1
|
Xu Z, Wang K, Suslick BA, Moore JS. Circular Workflow for Thermosets: Activatable Repeat Unit Design for Regenerative Frontal Polymerization. J Am Chem Soc 2025. [PMID: 39999420 DOI: 10.1021/jacs.4c18018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Thermoset materials are indispensable in high-performance applications due to their exceptional mechanical properties, chemical resistance, and thermal stability. However, their cross-linked structure poses significant challenges for sustainable manufacturing and end-of-life reprocessing. Herein, we present a novel approach to regenerate high-performance polydicyclopentadiene (pDCPD) thermoset materials through a one-pot deconstruction-reactivation strategy enabled by an "activatable repeat unit", norbornene-furan (NBF). The pendant furyl ring of NBF remains intact during the initial curing reaction via frontal ring-opening metathesis polymerization (FROMP) and retains its reactivity for subsequent Diels-Alder cycloaddition with the in situ generated benzyne. Deconstruction-reactivation proceeds in one pot to effectively recover the activated oligomers for further FROMP curing, thereby completing the circular workflow. The regenerated materials demonstrate retention of key properties, including glass transition temperature (Tg), stiffness, and yield strength, while maintaining their deconstruction capability. This strategy provides a sustainable framework for thermoset material design and regeneration, addressing critical challenges in material circularity and environmental impact.
Collapse
Affiliation(s)
- Zhenchuang Xu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kecheng Wang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Benjamin A Suslick
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Liu C, Huang X, Yu X, Wang Z, Shen Y, Yuan S, Wang Y. Degradable Radical Polymer Cathode for Lithium Battery with Long-Term Cycling Capability. Angew Chem Int Ed Engl 2025; 64:e202415915. [PMID: 39719620 DOI: 10.1002/anie.202415915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/23/2024] [Accepted: 12/23/2024] [Indexed: 12/26/2024]
Abstract
Polymer-based organic electrodes for rechargeable batteries are attractive due to their design flexibility, sustainability, and environmental compatibility. Unfortunately, waste management of conventional polymer materials typically involves incineration, which emits greenhouse gases. Consequently, degradable polymers should be ideal candidates for future green batteries. However, to date, degradable polymer electrodes have been rarely reported. The few that have been developed exhibit very low capacities (<40 mAh g-1) and poor cycle stability (<100 cycles). Herein, we synthesize a degradable polymer cathode for lithium batteries by copolymerizing 2,3-dihydrofuran with TEMPO-containing norbornene derivatives. This polymer cathode demonstrates a two-electron redox reaction charge storage mechanism, exhibiting a high reversible capacity of 100.4 mAh g-1 and a long cycle life of over 1000 cycles. Furthermore, under a mild acidic environment, this polymer electrode material undergoes complete decomposition via the hydrolysis of enol ethers, confirmed by gel permeation chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. These encouraging results shed light on the design of degradable polymer electrodes.
Collapse
Affiliation(s)
- Chang Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Xin Huang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Xiaomeng Yu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Zhaoqi Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Yun Shen
- National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering Kunming, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Shouyi Yuan
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
- National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering Kunming, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| |
Collapse
|
3
|
Xiong W, Gutekunst WR. Ring-Opening Metathesis Polymerization of 1,2-Dihydroazete Derivatives. Angew Chem Int Ed Engl 2025; 64:e202416124. [PMID: 39578228 DOI: 10.1002/anie.202416124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Fischer carbenes have recently found great utility in the construction of degradable metathesis materials, but investigations have been limited to oxygen-containing enol ether monomers. Here, the ring-opening metathesis polymerization of 1,2-dihydroazetes is reported. The polymerization proceeds regioselectively, and the resulting molecular weights are targetable by adjusting the Grubbs initiator loading. Under acidic conditions, the resulting polymers degrade into 3-aminopropanal derivatives through hydrolysis of the recurring enamide motifs in the polymer backbone. Additionally, the underlying kinetics and thermodynamics of the polymerization were studied through DFT calculations to elucidate the origins of metathesis regioselectivity. This work further expands the suite of monomers available to generate degradable metathesis materials and provides a flexible platform for target applications.
