1
|
Gong J, Wang Q, Zhu J. Chemoselectivity in Pd-Based Dyotropic Rearrangement: Development and Application in Total Synthesis of Pheromones. J Am Chem Soc 2025; 147:2077-2085. [PMID: 39812086 DOI: 10.1021/jacs.4c15764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In the dyotropic rearrangement of molecules with semiflexible structures, characterized by a freely rotating static C-C bond, the formation of a mixture of products is common due to the coexistence of several energetically comparable conformers. Herein, we report that it is possible to modulate the shifting groups by adjusting the metal's coordination sphere in Pd-based dyotropic rearrangement. In the presence of a catalytic amount of Pd(II) salt, the reaction of γ-hydroxyalkenes or γ,δ-dihydroxyalkenes with Selectfluor affords fluorinated tetrahydropyranols or 6,8-dioxabicyclo[3.2.1]octanes (DOBCO), respectively. In this domino process, two C(sp2) and one allylic C(sp3) are sequentially activated and functionalized through a pivotal conformation-controlled chemoselective C(sp3)-C(sp3) and C(sp3)-Pd(IV) bond metathesis reaction. Mechanistic studies suggest a reaction sequence including 5-exo-trig oxypalladation, Pd oxidation, and chemoselective ring expansion 1,2-Csp3/Pd(IV) dyotropic rearrangement, followed by hydroxypalladation of in situ generated dihydropyrans. These findings provide a unique retrosynthetic disconnection for the synthesis of 6,8-DOBCO. We showcase its potential by developing a concise synthesis of three important pheromones. Notably, (+)-frontalin is synthesized from a commercially available 1,5-diene in only two steps, utilizing Sharpless catalytic asymmetric dihydroxylation and Pd-catalyzed domino cyclization developed in this study.
Collapse
Affiliation(s)
- Jing Gong
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, CH-1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Liu Q, Meng J, Tan B, Lin H, Zhang Y, Tang Y, Li Z. Palladium(II)-Catalyzed Enantioselective Ring Opening of Oxabenzonorbornadienes via Domino Aminopalladation of Alkynylanilines. Org Lett 2025; 27:369-375. [PMID: 39791238 DOI: 10.1021/acs.orglett.4c04414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
We report herein a robust enantioselective ring opening coupling of oxabenzonorbornadienes via Pd(II)-catalyzed domino cyclization of alkynylanilines, which features the formation of three covalent bonds and two contiguous stereocenters with excellent enantio- and diastereoselectivity and a broad substrate scope. The good functional group tolerance of this domino desymmetrization strategy enables efficient late-stage transformation of natural product-derived alkynylanilines. The resulting indolated dihydronaphthols could serve as a valuable platform to streamline the diversity-oriented synthesis of other valuable enantioenriched tetrahydronaphthalene derivatives.
Collapse
Affiliation(s)
- Qianru Liu
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China
| | - Junjie Meng
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China
| | - Binhong Tan
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China
| | - Haoyuan Lin
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China
| | - Yue Zhang
- School of Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Youzhi Tang
- College of Veterinary Medicine, South China Agricultural University, 510642 Guangzhou, China
| | - Zhaodong Li
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China
| |
Collapse
|
3
|
Liu CX, Wang Q, Zhu J. Chemoselective Pd-Based Dyotropic Rearrangement: Fluorocyclization and Regioselective Wacker Reaction of Homoallylic Amides. J Am Chem Soc 2024; 146:30014-30019. [PMID: 39453186 DOI: 10.1021/jacs.4c13359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Fluorocyclization of alkenes tethered with a pronucleophile is an efficient transformation that converts easily accessible starting materials to fluorinated heterocycles in a single step. We report herein an unprecedented Pd(II)-catalyzed oxidative domino process that transforms homoallylic amides to 5,6-dihydro-4H-1,3-oxazines through a domino oxypalladation/PdII-oxidation/dyotropic rearrangement/reductive elimination sequence. Three chemical bonds are created under these operationally simple conditions. Taking advantage of the facile hydrolysis of the α-fluoro tertiary alkyl ether under acidic conditions, a one-pot conversion of homoallylic amides to homologated ketones is subsequently developed, which represents a rare example of regioselective Wacker oxidation reaction of 1,1-disubstituted alkenes.
