department of Physics, University of Fribourg, Fribourg CH 1700, Switzerland
| | - Guillermo Acuna
- Department of Physics, University of Fribourg, Fribourg CH 1700, Switzerland
| | - Ilko Bald
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Denis Garoli
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento di Scienze e metodi dell'ingegneria, Università degli Studi di Modena e Reggio Emilia, 42122 Reggio Emilia, Italy
| |
Collapse
|
20
|
Savitskaya VY, Novoselov KA, Dolinnaya NG, Monakhova MV, Snyga VG, Diatlova EA, Peskovatskova ES, Golyshev VM, Kitaeva MI, Eroshenko DA, Zvereva MI, Zharkov DO, Kubareva EA. Position-Dependent Effects of AP Sites Within an hTERT Promoter G-Quadruplex Scaffold on Quadruplex Stability and Repair Activity of the APE1 Enzyme. Int J Mol Sci 2025; 26:337. [PMID: 39796192 PMCID: PMC11720163 DOI: 10.3390/ijms26010337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025] Open
Abstract
Apurinic/apyrimidinic (AP) sites are endogenous DNA lesions widespread in human cells. Having no nucleobases, they are noncoding and promutagenic. AP site repair is generally initiated through strand incision by AP endonuclease 1 (APE1). Although AP sites' repair in regular B-DNA has been studied extensively, their processing in G-quadruplexes (G4s) has received much less attention. Here, we used the hTERT promoter region that is capable of forming three stacked parallel G4s to understand how AP sites can influence higher-order quadruplex folding and stability and how a G4 affects the efficiency of human APE1-mediated AP site processing. We designed a series of synthetic single- and double-stranded DNA constructs of varying lengths containing a stable AP site analog in both G- and C-rich strands at positions corresponding to somatic driver mutations. Using circular dichroism, we studied the effect of the AP site on hTERT G4 structure and stability. Bio-layer interferometry and gel-based approaches were employed to characterize APE1 binding to the designed DNA substrates and AP site processing. It was shown that (i) an AP site leads to G4 destabilization, which depends on the lesion location in the G4 scaffold; (ii) APE1 binds tightly to hTERT G4 structure but exhibits greatly reduced cleavage activity at AP sites embedded in the quadruplex; and (iii) a clear correlation was revealed between AP site-induced hTERT G4 destabilization and APE1 activity. We can hypothesize that reduced repair of AP sites in the hTERT G4 is one of the reasons for the high mutation rate in this promoter region.
Collapse
Affiliation(s)
- Viktoriia Yu. Savitskaya
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Kirill A. Novoselov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Nina G. Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Mayya V. Monakhova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Viktoriia G. Snyga
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Evgeniia A. Diatlova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.D.); (V.M.G.); (D.A.E.); (D.O.Z.)
| | - Elizaveta S. Peskovatskova
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Victor M. Golyshev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.D.); (V.M.G.); (D.A.E.); (D.O.Z.)
| | - Mariia I. Kitaeva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Daria A. Eroshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.D.); (V.M.G.); (D.A.E.); (D.O.Z.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Maria I. Zvereva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Dmitry O. Zharkov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.D.); (V.M.G.); (D.A.E.); (D.O.Z.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena A. Kubareva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
21
|
Sakamoto T. Live-Cell Imaging of RNA G-Quadruplex with a Dual-Color Fluorescence Switch-on Probe. Methods Mol Biol 2025; 2875:83-90. [PMID: 39535641 DOI: 10.1007/978-1-0716-4248-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In-cell imaging of the G-quadruplex (G4) formation of nucleic acids remains challenging for revealing G4's functions in cells. This study describes the cell imaging method of G4 nucleic acids using our unique tripodal quinone-cyanine fluorescent dye, QCy(MeBT)3, whose 600 nm and 700 nm fluorescence is enhanced independently upon the binding with double-stranded DNA and G4-DNA/RNA, respectively. The use of QCy(MeBT)3 enables us to visualize cytosolic G4 RNAs in fixed and living HeLa cells with near-infrared 700 nm fluorescence.
Collapse
Affiliation(s)
- Takashi Sakamoto
- Faculty of Systems Engineering, Graduate School of Systems Engineering, Wakayama University, Wakayama, Japan.
| |
Collapse
|
22
|
Kuang S, Han JN, Zhang J, Luo X, Nie Z. Direct Visualization of Hepatitis C Virus RNA in Living Cells and Mice. Methods Mol Biol 2025; 2875:125-143. [PMID: 39535645 DOI: 10.1007/978-1-0716-4248-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
RNA virus infection is a global health issue with a significant economic burden. Direct visualization of the viral RNA genome in living cells is crucial for virological research and early clinical diagnosis. Thus, the need to continue research to find imaging toolkits is urgent. The RNA G-quadruplex (G4), a noncanonical secondary structure with stacked planar G-quartets, has recently been demonstrated in the RNA genomes of various viruses, especially the hepatitis C virus (HCV). Recent advancements in small molecular fluorescent probes have paved the way for a novel method of visualizing RNA G4s. Herein, we describe a fluorogenic probe-based RNA G4s light-up system for visualizing the HCV genome in living host cells and HCV RNA-presenting mini-organ-bearing mice without complicated sample pretreatment. Using this approach, we achieved (i) the visualization of HCV RNA genome in living cells, (ii) the investigation of viral RNA subcellular distribution, (iii) the dynamic tracking of native HCV infection and propagation in the host cell, and (iv) the high-contrast HCV RNA imaging in living mice bearing the HCV RNA-presenting mini-organ.
Collapse
Affiliation(s)
- Shi Kuang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, China
| | - Jiao-Na Han
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, China
| | - Jiaheng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, China
| | - Xingyu Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, China.
| |
Collapse
|
23
|
Bradford T, Summers PA, Majid A, Sherin PS, Lam JYL, Aggarwal S, Vannier JB, Vilar R, Kuimova MK. Imaging G-Quadruplex Nucleic Acids in Live Cells Using Thioflavin T and Fluorescence Lifetime Imaging Microscopy. Anal Chem 2024; 96:20223-20229. [PMID: 39660854 DOI: 10.1021/acs.analchem.4c04207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Visualization of guanine-rich oligonucleotides that fold into G-quadruplex (G4) helical structures is of great interest in cell biology. There is a large body of evidence that suggests that these noncanonical structures form in vivo and play important biological roles. A promising recent development highlighted fluorescence lifetime imaging microscopy (FLIM) as a robust technique for the direct and quantitative imaging of G4s in live cells. However, this method requires specialized, bespoke synthetic dyes that are not widely available. Herein, we demonstrate that the fluorescence lifetime of commercially available environmentally sensitive dyes Thioflavin T (ThT) and Thiazole Orange (TO) is strongly dependent on the type of DNA topology they bind to, with G4s showing long and distinctive decay times that should allow G4 detection in the biological environment. We applied this observation to visualize G4s in live U2OS cells using FLIM of ThT, upon alteration in G4 levels due to competitive binding or nuclease treatment of cells.