Collapse
Affiliation(s)
- Wei Xiong
- Department School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
| | - Will R Gutekunst
- Department School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
| |
Collapse
|
4
|
Tan C, Si G, Zou C, Chen C. Functional Polyolefins and Composites. Angew Chem Int Ed Engl 2025:e202424529. [PMID: 39821929 DOI: 10.1002/anie.202424529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/19/2025]
Abstract
Polyolefins are simple hydrocarbons that require additional chemical modifications or functional additives to give them custom functions. Recent research in the development of functional polyolefins has surpassed the traditional approach of simply improving surface properties by incorporating polar moieties. Creating custom functionalized polyolefins by using specific functional units has attracted increasing attention. This review summarizes advances in preparing custom functionalized polyolefin materials using functional units such as comonomers, chain-transfer agents, post-polymerization modification reagents, and functional fillers. Exploring new functional units and innovative synthetic strategies will further enhance the performance and expand the applications of functional polyolefins.
Collapse
Affiliation(s)
- Chen Tan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei, Anhui, 230601, China
| | - Guifu Si
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026
| | - Chen Zou
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026
| | - Changle Chen
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026
| |
Collapse
|
5
|
Chen S, Zhang C, Zhang X. Autodegradable Polymers: Complete Degradation without Any Trigger, Tunable Performance, and Biomedical Applications. J Am Chem Soc 2024; 146:34852-34860. [PMID: 39630650 DOI: 10.1021/jacs.4c14077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Degradable polymers are an emerging research interest. The innovation of new degradable polymers for biomedical applications is challenging due to strict demands including nontoxicity of polymers and degraded products, complete degradation to avoid polymer residues in the body, and other suitable properties. Here, we demonstrate a series of degradable polymers for sustained-release drug applications synthesized by the alternating copolymerization of cyclic anhydrides and Schiff bases. In addition to common feedstocks, the copolymerization is versatile and catalyst-free, affording polymers incorporating cyclic topologies and in-chain ester and peptoid groups. Particularly, the polymers exhibit self- and autodegradation without any trigger, which is distinct from remaining degradation mechanisms. The degradation performance is widely regulated by the polymer structure and external temperature, resulting in complete degradation from a few hours to several months. Owing to their unique properties, the polymers are approved for biomedical applications, as revealed soundly through cell viability assay, in vitro and in vivo drug release.
Collapse
Affiliation(s)
- Shuohong Chen
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengjian Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinghong Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Lee D, Wang H, Jiang SY, Verduzco R. Versatile Light-Mediated Synthesis of Degradable Bottlebrush Polymers Using α-Lipoic Acid. Angew Chem Int Ed Engl 2024; 63:e202409323. [PMID: 39150823 DOI: 10.1002/anie.202409323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/18/2024]
Abstract
Bottlebrush polymers have a variety of useful properties including a high entanglement molecular weight, low Young's modulus, and rapid kinetics for self-assembly. However, the translation of bottlebrushes to real-world applications is limited by complex, multi-step synthetic pathways and polymerization reactions that rely on air-sensitive catalysts. Additionally, most bottlebrushes are non-degradable. Herein, we report an inexpensive, versatile, and simple approach to synthesize degradable bottlebrush polymers under mild reaction conditions. Our approach relies on the "grafting-through" polymerization of α-lipoic acid (LA)-functionalized macromonomers. These macromonomers can be polymerized under mild, catalyst-free conditions, and due to reversibility of the disulfide bond in LA, the resulting bottlebrush polymers can be depolymerized by cleaving disulfide backbone bonds. Bottlebrushes with various side-chain chemistries can be prepared through the atom transfer radical polymerization (ATRP) of LA-functionalized macromonomers, and the backbone length is governed by the macromonomer molecular weight and solvent polarity. We also demonstrate that LA-functionalized macromonomers can be copolymerized with acrylates to form degradable bottlebrush networks. This work demonstrates the preparation of degradable bottlebrush polymers with a variety of side-chain chemistries and provides insight into the light-mediated grafting-through polymerization of dithiolane-functionalized macromonomers.