Collapse
Affiliation(s)
- Chen-Xu Liu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL-SB-ISIC-LSPN), BCH5304, CH-1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL-SB-ISIC-LSPN), BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL-SB-ISIC-LSPN), BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Liu Y, Chen YW, Yang YX, Hartwig JF, He ZT. Asymmetric Amination of Unstrained C(sp 3)-C(sp 3) Bonds. J Am Chem Soc 2024; 146:29857-29864. [PMID: 39412244 DOI: 10.1021/jacs.4c11802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The asymmetric functionalization of unstrained C(sp3)-C(sp3) bonds could be a powerful strategy to stereoselectively reconstruct the backbone of an organic compound, but such reactions are rare. Although allylic substitutions have been used frequently to construct C-C bonds by the cleavage of more reactive C-X bonds (X is usually an O atom of an ester) by transition metals, the reverse process that involves the replacement of a C-C bond with a C-heteroatom bond is rare and generally considered thermodynamically unfavorable. We show that an unstrained, inert allylic C-C σ bond can be converted to a C-N bond stereoselectively via a designed solubility-control strategy, which makes the thermodynamically unfavorable process possible. The C-C bond amination occurs with a range of amine nucleophiles and cleaves multiple classes of alkyl C-C bonds in good yields with high enantioselectivity. A novel resolution strategy is also reported that transforms racemic allylic amines to the corresponding optically active allylic amine by the sequential conversion of a C-N bond to a C-C bond and back to a C-N bond. Mechanistic studies show that formation of the C-N bond is the rate-limiting step and is driven by the low solubility of the salt formed from the cleaved alkyl group in a nonpolar solvent.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ye-Wei Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yuan-Xiang Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Zhi-Tao He
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Ningbo Zhongke Creation Center of New Materials, Ningbo 315899, China
| |
Collapse
|
5
|
Wu H, Fujii T, Wang Q, Zhu J. Quaternary Carbon Editing Enabled by Sequential Palladium Migration. J Am Chem Soc 2024; 146:21239-21244. [PMID: 39052260 DOI: 10.1021/jacs.4c07706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Peripheral functionalization of a quaternary carbon via C(sp3)-H bond activation has made significant progress in recent years. However, direct editing of a quaternary carbon through Csp3-Csp3 bond cleavage and refunctionalization of nonstrained acyclic molecules remain underexploited. Herein we report a reaction in which a methyl group attached to a quaternary carbon is shifted to its neighboring secondary carbon with concurrent oxidation of the quaternary C-C single bond to the C═C double bond. Specifically, morpholinyl amide of 2,2-dimethyl alkanoic acids is converted to 2-methylene-3-methyl alkanoic acid derivatives in the presence of a catalytic amount of palladium acetate, Selectfluor and sodium carbonate. Control experiments suggest that the reaction proceeds via a sequence of selective C(sp3)-H activation of the methyl group, oxidation of the resulting C(sp3)-PdII to PdIV intermediate followed by unprecedented 1,3-PdIV migration, 1,2-methyl/PdIV dyotropic rearrangement and finally, β-Hydride elimination. In this domino process, palladium migrates successively from the primary to the secondary and finally to the quaternary carbon, leading to the concurrent functionalization of a primary, a secondary, and a quaternary carbon.
Collapse
Affiliation(s)
- Hua Wu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Takuji Fujii
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Patil VB, Raghu Ramudu G, Chegondi R. Cascade Oxypalladation/1,3-Palladium Shift to Access Cyclopentene-Fused Isocoumarins. Org Lett 2024; 26:6353-6358. [PMID: 39041835 DOI: 10.1021/acs.orglett.4c01997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Fused isocoumarins are frequently found in several natural products and pharmaceuticals. Herein, a cascade annulation of 2-alkynylbenzoate-tethered cyclic 1,3-diones via sequential trans-oxypalladation, carbonyl insertion, 1,3-Pd shift, and β-hydride elimination is reported. This method provides efficient access to highly diastereoselective tetracyclic cyclopentene-fused isocoumarins containing two contiguous quaternary stereocenters. A plausible reaction mechanism is proposed on the basis of mechanistic studies, including deuterium labeling experiments. Studies toward enantioselective synthesis using a chiral Bpy ligand gave encouraging initial results.
Collapse
Affiliation(s)
- Vaibhav B Patil
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - G Raghu Ramudu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rambabu Chegondi
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Fujii T, Wang Q, Zhu J. Arylative Ring Expansion of 3-Vinylazetidin-3-Ols and 3-Vinyloxetan-3-Ols to Dihydrofurans by Dual Palladium and Acid Catalysis. Angew Chem Int Ed Engl 2024; 63:e202403484. [PMID: 38525663 DOI: 10.1002/anie.202403484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 03/26/2024]
Abstract
In contrast to the well-studied 1-vinylcyclobutanols, the reactivity of 3-vinylazetidin-3-ols 1 and 3-vinyloxetan-3-ols 2 under transition metal catalysis remains largely unexplored. We report herein their unique reactivity under dual palladium and acid catalysis. In the presence of a catalytic amount of Pd(OAc)2(PPh3)2, AgTFA and triflic acid, the reaction of 1 or 2 with aryl iodides affords 2,3,4-trisubstituted dihydrofurans, which are valuable heterocycles in organic synthesis. Mechanistic studies reveal that this arylative ring-expansion reaction proceeds via a domino process involving Heck arylation of alkene, acid-catalyzed transposition of allylic alcohol and ring opening of the azetidine/oxetane by an internal hydroxyl group.
Collapse
Affiliation(s)
- Takuji Fujii
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH, 5304, 1015, Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH, 5304, 1015, Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH, 5304, 1015, Lausanne, Switzerland
| |
Collapse
|
8
|
Delcaillau T, Yang B, Wang Q, Zhu J. Editing Tetrasubstituted Carbon: Dual C-O Bond Functionalization of Tertiary Alcohols Enabled by Palladium-Based Dyotropic Rearrangement. J Am Chem Soc 2024. [PMID: 38587988 DOI: 10.1021/jacs.4c02924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Many elegant asymmetric syntheses of enantioenriched tertiary alcohols have been developed, and both the transition metal-catalyzed and the radical-based peripheral functionalization of tertiary alcohols have attracted intensive research interest in recent years. However, directly editing tetrasubstituted carbons remains challenging. Herein, we report a Pd-catalyzed migratory fluoroarylation reaction that converts tertiary alcohols to α-fluorinated tertiary alkyl ethers in good to excellent yields. An unprecedented 1,2-aryl/PdIV dyotropic rearrangement along the C-O bond, integrated in a PdII-catalyzed domino process, is key to the dual functionalization of both the hydroxyl group and the tetrasubstituted carbon. This reaction, which is compatible with a broad range of functional groups, generates a tertiary alkyl fluoride and an alkyl-aryl ether functional group with inversion of the absolute configuration at the tetrasubstituted stereocenter.