Collapse
Affiliation(s)
- Tigerlily Bradford
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K
| | - Peter A Summers
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K
| | - Aatikah Majid
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K
| | - Petr S Sherin
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K
| | - Jeff Yui Long Lam
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K
| | - Savyasanchi Aggarwal
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K
| | - Jean-Baptiste Vannier
- Telomere Replication and Stability Group, MRC London Institute of Medical Sciences, London W12 0NN, U.K
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, U.K
| | - Ramon Vilar
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K
| | - Marina K Kuimova
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K
| |
Collapse
|
24
|
Wang H, Kocheril PA, Yang Z, Lee D, Naji N, Du J, Lin LE, Wei L. Room-Temperature Single-Molecule Infrared Imaging and Spectroscopy through Bond-Selective Fluorescence. Angew Chem Int Ed Engl 2024; 63:e202413647. [PMID: 39312677 DOI: 10.1002/anie.202413647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Infrared (IR) spectroscopy stands as a workhorse for exploring bond vibrations, offering a wealth of chemical insights across diverse frontiers. With increasing focus on the regime of single molecules, obtaining IR-sensitive information from individual molecules at room temperature would provide essential information about unknown molecular properties. Here, we leverage bond-selective fluorescence microscopy, facilitated by narrowband picosecond mid-IR and near-IR double-resonance excitation, for high-throughput mid-IR structural probing of single molecules. We robustly capture single-molecule images and analyze the combined polarization dependence, vibrational peaks, linewidths, and lifetimes of probe molecules with representative scaffolds. From bulk to single molecules, we find that vibrational lifetimes remain consistent, while linewidths are narrowed by approximately twofold and anisotropy becomes more pronounced. Additionally, unexpected peak shifts from single molecules were observed, attributed to the generation of new modes due to previously unexplored dimerization, supported by quantum chemistry calculations. These findings underscore the importance of infrared analysis on individual single molecules in ambient environments, offering molecular information crucial for functional imaging and the investigation of the fundamental properties and utilities of luminescent molecules.
Collapse
Affiliation(s)
- Haomin Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 91125, Pasadena, California, USA
| | - Philip A Kocheril
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 91125, Pasadena, California, USA
| | - Ziguang Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 91125, Pasadena, California, USA
| | - Dongkwan Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 91125, Pasadena, California, USA
| | - Noor Naji
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 91125, Pasadena, California, USA
| | - Jiajun Du
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 91125, Pasadena, California, USA
| | - Li-En Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 91125, Pasadena, California, USA
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 91125, Pasadena, California, USA
| |
Collapse
|
25
|
Antariksa N, Di Antonio M. The Emerging Roles of Multimolecular G-Quadruplexes in Transcriptional Regulation and Chromatin Organization. Acc Chem Res 2024; 57:3397-3406. [PMID: 39555660 PMCID: PMC11618987 DOI: 10.1021/acs.accounts.4c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
The ability of genomic DNA to adopt non-canonical secondary structures known as G-quadruplexes (G4s) under physiological conditions has been recognized for its potential regulatory function of various biological processes. Among those, transcription has recently emerged as a key process that can be heavily affected by G4 formation, particularly when these structures form at gene promoters. While the presence of G4s within gene promoters has been traditionally associated with transcriptional inhibition, in a model whereby G4s act as roadblocks to polymerase elongation, recent genomics experiments have revealed that the regulatory role of G4s in transcription is more complex than initially anticipated. Indeed, earlier studies linking G4-formation and transcription mainly relied on small-molecule ligands to stabilize and promote G4s, which might lead to disruption of protein-DNA interactions and local environments and, therefore, does not necessarily reflect the endogenous function of G4s at gene promoters. There is now strong evidence pointing toward G4s being associated with transcriptional enhancement, rather than repression, through multifaceted mechanisms such as recruitment of key transcriptional proteins, molding of chromatin architecture, and mode of phase separation. In this Account, we explore pivotal findings from our research on a particular subset of G4s, namely, those formed through interactions between distant genomic locations or independent nucleic acid strands, referred to as multimolecular G4s (mG4s), and discuss their active role in transcriptional regulation. We present our recent studies suggesting that the formation of mG4s may positively regulate transcription by inducing phase-separation and selectively recruiting chromatin-remodeling proteins. Our work highlighted how mG4-forming DNA and RNA sequences can lead to liquid-liquid phase separation (LLPS) in the absence of any protein. This discovery provided new insights into a potential mechanism by which mG4 can positively regulate active gene expression, namely, by establishing DNA networks based on distal guanine-guanine base pairing that creates liquid droplets at the interface of DNA loops. This is particularly relevant in light of the increasing evidence suggesting that G4 structures formed at enhancers can drive elevated expression of the associated genes. Given the complex three-dimensional nature of enhancers, our findings underscore how mG4 formation at enhancers would be particularly beneficial for promoting transcription. Moreover, we will elaborate on our recent discovery of a DNA repair and chromatin remodeling protein named Cockayne Syndrome B (CSB) that displays astonishing binding selectivity to mG4s over the more canonical unimolecular counterparts, suggesting another role of mG4s for molding chromatin architecture at DNA loops sites. Altogether, the studies presented in this Account suggest that mG4 formation in a chromatin context could be a crucial yet underexplored structural feature for transcriptional regulation. Whether mG4s actively regulate transcription or are formed as a mere consequence of chromatin plasticity remains to be elucidated. Still, given the novel insights offered by our research and the potential for mG4s to be selectively targeted by chemical and biological probes, we anticipate that further studies into the fundamental biology regulated by these structures can provide unprecedented opportunities for the development of therapeutic agents aimed at targeting nucleic acids from a fresh perspective.
Collapse
Affiliation(s)
- Naura
Fakhira Antariksa
- Imperial
College London, Department of Chemistry,
Molecular Sciences Research Hub, 82 Wood Lane, London W12
0BZ, U.K.
| | - Marco Di Antonio
- Imperial
College London, Department of Chemistry,
Molecular Sciences Research Hub, 82 Wood Lane, London W12
0BZ, U.K.
- The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K.
- Institute
of Chemical Biology, Molecular Sciences
Research Hub, 82 Wood
Lane, London W12 0BZ, U.K.
| |
Collapse
|
26
|
Siteni S, Grichuk A, Shay JW. Telomerase in Cancer Therapeutics. Cold Spring Harb Perspect Biol 2024; 16:a041703. [PMID: 39349313 PMCID: PMC11610755 DOI: 10.1101/cshperspect.a041703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
While silent in normal differentiated human tissues, telomerase is reactivated in most human cancers. Thus, telomerase is an almost universal oncology target. This update describes preclinical and clinical advancements using a variety of approaches to target telomerase. These include direct telomerase inhibitors, G-quadruplex DNA-interacting ligands, telomerase-based vaccine platforms, telomerase promoter-driven attenuated viruses, and telomerase-mediated telomere targeting approaches. While imetelstat has been recently approved by the Food and Drug Administration (FDA), several other approaches are in late-stage clinical development. The pros and cons of the major approaches will be reviewed.