Collapse
Affiliation(s)
- Dongjoo Lee
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St, 77005, Houston, TX, United States
| | - Hanqing Wang
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St, 77005, Houston, TX, United States
| | - Shu-Yan Jiang
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St, 77005, Houston, TX, United States
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St, 77005, Houston, TX, United States
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St, 77005, Houston, TX, United States
| |
Collapse
|
7
|
Hayano S, Kumazawa K, Isobe K, Sakurai T, Wang S. Depolymerization of vulcanized poly(cyclopentene), poly(norbornene- ran-cyclopentene) and poly( endo-dicyclopentadiene- ran-cyclopentene) rubbers via ring-closing metathesis depolymerization for monomer recycling. RSC Adv 2024; 14:37143-37154. [PMID: 39569115 PMCID: PMC11577345 DOI: 10.1039/d4ra06914e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024] Open
Abstract
Herein, we report a study on the preparation, properties, and depolymerization of pristine and vulcanized poly(cyclopentene) (poly(CP)), poly(norbornene-ran-cyclopentene) (poly(NB-ran-CP)) and poly(endo-dicyclopentadiene-ran-cyclopentene) (poly (DCP-ran-CP)). First, poly(CP), poly(NB-ran-CP) and poly(DCP-ran-CP) were prepared with high molecular weight control (M w = 200 000-500 000) using dichloro(3-phenyl-1H-inden-1-ylidene)bis(tricyclohexylphosphine)ruthenium(ii). Next, carbon black, zinc oxide and other additives were blended into the pristine polymers using a mixer and twin roll rubber mills at 50 °C, followed by vulcanization in metal molds at 160 °C for 10 min, resulting in molded black rubber specimens. Crosslinking of the vulcanized rubbers was confirmed by solvent swelling test. Ring-closing metathesis depolymerization (RCMD) of the pristine and vulcanized polymers was conducted. Pristine poly(CP) was smoothly degraded into cyclopentene monomers with only 0.001 mol% of [1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene]dichloro(phenylmethylene)(tricyclohexylphosphino)ruthenium (H2IMes)(PCy3)Cl2Ru[double bond, length as m-dash]CHPh (H2IMes = 1,3-dimesityl-4,5-dihydroimidazolylidene) in toluene at 25 °C for 1 h ([poly(CP) unit] = 0.50 M). In the case of the copolymers, degradation of pristine poly(NB-ran-CP) and poly(DCP-ran-CP) via RCMD also delivered a cyclopentene monomer and residual polynorbornene and poly(endo-dicyclopentadiene), respectively, demonstrating the feasibility of cyclopentene recycling from copolymers. Complete depolymerization of vulcanized poly(CP) rubber was also efficiently achieved using 1 mol% of (H2IMes)(PCy3)Cl2Ru[double bond, length as m-dash]CHPh, affording black inorganic precipitate and separable volatile cyclopentene monomer (in toluene at 60 °C for 24 h, [poly(CP)] = 0.50 M). Similarly, vulcanized poly(NB-ran-CP) (or poly(DCP-ran-CP)) rubber was successfully depolymerized under the same conditions, resulting in black inorganic precipitate, polynorbornene (or poly(endo-dicyclopentadiene)) and a cyclopentene monomer. This study provides a new strategy for monomer recycling of rubber wastes made from cyclopentene-based rubber under relatively mild conditions, contributing to a circular economy and resource efficiency.
Collapse
Affiliation(s)
- Shigetaka Hayano
- Zeon Corporation R&D Center 1-2-1 Yako, Kawasaki-ward Kawasaki-city Kanagawa-pref. 210-9507 Japan +81-44-276-3957 +81-80-1006-7136
| | - Kazuki Kumazawa
- Zeon Corporation R&D Center 1-2-1 Yako, Kawasaki-ward Kawasaki-city Kanagawa-pref. 210-9507 Japan +81-44-276-3957 +81-80-1006-7136
| | - Kosuke Isobe
- Zeon Corporation R&D Center 1-2-1 Yako, Kawasaki-ward Kawasaki-city Kanagawa-pref. 210-9507 Japan +81-44-276-3957 +81-80-1006-7136
| | - Takuro Sakurai
- Zeon Corporation R&D Center 1-2-1 Yako, Kawasaki-ward Kawasaki-city Kanagawa-pref. 210-9507 Japan +81-44-276-3957 +81-80-1006-7136
| | - Shengyang Wang
- Zeon Corporation R&D Center 1-2-1 Yako, Kawasaki-ward Kawasaki-city Kanagawa-pref. 210-9507 Japan +81-44-276-3957 +81-80-1006-7136
| |
Collapse
|
8
|
Cheng Y, Xie J, Lu Y, Tian W, Wu T, Chen F, Gao W, Jin Y, Yuan L, Wang B. Interfacial Pickering Emulsion Polycondensation for Degradable Nanocomposites. ACS Macro Lett 2024; 13:1605-1611. [PMID: 39515982 DOI: 10.1021/acsmacrolett.4c00647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Pickering emulsion polymerization is a practical method to fabricate functional composite materials. However, most reported systems proceed homogeneously within the stabilized monomer phase and create nondegradable chemical bonds. Here, interfacial Pickering emulsion polycondensation between aromatic aldehydes and polymercaptans is developed using sustainable cellulose nanoparticles as the stabilizer. When sulfonated cellulose nanocrystals (S-CNCs) were utilized, they also catalyzed the polycondensation to produce the oxidatively degradable S,S-acetal groups on the polymer chains. The influence of monomer and cellulose structures on the polymerization behavior and composite properties were compared.