Collapse
Affiliation(s)
- Tristan Delcaillau
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Baochao Yang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Liu W, Li W, Xu W, Wang M, Kong W. Nickel-catalyzed switchable arylative/endo-cyclization of 1,6-enynes. Nat Commun 2024; 15:2914. [PMID: 38575585 PMCID: PMC10995176 DOI: 10.1038/s41467-024-47200-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/16/2024] [Indexed: 04/06/2024] Open
Abstract
Carbo- and heterocycles are frequently used as crucial scaffolds in natural products, fine chemicals, and biologically and pharmaceutically active compounds. Transition-metal-catalyzed cyclization of 1,6-enynes has emerged as a powerful strategy for constructing functionalized carbo- and heterocycles. Despite significant progress, the regioselectivity of alkyne functionalization is entirely substrate-dependent. And only exo-cyclization/cross-coupling products can be obtained, while endo-selective cyclization/cross-coupling remains elusive and still poses a formidable challenge. In this study, we disclose a nickel-catalyzed switchable arylation/cyclization of 1,6-enynes in which the nature of the ligand dictates the regioselectivity of alkyne arylation, while the electrophilic trapping reagents determine the selectivity of the cyclization mode. Specifically, using a commercially available 1,10-phenanthroline as a ligand facilitates trans-arylation/cyclization to obtain seven-membered ring products, while a 2-naphthyl-substituted bisbox ligand promotes cis-arylation/cyclization to access six-membered ring products. Diastereoselective cyclizations have also been developed for the synthesis of enantioenriched piperidines and azepanes, which are core structural elements of pharmaceuticals and natural products possessing important biological activities. Furthermore, experimental and density functional theory studies reveal that the regioselectivity of the alkyne arylation process is entirely controlled by the steric hindrance of the ligand; the reaction mechanism involves exo-cyclization followed by Dowd-Beckwith-type ring expansion to form endo-cyclization products.
Collapse
Affiliation(s)
- Wenfeng Liu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Wei Li
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Weipeng Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Wangqing Kong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
10
|
Feng Q, Liu CX, Wang Q, Zhu J. Palladium-Based Dyotropic Rearrangement Enables A Triple Functionalization of Gem-Disubstituted Alkenes: An Unusual Fluorolactonization Reaction. Angew Chem Int Ed Engl 2024; 63:e202316393. [PMID: 37986261 DOI: 10.1002/anie.202316393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
We report in this paper a Pd(II)-catalyzed migratory gem-fluorolactonization of ene-carboxylic acids. Reaction of 4-methylenealkanoic acid derivatives with Selectfluor in the presence of Pd(OAc)2 (1.0 mol %) at room temperature affords fluorolactones in good to excellent yields. 2-(2-Methylenecycloalkanyl)acetic acids are transformed to bridged fluorolactones under identical conditions. One C-C, one C-O and one tertiary C-F bond were generated along the gem-disubstituted carbon-carbon double bond in this operationally simple transformation. Trapping experiments indicates that the reaction is initiated by a 5-exo-trig oxypalladation followed by Pd oxidation, regioselective ring-enlarging 1,2-alkyl/Pd(IV) dyotropic rearrangement and C-F bond forming reductive elimination cascade. Post-transformations of these fluorolactones taking advantage of the electrophilicity of the 1-fluoroalkylcarboxylate function are also documented.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 304 1015, Lausanne, Switzerland
| | - Chen-Xu Liu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 304 1015, Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 304 1015, Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 304 1015, Lausanne, Switzerland
| |
Collapse
|
11
|
Meng J, He H, Liu Q, Xu H, Huang H, Ni SF, Li Z. Enantioselective Palladium(II)-Catalyzed Desymmetrizative Coupling of 7-Azabenzonorbornadienes with Alkynylanilines. Angew Chem Int Ed Engl 2024; 63:e202315092. [PMID: 37943545 DOI: 10.1002/anie.202315092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
A PdII -catalyzed, domino enantioselective desymmetrizative coupling of 7-azabenzonorbornadienes with alkynylanilines is disclosed herein. This operationally simple transformation generates three covalent bonds and two contiguous stereocenters with excellent enantio- and diastereo-selectivity. The resulting functionalized indole-dihydronaphthalene-amine conjugates served as an appealing platform to streamline the diversity-oriented synthesis (DOS) of other valuable enantioenriched compounds. DFT calculations revealed that the two stabilizing non-covalent interactions contributed to the observed enantioselectivity.
Collapse
Affiliation(s)
- Junjie Meng
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510641, Guangdong, China
| | - Hui He
- Department of Chemistry, Shantou University, Shantou, 515063, Guangdong, China
| | - Qianru Liu
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510641, Guangdong, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510641, Guangdong, China
| | - Huicai Huang
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510641, Guangdong, China
| | - Shao-Fei Ni
- Department of Chemistry, Shantou University, Shantou, 515063, Guangdong, China
| | - Zhaodong Li
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510641, Guangdong, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
12
|
Huang Y, Qi Z, Li X. Rhodium-Catalyzed Enantioselective Addition of Heteroarenium Salts Enabled by Nucleophilic Cyclization of 2-Alkynylanilines. Org Lett 2023; 25:8439-8444. [PMID: 37985509 DOI: 10.1021/acs.orglett.3c03300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Transition-metal-catalyzed cyclative coupling of 2-alkynylanilines provides a feasible routine for accessing functionalized indoles. Herein, a rhodium-catalyzed highly enantioselective addition of heteroarenium salts is presented, which is enabled by the nucleophilic cyclization of 2-alkynylanilines. It offers feasible protocols to access enantioenriched functionalized indoles tethered to 1,2-dihydropyridine and 1,2-dihydroquinoline motifs with excellent enantioselectivities.