Collapse
Affiliation(s)
- Silvia Siteni
- University of Texas Southwestern Medical Center, Department of Cell Biology, Dallas, Texas 75390, USA
| | - Anthony Grichuk
- University of Texas Southwestern Medical Center, Department of Cell Biology, Dallas, Texas 75390, USA
| | - Jerry W Shay
- University of Texas Southwestern Medical Center, Department of Cell Biology, Dallas, Texas 75390, USA
| |
Collapse
|
27
|
Basu P, Kejnovská I, Gajarský M, Šubert D, Mikešová T, Renčiuk D, Trantírek L, Mergny JL, Vorlíčková M. RNA G-quadruplex formation in biologically important transcribed regions: can two-tetrad intramolecular RNA quadruplexes be formed? Nucleic Acids Res 2024; 52:13224-13242. [PMID: 39494519 PMCID: PMC11602125 DOI: 10.1093/nar/gkae927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/02/2024] [Accepted: 10/06/2024] [Indexed: 11/05/2024] Open
Abstract
G-quadruplexes (G4s) formed within RNA are emerging as promising targets for therapeutic intervention in cancer, neurodegenerative disorders and infectious diseases. Sequences containing a succession of short GG blocks, or uneven G-tract lengths unable to form three-tetrad G4s (GG motifs), are overwhelmingly more frequent than canonical motifs involving multiple GGG blocks. We recently showed that DNA is not able to form stable two-tetrad intramolecular parallel G4s. Whether RNA GG motifs can form intramolecular G4s under physiological conditions and play regulatory roles remains a burning question. In this study, we performed a systematic analysis and experimental evaluation of a number of biologically important RNA regions involving RNA GG motifs. We show that most of these motifs do not form stable intramolecular G4s but need to dimerize to form stable G4 structures. The strong tendency of RNA GG motif G4s to associate may participate in RNA-based aggregation under conditions of cellular stress.
Collapse
Affiliation(s)
- Pritha Basu
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Iva Kejnovská
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Martin Gajarský
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
- Central European Institute of Technology, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| | - Denis Šubert
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| | - Tereza Mikešová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- Department of Biochemistry, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| | - Daniel Renčiuk
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Michaela Vorlíčková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
28
|
Pirota V, Stritto AD, Magnaghi LR, Biesuz R, Doria F, Mella M, Freccero M, Crespan E. A Novel G-Quadruplex Structure within Apolipoprotein E Promoter: A New Promising Target in Cancer and Dementia Fight? ACS OMEGA 2024; 9:45203-45213. [PMID: 39554422 PMCID: PMC11561760 DOI: 10.1021/acsomega.4c06430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/19/2024]
Abstract
Human apolipoprotein E (APOE) is a crucial lipid transport glycoprotein involved in various biological processes, including lipid metabolism, immune response, and neurodegeneration. Elevated APOE levels are linked to poor prognosis in several cancers and increased risk of Alzheimer's disease (AD). Therefore, modulating APOE expression presents a promising therapeutic strategy for both cancer and AD. Considering the pivotal role of G-quadruplex (G4) structures in medicinal chemistry as modulators of gene expression, here, we present a newly discovered G-quadruplex (G4) structure within the ApoE gene promoter. Bioinformatic analysis identified 21 potential G4-forming sequences in the ApoE promoter, with the more proximal to the transcription start site, pApoE, showing the highest G-score. Biophysical studies confirmed the folding of pApoE into a stable parallel G4 under physiological conditions, supported by circular dichroism, NMR spectroscopy, UV-melting, and a quantitative PCR stop assay. Moreover, the ability to modulate pApoE-G4 folding was demonstrated by using G4-stabilizing ligands (HPHAM, Braco19, and PDS), which increased the thermal stability of pApoE-G4. In contrast, peptide nucleic acid conjugates were synthesized to disrupt G4 formation, effectively hybridizing with pApoE sequences, and confirming the potential to unfold G4 structures. Overall, our findings provide a mainstay for future therapeutic approaches targeting ApoE-G4s to regulate APOE expression, offering potential advancements in cancer and AD treatment.
Collapse
Affiliation(s)
- Valentina Pirota
- Department
of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia, Italy
- G4-INTERACT,
USERN, via Taramelli
10, I-27100 Pavia, Italy
| | - Angela Dello Stritto
- Istituto
di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Lisa Rita Magnaghi
- Department
of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia, Italy
- Unità
di Ricerca di Pavia, Via G. Giusti 9, I-50121 Firenze, Italy
| | - Raffaela Biesuz
- Department
of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia, Italy
- Unità
di Ricerca di Pavia, Via G. Giusti 9, I-50121 Firenze, Italy
| | - Filippo Doria
- Department
of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia, Italy
| | - Mariella Mella
- Department
of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia, Italy
| | - Mauro Freccero
- Department
of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia, Italy
| | - Emmanuele Crespan
- Istituto
di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, via Abbiategrasso 207, I-27100 Pavia, Italy
| |
Collapse
|
29
|
Li J, Zhang L, Johnson-Buck A, Walter NG. Foundation model for efficient biological discovery in single-molecule data. RESEARCH SQUARE 2024:rs.3.rs-4970585. [PMID: 39483892 PMCID: PMC11527229 DOI: 10.21203/rs.3.rs-4970585/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Modern data-intensive techniques offer ever deeper insights into biology, but render the process of discovery increasingly complex. For example, exploiting the unique ability of single-molecule fluorescence microscopy (SMFM)1-5. to uncover rare but critical intermediates often demands manual inspection of time traces and iterative ad hoc approaches that are difficult to systematize. To facilitate systematic and efficient discovery from SMFM data, we introduce META-SiM, a transformer-based foundation model pre-trained on diverse SMFM analysis tasks. META-SiM achieves high performance-rivaling best-in-class algorithms-on a broad range of analysis tasks including trace selection, classification, segmentation, idealization, and stepwise photobleaching analysis. Additionally, the model produces high-dimensional embedding vectors that encapsulate detailed information about each trace, which the web-based META-SiM Projector (https://www.simol-projector.org) casts into lower-dimensional space for efficient whole-dataset visualization, labeling, comparison, and sharing. Combining this Projector with the objective metric of Local Shannon Entropy enables rapid identification of condition-specific behaviors, even if rare or subtle. As a result, by applying META-SiM to an existing single-molecule Förster resonance energy transfer (smFRET) dataset6, we discover a previously unobserved intermediate state in pre-mRNA splicing. META-SiM thus removes bottlenecks, improves objectivity, and both systematizes and accelerates biological discovery in complex single-molecule data.
Collapse
Affiliation(s)
- Jieming Li
- Bristol Myers Squibb, New Brunswick, NJ, USA
| | | | - Alexander Johnson-Buck
- Single Molecule Analysis Group, Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| | - Nils G. Walter
- Single Molecule Analysis Group, Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
30
|
Tang GX, Li ML, Zhou C, Huang ZS, Chen SB, Chen XC, Tan JH. Mitochondrial RelA empowers mtDNA G-quadruplex formation for hypoxia adaptation in cancer cells. Cell Chem Biol 2024; 31:1800-1814.e7. [PMID: 38821064 DOI: 10.1016/j.chembiol.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/04/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Mitochondrial DNA (mtDNA) G-quadruplexes (G4s) have important regulatory roles in energy metabolism, yet their specific functions and underlying regulatory mechanisms have not been delineated. Using a chemical-genetic screening strategy, we demonstrated that the JAK/STAT3 pathway is the primary regulatory mechanism governing mtDNA G4 dynamics in hypoxic cancer cells. Further proteomic analysis showed that activation of the JAK/STAT3 pathway facilitates the translocation of RelA, a member of the NF-κB family, to the mitochondria, where RelA binds to mtDNA G4s and promotes their folding, resulting in increased mtDNA instability, inhibited mtDNA transcription, and subsequent mitochondrial dysfunction. This binding event disrupts the equilibrium of energy metabolism, catalyzing a metabolic shift favoring glycolysis. Collectively, the results provide insights into a strategy employed by cancer cells to adapt to hypoxia through metabolic reprogramming.
Collapse
Affiliation(s)
- Gui-Xue Tang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mao-Lin Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Cui Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Shu Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuo-Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiu-Cai Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Jia-Heng Tan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
31
|
Pratihar S, Bhat S V V, Bhagavath KK, Govindaraju T. Unambiguous Detection of LTR-III G-Quadruplex in the HIV Genome Using a Tailored Fluorogenic Probe-based Assay. Anal Chem 2024; 96:15834-15839. [PMID: 39314132 DOI: 10.1021/acs.analchem.4c03374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The noncanonical conformations within the genomes of viral pathogens is of significant diagnostic value, due to their unique secondary structures and interactions with specific fluorogenic molecules. In particular, adaptation of the G-quadruplex (GQ) conformation by the specific gene sequence leads to distinct topological features, resulting in unique binding sites that are crucial for the selective recognition of human immunodeficiency virus (HIV) by small molecules. Leveraging the selective fluorescence response of a benzobisthiazole-based fluorogenic probe to the LTR-III GQ target, we developed a GQ-based diagnostic platform for HIV detection. The successful fluorescence recognition of an amplified 176-nucleotide genomic segment harboring the LTR-III GQ, facilitated by pH-controlled GQ-targeted reliable conformational polymorphism (GQ-RCP), validates this method as an effective GQ-topology-targeted diagnostic tool for HIV.
Collapse
Affiliation(s)
- Sumon Pratihar
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, 560064 Karnataka, India
| | - Vasudhar Bhat S V
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, 560064 Karnataka, India
| | - Krithi K Bhagavath
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, 560064 Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, 560064 Karnataka, India
| |
Collapse
|
32
|
Liu J, Sun L, Hong Y, Deng J, Luo Q, Zeng R, Chen W. Near-infrared fluorescent probe for sensitive detection and imaging of DNA G4s in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124489. [PMID: 38788507 DOI: 10.1016/j.saa.2024.124489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
G-quadruplexs (G4s), four-stranded nucleic acid secondary structures, which formed by guanine-rich sequences play a vital role in human biological systems. Studies have shown that the formation of G4s is closely related to tumor development and apoptosis, which is considered as a new target for the development of anti-tumor drugs. Therefore, it is important to develop novel probes for G4s imaging. In this article, we engineered a near-infrared fluorescent probe (TOH) which can be activated by DNA G4s in living cells and tumor. TOH exhibits high selectivity to the structure of DNA G4s with the limit of detection for DNA G4s (Mito-0.5-2) is calculated to be 0.43 nM. Imaging studies of different cell lines revealed that the brighter fluorescence in cancer cell lines than in normal, indicating that DNA G4s maybe highly express in tumor cell lines. Simultaneously, TOH is also introduced into live tumor tissue imaging and found that the fluorescence intensity of tumor is the brightest relative to normal tissue, further validating the high expression of DNA G4s structures in tumor tissue. These features demonstrate TOH not only have the ability to image DNA G4 structures in real time, but also may have tumor diagnostic capabilities.
Collapse
Affiliation(s)
- Junjie Liu
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Leying Sun
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Yongxiang Hong
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Jie Deng
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Qingyun Luo
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Rongying Zeng
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China.
| | - Wen Chen
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China; State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
33
|
Wang Q, Du Y, Zheng J, Shi L, Li T. G-Quadruplex-Programmed Versatile Nanorobot Combined with Chemotherapy and Gene Therapy for Synergistic Targeted Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400267. [PMID: 38805747 DOI: 10.1002/smll.202400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/29/2024] [Indexed: 05/30/2024]
Abstract
Developing synergistic targeted therapeutics to improve treatment efficacy while reducing side effects has proven promising for anticancer therapies, but how to conveniently modulate multidrug cooperation remains a challenge. Here, a novel synergistic strategy using a G-quadruplex-programmed versatile nanorobot (G4VN) containing two subunits of DNAzyme (DzG4) and ligand-drug conjugates (LDCs) is proposed to precisely target tumors and then execute both gene silencing and chemotherapy. As the core module of this nanorobot, a well-designed G4 responding to a high level of K+ in tumor microenvironment smartly kills three birds with one stone, which makes two TfR aptamers proximate to improve their efficiency of targeting tumor cells, and in situ activates a split 10-23 DNAzyme to downregulate target mRNA expression, meanwhile promotes the cell uptake of a GSH-responsive LDCs to enhance drug efficacy. Such a design enables a potently synergistic anticancer therapy with low side effects in vivo, showing great promise for broad applications in precision disease treatment.
Collapse
Affiliation(s)
- Qiwei Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Yi Du
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Jiao Zheng
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
34
|
Yu K, Li F, Ye L, Yu F. Accumulation of DNA G-quadruplex in mitochondrial genome hallmarks mesenchymal senescence. Aging Cell 2024; 23:e14265. [PMID: 38955799 PMCID: PMC11464107 DOI: 10.1111/acel.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
Searching for biomarkers of senescence remains necessary and challenging. Reliable and detectable biomarkers can indicate the senescence condition of individuals, the need for intervention in a population, and the effectiveness of that intervention in controlling or delaying senescence progression and senescence-associated diseases. Therefore, it is of great importance to fulfill the unmet requisites of senescence biomarkers especially when faced with the growing global senescence nowadays. Here, we established that DNA G-quadruplex (G4) in mitochondrial genome was a reliable hallmark for mesenchymal senescence. Via developing a versatile and efficient mitochondrial G4 (mtG4) probe we revealed that in multiple types of senescence, including chronologically healthy senescence, progeria, and replicative senescence, mtG4 hallmarked aged mesenchymal stem cells. Furthermore, we revealed the underlying mechanisms by which accumulated mtG4, specifically within respiratory chain complex (RCC) I and IV loci, repressed mitochondrial genome transcription, finally impairing mitochondrial respiration and causing mitochondrial dysfunction. Our findings endowed researchers with the visible senescence biomarker based on mitochondrial genome and furthermore revealed the role of mtG4 in inhibiting RCC genes transcription to induce senescence-associated mitochondrial dysfunction. These findings depicted the crucial roles of mtG4 in predicting and controlling mesenchymal senescence.