Collapse
Affiliation(s)
- Yaling Huang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, Shaanxi 710062, People's Republic of China
| | - Zisong Qi
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, Shaanxi 710062, People's Republic of China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, Shaanxi 710062, People's Republic of China
| |
Collapse
|
13
|
Tian D, Li ZC, Sun ZH, He YP, Xu LP, Wu H. Catalytic Enantioselective Biltz Synthesis. Angew Chem Int Ed Engl 2023; 62:e202313797. [PMID: 37814442 DOI: 10.1002/anie.202313797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
The Biltz synthesis establishes straightforward access to 5,5-disubstituted (thio)hydantoins by combining a 1,2-diketone and a (thio)urea. Its appealing features include inherent atom and step economy together with the potential to generate structurally diverse products. However, control of the stereochemistry of this reaction has proven to be a daunting challenge. Herein, we describe the first example of enantioselective catalytic Biltz synthesis which affords more than 40 thiohydantoins with high stereo- and regio-control, irrespective of the symmetry of thiourea structure. A one pot synthesis of corresponding hydantoins is also documented. Remarkably, experimental studies and DFT calculations establish the reaction pathway and origin of stereoselectivity.
Collapse
Affiliation(s)
- Di Tian
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Zhuo-Chen Li
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Ze-Hua Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Yu-Ping He
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, Shandong, China
| | - Hua Wu
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| |
Collapse
|
14
|
Chen L, Luo ZF, Ye P, Mao YJ, Xu ZY, Xu DQ, Lou SJ. Z-Selective access to α-trifluoromethyl arylenes through Pd-catalysed fluoroarylation of 1,1-difluoroallenes. Org Biomol Chem 2023; 21:8979-8983. [PMID: 37934046 DOI: 10.1039/d3ob01574b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The synthesis of stereo-defined α-trifluoromethyl arylenes is of great importance in medical chemistry, organic chemistry, and materials science. However, despite the recent advances, the Z-selective formation of α-trifluoromethyl arylenes has remained underdeveloped. Here, we describe a facile approach towards Z-α-trifluoromethyl arylenes through Pd-catalysed stereoselective fluoroarylation of 1,1-difluoroallenes in the presence of a bulky monophosphine ligand.
Collapse
Affiliation(s)
- Lei Chen
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Ze-Feng Luo
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Peng Ye
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yang-Jie Mao
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhen-Yuan Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shao-Jie Lou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
15
|
Goyal K, Kukier GA, Chen X, Turlik A, Houk KN, Sarpong R. Rearrangement of a carboxy-substituted spiro[4.4]nonatriene to annulated fulvenes through a Pd(ii)-mediated 1,5-vinyl shift. Chem Sci 2023; 14:11809-11817. [PMID: 37920349 PMCID: PMC10619539 DOI: 10.1039/d3sc03222a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023] Open
Abstract
A novel synthesis of aryl-substituted, enantioenriched fulvenes from an oxidative Heck cascade and rearrangement of a carboxy-substituted spiro[4.4]nonatriene is disclosed. Mechanistic investigations with density functional theory (DFT) calculations and empirical results support the net transformation occurring through a novel Pd(ii)-mediated 1,5-vinyl shift from a vinyl-palladium intermediate that terminates with protodepalladation. This spiro-to-fused bicycle conversion tolerates a range of electron-rich and deficient arylboronic acids to give a range of mono- and diaryl substituted annulated fulvenes in moderate to good yields and enantiomeric ratios. Overall, this work connects two classes of molecules with a rich history in physical organic chemistry.
Collapse
Affiliation(s)
- Karan Goyal
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Garrett A Kukier
- Department of Chemistry and Biochemistry, University of California Los Angeles CA 90095 USA
| | - Xiangyang Chen
- Department of Chemistry and Biochemistry, University of California Los Angeles CA 90095 USA
| | - Aneta Turlik
- Department of Chemistry and Biochemistry, University of California Los Angeles CA 90095 USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California Los Angeles CA 90095 USA
| | - Richmond Sarpong
- Department of Chemistry, University of California Berkeley CA 94720 USA
| |
Collapse
|
16
|
Liu SC, Fang DC. DFT Studies on the Mechanisms of Carboamination/Diamination of Unactivated Alkenes Mediated by Pd(IV) Intermediates. J Org Chem 2023; 88:14540-14549. [PMID: 37773964 DOI: 10.1021/acs.joc.3c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Density functional theory (DFT) calculations have been employed to investigate the mechanism of carboamination and diamination of unactivated alkenes mediated by Pd(IV) intermediates. Both reactions share a common Pd(IV) intermediate, serving as the starting point for either the carboamination or the diamination pathway. The formation of this Pd(IV) intermediate encompasses a transition state that substantially impacts the turnover frequency (TOF) of catalytic cycles, with an apparent activation free-energy barrier of 26.1 kcal mol-1. Carboamination of unactivated alkenes proceeds through the coordination of a toluene molecule, C-H activation, inner reductive elimination, and the separation of the carboamination product from this intermediate, while diamination of unactivated alkenes involves the formation of the ion nucleophile, SN2 attack, and the separation of the diamination product. A comparison of the free-energy profiles for carboamination and diamination of unactivated alkenes can elucidate the origin of the chemoselectivity, and Bader's atoms in molecules (AIM) wave function analyses have been performed to analyze the contributions of the outer C-N bonding in the diamination process.