Collapse
Affiliation(s)
- Kangkang Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of ChemistrySichuan UniversityChengduChina
- Key Laboratory of bio‐Resources and eco‐Environment (Ministry of Education), College of Life SciencesSichuan UniversityChengduChina
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
- Department of Pediatric DentistryWest China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
- Department of Endodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
- Department of Endodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
35
|
Herbert A. A Compendium of G-Flipon Biological Functions That Have Experimental Validation. Int J Mol Sci 2024; 25:10299. [PMID: 39408629 PMCID: PMC11477331 DOI: 10.3390/ijms251910299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
As with all new fields of discovery, work on the biological role of G-quadruplexes (GQs) has produced a number of results that at first glance are quite baffling, sometimes because they do not fit well together, but mostly because they are different from commonly held expectations. Like other classes of flipons, those that form G-quadruplexes have a repeat sequence motif that enables the fold. The canonical DNA motif (G3N1-7)3G3, where N is any nucleotide and G is guanine, is a feature that is under active selection in avian and mammalian genomes. The involvement of G-flipons in genome maintenance traces back to the invertebrate Caenorhabditis elegans and to ancient DNA repair pathways. The role of GQs in transcription is supported by the observation that yeast Rap1 protein binds both B-DNA, in a sequence-specific manner, and GQs, in a structure-specific manner, through the same helix. Other sequence-specific transcription factors (TFs) also engage both conformations to actuate cellular transactions. Noncoding RNAs can also modulate GQ formation in a sequence-specific manner and engage the same cellular machinery as localized by TFs, linking the ancient RNA world with the modern protein world. The coevolution of noncoding RNAs and sequence-specific proteins is supported by studies of early embryonic development, where the transient formation of G-quadruplexes coordinates the epigenetic specification of cell fate.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, 42 8th Street, Unit 3412, Charlestown, MA 02129, USA
| |
Collapse
|
36
|
Chen KY, Zeng YL, Mao ZW, Liu W. Development of a high quantum yield probe for detection of mitochondrial G-quadruplexes in live cells based on fluorescence lifetime imaging microscopy. Bioorg Med Chem 2024; 111:117856. [PMID: 39074413 DOI: 10.1016/j.bmc.2024.117856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Mitochondrial G-quadruplexes are components that are potentially involved in regulating mitochondrial function and play crucial roles in the replication and transcription of mitochondrial genes. Consequently, it is imperative to develop probes that can detect mitochondrial G-quadruplexes to understand their functions and mechanisms. In this study, a triphenylamine fluorescent probe, TPPE, which has excellent cytocompatibility and does not affect the natural state of G-quadruplexes, was designed and demonstrated to localize primarily to the mitochondria. Owing to the unique binding mode between TPPE and G-quadruplexes, TPPE was able to distinguish G-quadruplexes from other substances due to the higher fluorescence lifetime and quantum yield. On the basis of the photon counts determined via fluorescence lifetime imaging microscopy, we analyzed the differences in the numbers of mitochondrial G-quadruplexes in various cell lines. We observed reductions in the number of mitochondrial G-quadruplexes during apoptosis, ferroptosis and glycolysis inhibition. This study shows the great potential of using TPPE to track and analyze mitochondrial G-quadruplexes and presents a novel perspective in the development of probes to detect mitochondrial G-quadruplexes in live cells.
Collapse
Affiliation(s)
- Kai-Yi Chen
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - You-Liang Zeng
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zong-Wan Mao
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Wenting Liu
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
37
|
Li J, Zhang L, Johnson-Buck A, Walter NG. Foundation model for efficient biological discovery in single-molecule data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609721. [PMID: 39253410 PMCID: PMC11383305 DOI: 10.1101/2024.08.26.609721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Modern data-intensive techniques offer ever deeper insights into biology, but render the process of discovery increasingly complex. For example, exploiting the unique ability of single-molecule fluorescence microscopy (SMFM)1-5. to uncover rare but critical intermediates often demands manual inspection of time traces and iterative ad hoc approaches that are difficult to systematize. To facilitate systematic and efficient discovery from SMFM data, we introduce META-SiM, a transformer-based foundation model pre-trained on diverse SMFM analysis tasks. META-SiM achieves high performance-rivaling best-in-class algorithms-on a broad range of analysis tasks including trace selection, classification, segmentation, idealization, and stepwise photobleaching analysis. Additionally, the model produces high-dimensional embedding vectors that encapsulate detailed information about each trace, which the web-based META-SiM Projector (https://www.simol-projector.org) casts into lower-dimensional space for efficient whole-dataset visualization, labeling, comparison, and sharing. Combining this Projector with the objective metric of Local Shannon Entropy enables rapid identification of condition-specific behaviors, even if rare or subtle. As a result, by applying META-SiM to an existing single-molecule Förster resonance energy transfer (smFRET) dataset6, we discover a previously unobserved intermediate state in pre-mRNA splicing. META-SiM thus removes bottlenecks, improves objectivity, and both systematizes and accelerates biological discovery in complex single-molecule data.
Collapse
Affiliation(s)
- Jieming Li
- Bristol Myers Squibb, New Brunswick, NJ, USA
| | | | - Alexander Johnson-Buck
- Single Molecule Analysis Group, Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| | - Nils G. Walter
- Single Molecule Analysis Group, Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
38
|
Cueny RR, Voter AF, McKenzie AM, Morgenstern M, Myers KS, Place MM, Peters JM, Coon JJ, Keck JL. Altering translation allows E. coli to overcome chemically stabilized G-quadruplexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607615. [PMID: 39185182 PMCID: PMC11343134 DOI: 10.1101/2024.08.12.607615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
G-quadruplex (G4) structures can form in guanine-rich DNA or RNA and have been found to modulate cellular processes including replication, transcription, and translation. Many studies on the cellular roles of G4s have focused on eukaryotic systems, with far fewer probing bacterial G4s. Using a chemical-genetic approach, we identified genes in Escherichia coli that are important for growth in G4-stabilizing conditions. Reducing levels of elongation factor Tu or slowing translation elongation with chloramphenicol suppress the effects of G4 stabilization. In contrast, reducing expression of certain translation termination or ribosome recycling proteins is detrimental to growth in G4-stabilizing conditions. Proteomic and transcriptomic analyses demonstrate that ribosome assembly factors and other proteins involved in translation are less abundant in G4-stabilizing conditions. Our integrated systems approach allowed us to propose a model for how RNA G4s can present barriers to E. coli growth and that reducing the rate of translation can compensate for G4-related stress.