Collapse
Affiliation(s)
- Si-Cong Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - De-Cai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
17
|
Gong J, Wang Q, Zhu J. Diverting the 5- exo-Trig Oxypalladation to Formally 6- endo-Trig Fluorocycloetherification Product through 1,2-O/Pd(IV) Dyotropic Rearrangement. J Am Chem Soc 2023; 145:15735-15741. [PMID: 37462356 DOI: 10.1021/jacs.3c06158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Pd-catalyzed cyclizative functionalization of γ-hydroxyalkenes affords tetrahydrofuran derivatives via a key 5-exo-trig oxypalladation step. Herein, we report a palladium(II)-catalyzed, Selectfluor-mediated formal 6-endo-trig fluorocycloetherification of γ-hydroxyalkenes for the synthesis of functionalized tetrahydropyrans. Mechanistically, an σ-alkyl-Pd(II) intermediate resulting from the 5-exo-trig oxypalladation process is isolated and characterized by X-ray crystallographic analysis. Its oxidation with Selectfluor to Pd(IV) triggers the chemoselective 1,2-O/Pd(IV) dyotropic rearrangement affording, after C-F bond-forming reductive elimination, the tetrahydropyrans with concurrent generation of a tertiary carbon-fluorine bond. The occurrence of this 1,2-positional interchange is further evidenced by trapping the rearranged quaternary C(sp3)-Pd bond by an internal nucleophile that is materialized by the development of a Pd(II)-catalyzed oxidative bis-heterocyclization of alkenes.
Collapse
Affiliation(s)
- Jing Gong
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Pan Q, Ping Y, Kong W. Nickel-Catalyzed Ligand-Controlled Selective Reductive Cyclization/Cross-Couplings. Acc Chem Res 2023; 56:515-535. [PMID: 36688822 DOI: 10.1021/acs.accounts.2c00771] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
ConspectusThe use of quaternary stereocenters during lead candidate optimization continues to grow because of improved physiochemical and pharmacokinetic profiles of compounds with higher sp3 fraction. Pd-catalyzed redox-neutral alkene difunctionalization involving carbopalladation of alkenes followed by nucleophilic-trapping σ-alkyl-palladium intermediates has been developed as an efficient method to construct quaternary stereocenters. However, the low chemoselectivity and air sensitivity of organometallic nucleophiles, as well as their low availability and accessibility, limit the scope of application of this elegant strategy. Recently, Ni-catalyzed reductive cross-coupling has evolved into a privileged strategy to easily construct valuable C(sp3)-C bonds. Despite great progress, the enantioselective coupling of C(sp3) electrophiles still relies on activated or functionalized alkyl precursors, which are often unstable and require multiple steps to prepare. Therefore, Ni-catalyzed reductive difunctionalization of alkenes via selective cyclization/cross-coupling was developed. This strategy not only offers a robust and practical alternative for traditional redox-neutral alkene difunctionalization but also provides strategic complementarity for reductive cross-coupling of activated alkyl electrophiles. In this Account, we summarize the latest results from our laboratory on this topic. These findings mainly include our explorations in modulating the enantioselectivity and cyclization mode of reductive cyclization/cross-couplings.We will first discuss Ni-catalyzed enantioselective reductive cyclization/cross-coupling to construct valuable chiral heterocycles with quaternary stereocenters and focus on the effects of ligands, reductants, and additives and their roles in reductive cross-coupling. A wide range of electrophiles have been explored, including aryl halides, vinyl halides, alkynyl halides, gem-difluoroalkenes, CO2, trifluoromethyl alkenes, and cyano electrophiles. The synthetic potential of this approach has also been demonstrated in the synthesis of biologically active natural products and drug molecules. Second, we will detail how to tune the steric effects of nickel catalysts by modifying bipyridine ligands for regiodivergent cyclization/cross-couplings. Specifically, the use of bidentate ligands favors exo-selective cyclization/cross-coupling, while the use of a carboxylic acid-modified bipyridine ligand permits endo-selective cyclization/cross-coupling. We will also show how to activate the amide substrate by altering the electronic and steric properties of substituents on the nitrogen, thereby enabling the nucleophilic addition of aryl halides to amide carbonyls. Further investigation of ligand properties has led to tunable cyclization/cross-couplings (addition to the amide carbonyl vs 7-endo-cyclization) for the divergent synthesis of pharmacologically important 2-benzazepine frameworks. Finally, we serendipitously discover that modifying the ligands of nickel catalysts and changing the oxidation state of nickel can control the migratory aptitude of different groups, thus providing a switchable skeletal rearrangement strategy. This transformation is of high synthetic value because it represents a conceptually unprecedented new approach to C-C bond activation. Thus, this Account not only summarizes synthetic methods that allow the formation of valuable chiral heterocycles with quaternary stereocenters using a wide variety of electrophiles but also provides insight into the relationship between ligand structure, substrate, and cyclization selectivity.