Collapse
Affiliation(s)
- Rachel R Cueny
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrew F Voter
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aidan M McKenzie
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marcel Morgenstern
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, Madison Wisconsin, USA
| | - Kevin S Myers
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael M Place
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joshua J Coon
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, Madison Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - James L Keck
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
39
|
Olave B. DNA nanotechnology in ionic liquids and deep eutectic solvents. Crit Rev Biotechnol 2024; 44:941-961. [PMID: 37518062 DOI: 10.1080/07388551.2023.2229950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 08/01/2023]
Abstract
Nucleic acids have the ability to generate advanced nanostructures in a controlled manner and can interact with target sequences or molecules with high affinity and selectivity. For this reason, they have applications in a variety of nanotechnology applications, from highly specific sensors to smart nanomachines and even in other applications such as enantioselective catalysis or drug delivery systems. However, a common disadvantage is the use of water as the ubiquitous solvent. The use of nucleic acids in non-aqueous solvents offers the opportunity to create a completely new toolbox with unprecedented degrees of freedom. Ionic liquids (ILs) and deep eutectic solvents (DESs) are the most promising alternative solvents due to their unique electrolyte and solvent roles, as well as their ability to maintain the stability and functionality of nucleic acids. This review aims to be a comprehensive, critical, and accessible evaluation of how much this goal has been achieved and what are the most critical parameters for accomplishing a breakthrough.
Collapse
Affiliation(s)
- Beñat Olave
- University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| |
Collapse
|
40
|
Ooga M, Sahayasheela VJ, Hirose Y, Sasaki D, Hashiya K, Bando T, Sugiyama H. A dual DNA-binding conjugate that selectively recognizes G-quadruplex structures. Chem Commun (Camb) 2024. [PMID: 39072583 DOI: 10.1039/d4cc01572j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
G-quadruplex (G4) structures play roles in various biological processes, but the challenge lies in specific targeting. To address this, we synthesized a conjugate capable of recognizing the G4 structure and its proximal duplex. Our conjugate can enable recognition of specific G4s in the human genome to understand and target those structures.
Collapse
Affiliation(s)
- Mitsuharu Ooga
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Daisuke Sasaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
41
|
Fracchioni G, Vailati S, Grazioli M, Pirota V. Structural Unfolding of G-Quadruplexes: From Small Molecules to Antisense Strategies. Molecules 2024; 29:3488. [PMID: 39124893 PMCID: PMC11314335 DOI: 10.3390/molecules29153488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acid secondary structures that have gathered significant interest in medicinal chemistry over the past two decades due to their unique structural features and potential roles in a variety of biological processes and disorders. Traditionally, research efforts have focused on stabilizing G4s, while in recent years, the attention has progressively shifted to G4 destabilization, unveiling new therapeutic perspectives. This review provides an in-depth overview of recent advances in the development of small molecules, starting with the controversial role of TMPyP4. Moreover, we described effective metal complexes in addition to G4-disrupting small molecules as well as good G4 stabilizing ligands that can destabilize G4s in response to external stimuli. Finally, we presented antisense strategies as a promising approach for destabilizing G4s, with a particular focus on 2'-OMe antisense oligonucleotide, peptide nucleic acid, and locked nucleic acid. Overall, this review emphasizes the importance of understanding G4 dynamics as well as ongoing efforts to develop selective G4-unfolding strategies that can modulate their biological function and therapeutic potential.
Collapse
Affiliation(s)
- Giorgia Fracchioni
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
- G4-INTERACT Group, Universal Scientific Education and Research Network (USERN), 27100 Pavia, Italy
| | - Sabrina Vailati
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
- PhD National Program in One Health Approaches to Infectious Diseases and Life Science Research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Marta Grazioli
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
| | - Valentina Pirota
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
- G4-INTERACT Group, Universal Scientific Education and Research Network (USERN), 27100 Pavia, Italy
| |
Collapse
|
42
|
Zhang YP, Lobanova E, Dworkin A, Furlepa M, Yang WS, Burke M, Meng JX, Potter N, Sala RL, Kahanawita L, Layburn F, Scherman OA, Williams-Gray CH, Klenerman D. Improved Imaging Surface for Quantitative Single-Molecule Microscopy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37255-37264. [PMID: 38979642 PMCID: PMC11261557 DOI: 10.1021/acsami.4c06512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Preventing nonspecific binding is essential for sensitive surface-based quantitative single-molecule microscopy. Here we report a much-simplified RainX-F127 (RF-127) surface with improved passivation. This surface achieves up to 100-fold less nonspecific binding from protein aggregates compared to commonly used polyethylene glycol (PEG) surfaces. The method is compatible with common single-molecule techniques including single-molecule pull-down (SiMPull), super-resolution imaging, antibody-binding screening and single exosome visualization. This method is also able to specifically detect alpha-synuclein (α-syn) and tau aggregates from a wide range of biofluids including human serum, brain extracts, cerebrospinal fluid (CSF) and saliva. The simplicity of this method further allows the functionalization of microplates for robot-assisted high-throughput single-molecule experiments. Overall, this simple but improved surface offers a versatile platform for quantitative single-molecule microscopy without the need for specialized equipment or personnel.
Collapse
Affiliation(s)
- Yu P. Zhang
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- UK
Dementia Research Institute at Cambridge, Cambridge CB2 0XY, U.K.
| | - Evgeniia Lobanova
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- UK
Dementia Research Institute at Cambridge, Cambridge CB2 0XY, U.K.
| | - Asher Dworkin
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- UK
Dementia Research Institute at Cambridge, Cambridge CB2 0XY, U.K.
| | - Martin Furlepa
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Department
of Clinical Neurosciences, University of
Cambridge, Cambridge CB2 0PY, U.K.
| | - Woo Suk Yang
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- UK
Dementia Research Institute at Cambridge, Cambridge CB2 0XY, U.K.
| | - Melanie Burke
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- UK
Dementia Research Institute at Cambridge, Cambridge CB2 0XY, U.K.
| | - Jonathan X. Meng
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Natalie Potter
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Renata Lang Sala
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Lakmini Kahanawita
- Department
of Clinical Neurosciences, University of
Cambridge, Cambridge CB2 0PY, U.K.
| | - Florence Layburn
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- UK
Dementia Research Institute at Cambridge, Cambridge CB2 0XY, U.K.
| | - Oren A. Scherman
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | | | - David Klenerman
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- UK
Dementia Research Institute at Cambridge, Cambridge CB2 0XY, U.K.
| |
Collapse
|
43
|
Zhang X, Wang J, Hu MH. Promising G-Quadruplex-Targeted Dibenzoquinoxaline Type-1 Photosensitizer Triggers DNA Damage in Triple-Negative Breast Cancer Cells. ACS Pharmacol Transl Sci 2024; 7:2174-2184. [PMID: 39022360 PMCID: PMC11249623 DOI: 10.1021/acsptsci.4c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
G-quadruplexes (G4s) are potential drug targets in cancer treatment. However, the G4-targeted ligands seem to lack sufficient selectivity between tumors and normal tissues, appealing for a new modified anticancer strategy on the basis of them. Type-1 photodynamic therapy (PDT) is a promising strategy possessing excellent spatiotemporal precision for solid tumors with a hypoxic microenvironment. However, type-1 photosensitizers that target G4s and induce in situ photodamage have never been previously reported. In this study, we reported a promising type-1 photosensitizer based on a G4-targeted, high-contrast fluorescent ligand (TR2). The subsequent studies demonstrated that TR2 could transfer from lysosomes to nuclei and induce elevated G4 formation as well as DNA damage upon irradiation. Notably, it was observed that TR2 may not activate DNA damage repair machinery upon irradiation, suggesting a durable, strong effect on inducing DNA damage. Consequently, light-irradiated TR2 exhibited excellent photocytotoxicity on triple-negative breast cancer cell proliferation (at nanomolar concentration) and showed obvious inhibition on the growth of three-dimensional (3D) tumor spheroids. Finally, RNA-seq analysis demonstrated that TR2-mediated PDT may have a negative impact on enhancing the DNA damage repair machinery and may activate the antitumor immunity pathways. Overall, this study provided a promising chemical tool for image-guided PDT.
Collapse
Affiliation(s)
- Xiao Zhang
- Nation-Regional Engineering
Lab for Synthetic Biology of Medicine, International Cancer Center,
School of Pharmacy, Shenzhen University
Medical School, Shenzhen 518060, China
| | - Jingxin Wang
- Nation-Regional Engineering
Lab for Synthetic Biology of Medicine, International Cancer Center,
School of Pharmacy, Shenzhen University
Medical School, Shenzhen 518060, China
| | - Ming-Hao Hu
- Nation-Regional Engineering
Lab for Synthetic Biology of Medicine, International Cancer Center,
School of Pharmacy, Shenzhen University
Medical School, Shenzhen 518060, China
| |
Collapse
|
44
|
Qin G, Liu Z, Yang J, Liao X, Zhao C, Ren J, Qu X. Targeting specific DNA G-quadruplexes with CRISPR-guided G-quadruplex-binding proteins and ligands. Nat Cell Biol 2024; 26:1212-1224. [PMID: 38961283 DOI: 10.1038/s41556-024-01448-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Despite the demonstrated importance of DNA G-quadruplexes (G4s) in health and disease, technologies to readily manipulate specific G4 folding for functional analysis and therapeutic purposes are lacking. Here we employ G4-stabilizing protein/ligand in conjunction with CRISPR to selectively facilitate single or multiple targeted G4 folding within specific genomic loci. We demonstrate that fusion of nucleolin with a catalytically inactive Cas9 can specifically stabilize G4s in the promoter of oncogene MYC and muscle-associated gene Itga7 as well as telomere G4s, leading to cell proliferation arrest, inhibition of myoblast differentiation and cell senescence, respectively. Furthermore, CRISPR can confer intra-G4 selectivity to G4-binding compounds pyridodicarboxamide and pyridostatin. Compared with traditional G4 ligands, CRISPR-guided biotin-conjugated pyridodicarboxamide enables a more precise investigation into the biological functionality of de novo G4s. Our study provides insights that will enhance understanding of G4 functions and therapeutic interventions.
Collapse
Affiliation(s)
- Geng Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Zhenqi Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Jie Yang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Xiaofeng Liao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.
- University of Science and Technology of China, Hefei, P. R. China.
| |
Collapse
|
45
|
Ma TZ, Liu LY, Zeng YL, Ding K, Zhang H, Liu W, Cao Q, Xia W, Xiong X, Wu C, Mao ZW. G-quadruplex-guided cisplatin triggers multiple pathways in targeted chemotherapy and immunotherapy. Chem Sci 2024; 15:9756-9774. [PMID: 38939132 PMCID: PMC11206235 DOI: 10.1039/d4sc00643g] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/09/2024] [Indexed: 06/29/2024] Open
Abstract
G-quadruplexes (G4s) are atypical nucleic acid structures involved in basic human biological processes and are regulated by small molecules. To date, pyridostatin and its derivatives [e.g., PyPDS (4-(2-aminoethoxy)-N 2,N 6-bis(4-(2-(pyrrolidin-1-yl) ethoxy) quinolin-2-yl) pyridine-2,6-dicarboxamide)] are the most widely used G4-binding small molecules and considered to have the best G4 specificity, which provides a new option for the development of cisplatin-binding DNA. By combining PyPDS with cisplatin and its analogs, we synthesize three platinum complexes, named PyPDSplatins. We found that cisplatin with PyPDS (CP) exhibits stronger specificity for covalent binding to G4 domains even in the presence of large amounts of dsDNA compared with PyPDS either extracellularly or intracellularly. Multiomics analysis reveals that CP can effectively regulate G4 functions, directly damage G4 structures, activate multiple antitumor signaling pathways, including the typical cGAS-STING pathway and AIM2-ASC pathway, trigger a strong immune response and lead to potent antitumor effects. These findings reflect that cisplatin-conjugated specific G4 targeting groups have antitumor mechanisms different from those of classic cisplatin and provide new strategies for the antitumor immunity of metals.
Collapse
Affiliation(s)
- Tian-Zhu Ma
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - You-Liang Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ke Ding
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine Hangzhou 311121 P. R. China
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xushen Xiong
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine Hangzhou 311121 P. R. China
| | - Chao Wu
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University Guangzhou 510080 P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
46
|
Iachettini S, Biroccio A, Zizza P. Therapeutic Use of G4-Ligands in Cancer: State-of-the-Art and Future Perspectives. Pharmaceuticals (Basel) 2024; 17:771. [PMID: 38931438 PMCID: PMC11206494 DOI: 10.3390/ph17060771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
G-quadruplexes (G4s) are guanine-rich non-canonical secondary structures of nucleic acids that were identified in vitro almost half a century ago. Starting from the early 1980s, these structures were also observed in eukaryotic cells, first at the telomeric level and later in regulatory regions of cancer-related genes, in regulatory RNAs and within specific cell compartments such as lysosomes, mitochondria, and ribosomes. Because of the involvement of these structures in a large number of biological processes and in the pathogenesis of several diseases, including cancer, the interest in G4 targeting has exponentially increased in the last few years, and a great number of novel G4 ligands have been developed. Notably, G4 ligands represent a large family of heterogeneous molecules that can exert their functions by recognizing, binding, and stabilizing G4 structures in multiple ways. Regarding anti-cancer activity, the efficacy of G4 ligands was originally attributed to the capability of these molecules to inhibit the activity of telomerase, an enzyme that elongates telomeres and promotes endless replication in cancer cells. Thereafter, novel mechanisms through which G4 ligands exert their antitumoral activities have been defined, including the induction of DNA damage, control of gene expression, and regulation of metabolic pathways, among others. Here, we provided a perspective on the structure and function of G4 ligands with particular emphasis on their potential role as antitumoral agents. In particular, we critically examined the problems associated with the clinical translation of these molecules, trying to highlight the main aspects that should be taken into account during the phases of drug design and development. Indeed, taking advantage of the successes and failures, and the more recent technological progresses in the field, it would be possible to hypothesize the development of these molecules in the future that would represent a valid option for those cancers still missing effective therapies.