Collapse
Affiliation(s)
- Qi Pan
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Yuanyuan Ping
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Wangqing Kong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
19
|
Han J, Xiao B, Sun TY, Wang M, Jin L, Yu W, Wang Y, Fang DM, Zhou Y, Wu XF, Wu YD, Liao J. Enantioselective Double Carbonylation Enabled by High-Valent Palladium Catalysis. J Am Chem Soc 2022; 144:21800-21807. [DOI: 10.1021/jacs.2c10559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Jian Han
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Bo Xiao
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Computational Chemistry and Drug Design, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tian-Yu Sun
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Computational Chemistry and Drug Design, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Min Wang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Long Jin
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wangzhi Yu
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuqin Wang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Dong-Mei Fang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yan Zhou
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023,, China
| | - Yun-Dong Wu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Computational Chemistry and Drug Design, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jian Liao
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
20
|
Csenki JT, Tóth BL, Béke F, Varga B, P. Fehér P, Stirling A, Czégény Z, Bényei A, Novák Z. Synthesis of Hydrofluoroolefin-Based Iodonium Reagent via Dyotropic Rearrangement and Its Utilization in Fluoroalkylation. Angew Chem Int Ed Engl 2022; 61:e202208420. [PMID: 35876269 PMCID: PMC9540448 DOI: 10.1002/anie.202208420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 11/25/2022]
Abstract
[1,2]-shift of atoms in alkyl fragments belongs to the class of dyotropic rearrangements. Various atoms, including halogens can be involved in the migration, however participation of iodine is unprecedented. Herein, we report our experimental and DFT studies on the oxidation triggered dyotropic rearrangement of iodo and chloro functions via butterfly-type transition state to demonstrate the migrating ability of λ3 -iodane centre. With the exploitation of dyotropic rearrangement we designed and synthesized a novel fluoroalkyl iodonium reagent from industrial feedstock gas HFO-1234yf. We demonstrated that the hypervalent reagent serves as an excellent fluoroalkylation agent for various amines and nitrogen heterocycles.
Collapse
Affiliation(s)
- János T. Csenki
- ELTE “Lendület” Catalysis and Organic Synthesis Research Group DepartmentInstitute of ChemistryEötvös Loránd UniversityPázmány Péter stny. 1/A1117BudapestHungary
| | - Balázs L. Tóth
- ELTE “Lendület” Catalysis and Organic Synthesis Research Group DepartmentInstitute of ChemistryEötvös Loránd UniversityPázmány Péter stny. 1/A1117BudapestHungary
| | - Ferenc Béke
- ELTE “Lendület” Catalysis and Organic Synthesis Research Group DepartmentInstitute of ChemistryEötvös Loránd UniversityPázmány Péter stny. 1/A1117BudapestHungary
| | - Bálint Varga
- ELTE “Lendület” Catalysis and Organic Synthesis Research Group DepartmentInstitute of ChemistryEötvös Loránd UniversityPázmány Péter stny. 1/A1117BudapestHungary
| | - Péter P. Fehér
- Research Centre for Natural SciencesEötvös Loránd Research NetworkMagyar Tudósok körútja 21117BudapestHungary
| | - András Stirling
- Research Centre for Natural SciencesEötvös Loránd Research NetworkMagyar Tudósok körútja 21117BudapestHungary
- Department of ChemistryEszterházy Károly Catholic UniversityLeányka u. 63300EgerHungary
| | - Zsuzsanna Czégény
- Research Centre for Natural SciencesEötvös Loránd Research NetworkMagyar Tudósok körútja 21117BudapestHungary
| | - Attila Bényei
- Department of Physical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Zoltán Novák
- ELTE “Lendület” Catalysis and Organic Synthesis Research Group DepartmentInstitute of ChemistryEötvös Loránd UniversityPázmány Péter stny. 1/A1117BudapestHungary
| |
Collapse
|
21
|
Remete AM, Nonn M, Kiss L. Palladium‐Catalyzed Arylfluorination of Alkenes: A Powerful New Approach to Organofluorine Compounds. Chemistry 2022; 28:e202202076. [DOI: 10.1002/chem.202202076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Attila Márió Remete
- Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged, Eötvös u. 6 Hungary
| | - Melinda Nonn
- MTA TTK Lendület Artificial Transporter Research Group Institute of Materials and Environmental Chemistry Research Center for Natural Sciences Hungarian Academy of Sciences Magyar Tudósok krt. 2 1117 Budapest Hungary
| | - Loránd Kiss
- Institute of Organic Chemistry Stereochemistry Research Group Research Centre for Natural Sciences 1117 Budapest Magyar tudósok krt. 2 Hungary
| |
Collapse
|
22
|
Wang JP, Song S, Wu Y, Wang P. Construction of azaheterocycles via Pd-catalyzed migratory cycloannulation reaction of unactivated alkenes. Nat Commun 2022; 13:5059. [PMID: 36030256 PMCID: PMC9420149 DOI: 10.1038/s41467-022-32726-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Azahetereocycles constitute important structural components in many biologically active natural compounds and marketed drugs, and represent the most promising scaffolds in drug discovery. Accordingly, the development of efficient and general synthetic methods for the construction of diverse azaheterocycles is the major goal in synthetic chemistry. Herein, we report the efficient construction of a wide range of azaheterocycles via a Pd-catalyzed migratory cycloannulation strategy with unactivated alkenes. This strategy enables the rapid synthesis of a series of 6-, 7- and 8-membered azaheterocycles in high efficiency, and features a broad substrate scope, excellent functional group tolerance under redox-neutral conditions. The significance of this finding is demonstrated by the efficient synthesis of drug-like molecules with high step-economy. Preliminary mechanistic investigations reveal that this reaction underwent a sequentially migratory insertion to alkenes, metal migration process, and the aza-Michael addition to a quinone methide intermediate.
Collapse
Affiliation(s)
- Jin-Ping Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai, 200032, PR China
| | - Shuo Song
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai, 200032, PR China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai, 200032, PR China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai, 200032, PR China. .,CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, PR China. .,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, PR China.
| |
Collapse
|
23
|
Yang G, Wu H, Gallarati S, Corminboeuf C, Wang Q, Zhu J. Migrative Carbofluorination of Saturated Amides Enabled by Pd-Based Dyotropic Rearrangement. J Am Chem Soc 2022; 144:14047-14052. [PMID: 35916403 DOI: 10.1021/jacs.2c06578] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Directly editing an all-carbon quaternary carbon itself of nonstrained acyclic molecules remains underexploited despite the recent advances in the fields of both C-H and C-C bond activation. Herein, we report a palladium-catalyzed migrative carbofluorination of saturated amides enabled by the activation of both the C(sp3)-H and the Cquaternary-Cσ bonds. In this transformation, the α-quaternary carbon of Weinreb amides is converted to α-tertiary fluoride with concurrent migration of an aryl or an amido group from the α- to β-carbon. DFT calculations indicate that the dyotropic rearrangement proceeds through an unusual anti-selective [2.1.0] bicyclic transition state. The reaction, compatible with a broad range of functional groups, is stereospecific and is applicable to the synthesis of enantioenriched products.
Collapse
Affiliation(s)
- Guoqiang Yang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Hua Wu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland.,School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Simone Gallarati
- Laboratory for Computational Molecular Design (LCMD), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design (LCMD), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Csenki JT, Tóth BL, Béke F, Varga B, Fehér PP, Stirling A, Czégény Z, Bényei A, Novák Z. Synthesis of Hydrofluoroolefin‐based Iodonium Reagent via Dyotropic Rearrangement and Its Utilization in Fluoroalkylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- János Tivadar Csenki
- Eötvös Loránd Tudományegyetem: Eotvos Lorand Tudomanyegyetem Institute of Chemistry HUNGARY
| | - Balázs László Tóth
- Eötvös Loránd Tudományegyetem: Eotvos Lorand Tudomanyegyetem Institute of Chemistry HUNGARY
| | - Ferenc Béke
- Eötvös Loránd Tudományegyetem: Eotvos Lorand Tudomanyegyetem Institute of Chemistry HUNGARY
| | - Bálint Varga
- Eötvös Loránd Tudományegyetem: Eotvos Lorand Tudomanyegyetem Institute of Chemistry HUNGARY
| | - Péter Pál Fehér
- Research Centre for Natural Sciences: Termeszettudomanyi Kutatokozpont Research Centre for Natural Sciences: Termeszettudomanyi Kutatokozpont HUNGARY
| | - András Stirling
- Research Centre for Natural Sciences: Termeszettudomanyi Kutatokozpont Research Centre for Natural Sciences: Termeszettudomanyi Kutatokozpont HUNGARY
| | - Zsuzsanna Czégény
- Research Centre for Natural Sciences: Termeszettudomanyi Kutatokozpont Research Centre for Natural Sciences: Termeszettudomanyi Kutatokozpont HUNGARY
| | - Attila Bényei
- University of Debrecen: Debreceni Egyetem Department of Physical Chemistry HUNGARY
| | - Zoltán Novák
- Eotvos Lorand Tudomanyegyetem Institute of Chemistry Pázány Péter stny 1/a 1117 Budapest HUNGARY
| |
Collapse
|
25
|
Ping Y, Pan Q, Guo Y, Liu Y, Li X, Wang M, Kong W. Switchable 1,2-Rearrangement Enables Expedient Synthesis of Structurally Diverse Fluorine-Containing Scaffolds. J Am Chem Soc 2022; 144:11626-11637. [DOI: 10.1021/jacs.2c02487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yuanyuan Ping
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Qi Pan
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Ya Guo
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Yongli Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao Li
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Wangqing Kong
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
26
|
Xu L, Shi H. Cobalt-catalyzed divergent functionalization of N-sulfonyl amines via β-carbon elimination. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Fujii T, Gallarati S, Corminboeuf C, Wang Q, Zhu J. Modular Synthesis of Benzocyclobutenes via Pd(II)-Catalyzed Oxidative [2+2] Annulation of Arylboronic Acids with Alkenes. J Am Chem Soc 2022; 144:8920-8926. [PMID: 35561421 DOI: 10.1021/jacs.2c03565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Benzocyclobutenes (BCBs) are highly valuable compounds in organic synthesis, medicinal chemistry, and materials science. However, catalytic modular synthesis of functionalized BCBs from easily accessible starting materials remains limited. We report herein an efficient synthesis of diversely functionalized BCBs by a Pd(II)-catalyzed formal [2+2] annulation between arylboronic acids and alkenes in the presence of N-fluorobenzenesulfonimide (NFSI). An intermolecular carbopalladation followed by palladium oxidation, intramolecular C(sp2)-H activation by a transient C(sp3)-Pd(IV) species, and selective carbon-carbon (C-C) bond-forming reductive elimination from a high-valent five-membered palladacycle is proposed to account for the reaction outcome. Kinetically competent oxidation of alkylPd(II) to alkylPd(IV) species is important to avoid the formation of a Heck adduct. The reaction forges two C-C bonds of the cyclobutene core and is compatible with a wide range of functional groups. No chelating bidentate directing group in the alkene part is needed for this transformation.
Collapse
Affiliation(s)
- Takuji Fujii
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Simone Gallarati
- Laboratory for Computational Molecular Design (LCMD), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design (LCMD), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
28
|
Jiang L, Sarró P, Teo WJ, Llop J, Suero MG. Catalytic alkene skeletal modification for the construction of fluorinated tertiary stereocenters. Chem Sci 2022; 13:4327-4333. [PMID: 35509472 PMCID: PMC9006967 DOI: 10.1039/d2sc00968d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/11/2022] [Indexed: 11/25/2022] Open
Abstract
Herein we describe the first construction of fluorinated tertiary stereocenters based on an alkene C(sp2)-C(sp2) bond cleavage. The new process, that takes advantage of a Rh-catalyzed carbyne transfer, relies on a branched-selective fluorination of tertiary allyl cations and is distinguished by a wide scope including natural products and drug molecule derivatives as well as adaptability to radiofluorination.