Collapse
Affiliation(s)
| | | | - Pasquale Zizza
- Translational Oncology Research Unit, IRCCS—Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Roma, Italy; (S.I.); (A.B.)
| |
Collapse
|
47
|
Wang Q, Jin D, Liu C, Shi L, Li T. A Tumor-Specific Cascade-Activating Smart Prodrug System for Enhanced Targeted Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309482. [PMID: 38150668 DOI: 10.1002/smll.202309482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Developing intelligently targeted drugs with low side effects is urgent for cancer treatment. Toward this goal, a tumor-specific cascade-activating smart prodrug system consisting of a G-quadruplex(G4)-modulated tumor-targeted DNA vehicle and a well-designed cellular stimuli-responsive ligand-drug conjugates (LDCs) is proposed. An original "donor-acceptor" binary fluorescent ligand, with ultrahigh affinity, brightness, and photostability, is engineered to tightly bind G4 structures and significantly improve the nuclease resistance of the DNA vehicle, which serves as a bridge contributing to the construction of the prodrug system, named ApG4/LDCs. Sodium nitroprusside and doxorubicin are loaded into ApG4/LDCs in one pot and generate nitric oxide and superoxide anion in response to cancer cellular environments, which in cascade generates peroxynitrite to cause DNA damage while promoting the self-monitored drug release to achieve enhanced targeted therapy. Such a cascade activation and self-reinforcement process is executed only when the prodrug system targets the tumor tissue followed by cell uptake, showing significant antitumor efficacy and greatly weakening the damage to normal tissues. Given the unique features, the innovative strategy for prodrug design may open a new door to precision disease treatment.
Collapse
Affiliation(s)
- Qiwei Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Duo Jin
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Chengbin Liu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
48
|
Cui Y, Liu H, Ming Y, Zhang Z, Liu L, Liu R. Prediction of strand-specific and cell-type-specific G-quadruplexes based on high-resolution CUT&Tag data. Brief Funct Genomics 2024; 23:265-275. [PMID: 37357985 DOI: 10.1093/bfgp/elad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/20/2023] [Accepted: 06/01/2023] [Indexed: 06/27/2023] Open
Abstract
G-quadruplex (G4), a non-classical deoxyribonucleic acid structure, is widely distributed in the genome and involved in various biological processes. In vivo, high-throughput sequencing has indicated that G4s are significantly enriched at functional regions in a cell-type-specific manner. Therefore, the prediction of G4s based on computational methods is necessary instead of the time-consuming and laborious experimental methods. Recently, G4 CUT&Tag has been developed to generate higher-resolution sequencing data than ChIP-seq, which provides more accurate training samples for model construction. In this paper, we present a new dataset construction method based on G4 CUT&Tag sequencing data and an XGBoost prediction model based on the machine learning boost method. The results show that our model performs well within and across cell types. Furthermore, sequence analysis indicates that the formation of G4 structure is greatly affected by the flanking sequences, and the GC content of the G4 flanking sequences is higher than non-G4. Moreover, we also identified G4 motifs in the high-resolution dataset, among which we found several motifs for known transcription factors (TFs), such as SP2 and BPC. These TFs may directly or indirectly affect the formation of the G4 structure.
Collapse
Affiliation(s)
- Yizhi Cui
- School of Computer Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324003, Zhejiang, China
| | - Hongzhi Liu
- School of Computer Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Yutong Ming
- School of Computer Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Zheng Zhang
- Department of Computer Science and Software Engineering, Auburn University, Auburn, 36830, Alabama, USA
| | - Li Liu
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324003, Zhejiang, China
| | - Ruijun Liu
- School of Computer Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
49
|
Galli S, Flint G, Růžičková L, Di Antonio M. Genome-wide mapping of G-quadruplex DNA: a step-by-step guide to select the most effective method. RSC Chem Biol 2024; 5:426-438. [PMID: 38725910 PMCID: PMC11078208 DOI: 10.1039/d4cb00023d] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/21/2024] [Indexed: 05/12/2024] Open
Abstract
The development of methods that enabled genome-wide mapping of DNA G-quadruplex structures in chromatin has played a critical role in providing evidence to support the formation of these structures in living cells. Over the past decade, a variety of methods aimed at mapping G-quadruplexes have been reported in the literature. In this critical review, we have sought to provide a technical overview on the relative strengths and weaknesses of the genomics approaches currently available, offering step-by-step guidance to assessing experimental needs and selecting the most appropriate method to achieve effective genome-wide mapping of DNA G-quadruplexes.
Collapse
Affiliation(s)
- Silvia Galli
- Imperial College London, Chemistry Department, Molecular Science Research Hub 82 Wood Lane London UK
| | - Gem Flint
- Imperial College London, Chemistry Department, Molecular Science Research Hub 82 Wood Lane London UK
- Institute of Chemical Biology, Molecular Science Research Hub 82 Wood Lane London UK
| | - Lucie Růžičková
- Imperial College London, Chemistry Department, Molecular Science Research Hub 82 Wood Lane London UK
| | - Marco Di Antonio
- Imperial College London, Chemistry Department, Molecular Science Research Hub 82 Wood Lane London UK
- Institute of Chemical Biology, Molecular Science Research Hub 82 Wood Lane London UK
- The Francis Crick Institute 1 Midland Road London UK
| |
Collapse
|
50
|
Wang RX, Ou Y, Chen Y, Ren TB, Yuan L, Zhang XB. Rational Design of NIR-II G-Quadruplex Fluorescent Probes for Accurate In Vivo Tumor Metastasis Imaging. J Am Chem Soc 2024; 146:11669-11678. [PMID: 38644738 DOI: 10.1021/jacs.3c13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Accurate in vivo imaging of G-quadruplexes (G4) is critical for understanding the emergence and progression of G4-associated diseases like cancer. However, existing in vivo G4 fluorescent probes primarily operate within the near-infrared region (NIR-I), which limits their application accuracy due to the short emission wavelength. The transition to second near-infrared (NIR-II) fluorescent imaging has been of significant interest, as it offers reduced autofluorescence and deeper tissue penetration, thereby facilitating more accurate in vivo imaging. Nonetheless, the advancement of NIR-II G4 probes has been impeded by the absence of effective probe design strategies. Herein, through a "step-by-step" rational design approach, we have successfully developed NIRG-2, the first small-molecule fluorescent probe with NIR-II emission tailored for in vivo G4 detection. Molecular docking calculations reveal that NIRG-2 forms stable hydrogen bonds and strong π-π interactions with G4 structures, which effectively inhibit twisted intramolecular charge transfer (TICT) and, thereby, selectively illuminate G4 structures. Due to its NIR-II emission (940 nm), large Stokes shift (90 nm), and high selectivity, NIRG-2 offers up to 47-fold fluorescence enhancement and a tissue imaging depth of 5 mm for in vivo G4 detection, significantly outperforming existing G4 probes. Utilizing NIRG-2, we have, for the first time, achieved high-contrast visualization of tumor metastasis through lymph nodes and precise tumor resection. Furthermore, NIRG-2 proves to be highly effective and reliable in evaluating surgical and drug treatment efficacy in cancer lymphatic metastasis models. We are optimistic that this study not only provides a crucial molecular tool for an in-depth understanding of G4-related diseases in vivo but also marks a promising strategy for the development of clinical NIR-II G4-activated probes.
Collapse
Affiliation(s)
- Ren-Xuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yifeng Ou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yushi Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|