Collapse
Affiliation(s)
- Liyin Jiang
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
| | - Pau Sarró
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
- Departament de Química Analítica I Química Orgànica, Universitat Rovira I Virgili, C. Marcel·lí Domingo, 1 43007 Tarragona Spain
| | - Wei Jie Teo
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
| | - Jordi Llop
- CIC BiomaGUNE, Basque Research and Technology Alliance 20014 San Sebastián Guipuzcoa Spain
| | - Marcos G Suero
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
| |
Collapse
|
29
|
Lin X, Mo Y. Partial Double Metal-Carbon Bonding Model in Transition Metal Methyl Compounds. Inorg Chem 2022; 61:2892-2902. [PMID: 35104122 DOI: 10.1021/acs.inorgchem.1c03619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The chemical bond between a transition metal and a methyl group (M-CH3) is typically defined as a single covalent bond, which is of fundamental significance and general interest in understanding the structural properties and reactivity of transition metal alkyl compounds. Herein, we demonstrate that the M-CH3 bonding involves varying σ and π components and thus should be best described in terms of the partial double M═CH3 bond. The often-neglected π bonding stems from an occupied π-symmetric orbital of the methyl group comprising all three C-H σ bonds (but one C-H' contributes more than the other two) and a vacant low-lying metal d(π) orbital, and is associated with the intramolecular C-H'···M agostic effect (i.e., an acute M-C-H' angle and a short H'···M distance), whose origin is still controversial. We quantify the geometric and energetic impacts of the π interaction involved in the M-CH3 bond by explicitly computing the intramolecular πCH' → dM interaction with the ab initio valence bond (VB) theory. Our computations of the ligand-free [TiCH3]3+ and a series of metallocene catalysts provide a direct proof for the presence of the π bonding in M-CH3 bonds, which is the cause for the agostic effect. The partial double M═CH3 bonding model is not only validated by a range of bonding analyses including VB self-consistent field (VBSCF)-based energy decomposition and quantum theory of atoms in molecules (QTAIM) but also authenticated by the specific activity of double M═CH3 bonds in the C-H activation and olefin insertion. More importantly, the σ bond gradually switches from a classical covalent bond to a novel charge-shift bond with the π bonding becoming increasingly significant. We anticipate that the recognition of the π interaction between electrophilic metal centers and C-H bonds can benefit the understanding of the nature of metal-carbon bonds in transition metal ethyl, alkyl, and carbene compounds.
Collapse
Affiliation(s)
- Xuhui Lin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| |
Collapse
|
30
|
Ye ZS, Li JC, Wang G. Transition-Metal-Catalyzed Enantioselective Synthesis of Indoles from 2-Alkynylanilines. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1729-9572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractOptically active indole derivatives are ubiquitous in natural products and are widely recognized as privileged components in pharmacologically relevant compounds. Therefore, developing catalytic asymmetric approaches for constructing indole derivatives is highly desirable. In this short review, we summarize methods for the transition-metal-catalyzed enantioselective synthesis of indoles from 2-alkynylanilines.1 Introduction2 Aminometalation-Triggered Asymmetric Cross-Coupling Reactions/Insertion2.1 Asymmetric Cross-Coupling Reactions2.2 Asymmetric Insertion of C=O, C=C and C≡N Bonds3 Asymmetric Relay Catalysis4 Conclusion
Collapse
|
31
|
Qin H, Cai W, Wang S, Guo T, Li G, Lu H. N-Atom Deletion in Nitrogen Heterocycles. Angew Chem Int Ed Engl 2021; 60:20678-20683. [PMID: 34227207 DOI: 10.1002/anie.202107356] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/02/2021] [Indexed: 11/10/2022]
Abstract
Excising the nitrogen in secondary amines, and coupling the two residual fragments is a skeletal editing strategy that can be used to construct molecules with new skeletons, but which has been largely unexplored. Here we report a versatile method of N-atom excision from N-heterocycles. The process uses readily available N-heterocycles as substrates, and proceeds by N-sulfonylazidonation followed by the rearrangement of sulfamoyl azide intermediates, providing various cyclic products. Examples are provided of deletion of nitrogen from natural products, synthesis of chiral O-heterocycles from commercially available chiral β-amino alcohols, formal inert C-H functionalization through a sequence of N-directed C-H functionalization and N-atom deletion reactions in which the N-atom can serve as a traceless directing group.
Collapse
Affiliation(s)
- Haitao Qin
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Wangshui Cai
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shuang Wang
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Ting Guo
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Guigen Li
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.,Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Hongjian Lu
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
32
|
Qin H, Cai W, Wang S, Guo T, Li G, Lu H. N‐Atom Deletion in Nitrogen Heterocycles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Haitao Qin
- Institute of Chemistry and BioMedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Wangshui Cai
- Institute of Chemistry and BioMedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Shuang Wang
- Institute of Chemistry and BioMedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Ting Guo
- Institute of Chemistry and BioMedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Guigen Li
- Institute of Chemistry and BioMedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
- Department of Chemistry and Biochemistry Texas Tech University Lubbock TX 79409-1061 USA
| | - Hongjian Lu
- Institute of Chemistry and BioMedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|