Collapse
Affiliation(s)
- Yaming Cheng
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, Biomass Molecular Engineering Center, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Jingman Xie
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, Biomass Molecular Engineering Center, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Yanju Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wangmao Tian
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, Biomass Molecular Engineering Center, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Tong Wu
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, Biomass Molecular Engineering Center, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Fengqi Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Gao
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, Biomass Molecular Engineering Center, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Yu Jin
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, Biomass Molecular Engineering Center, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Liang Yuan
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, Biomass Molecular Engineering Center, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Baoxia Wang
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, Biomass Molecular Engineering Center, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| |
Collapse
|
9
|
Zhang N, Dong L, Wang Y, Wang X, Wen Y, Lu X, Dong Y, You W. Elucidating the backbone degradation mechanism of poly(7-oxa-2,3-diazanorbornene). Chem Commun (Camb) 2024; 60:13714-13717. [PMID: 39494486 DOI: 10.1039/d4cc04484c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Our recent study introduced a novel class of polymers, poly(7-oxa-2,3-diazanorbornene), characterized by synthetic accessibility and the capacity for living polymerization and degradation even under pH = 7.4 buffered conditions. In this work, our research delves into the polymer's degradation behavior, revealing a detailed mechanism of degradation under both acidic and neutral pH environments.
Collapse
Affiliation(s)
- Na Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Lianqiang Dong
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Inter-face and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Xiaoyang Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Yixing Wen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Inter-face and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueguang Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Inter-face and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanchen Dong
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Inter-face and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei You
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Morris PT, Watanabe K, Albanese KR, Kent GT, Gupta R, Gerst M, Read de Alaniz J, Hawker CJ, Bates CM. Scalable Synthesis of Degradable Copolymers Containing α-Lipoic Acid via Miniemulsion Polymerization. J Am Chem Soc 2024; 146:30662-30667. [PMID: 39466272 DOI: 10.1021/jacs.4c12438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
A robust method is described to synthesize degradable copolymers under aqueous miniemulsion conditions using α-lipoic acid as a cheap and scalable building block. Simple formulations of α-lipoic acid (up to 10 mol %), n-butyl acrylate, a surfactant, and a costabilizer generate stable micelles in water with particle sizes <200 nm. The ready availability of these starting materials facilitated performing polymerization reactions at large scales (4 L), yielding 600 g of poly(n-butyl acrylate-stat-α-lipoic acid) latexes that degrade under reducing conditions (250 kg mol-1 → 20 kg mol-1). Substitution of α-lipoic acid with ethyl lipoate further improves the solubility of dithiolane derivatives in n-butyl acrylate, resulting in copolymers that degrade to even lower molecular weights after polymerization and reduction. In summary, this convenient and scalable strategy provides access to large quantities of degradable copolymers and particles using cheap and commercially available starting materials.
Collapse
Affiliation(s)
- Parker T Morris
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Kodai Watanabe
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Kaitlin R Albanese
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Greggory T Kent
- Leeta Materials, Inc., Santa Barbara, California 93106, United States
| | - Rohini Gupta
- BASF Corporation California Research Alliance, Berkeley, California 94720, United States
| | - Matthias Gerst
- Polymers for Adhesives, BASF SE, Ludwigshafen am Rhein 67056, Germany
| | - Javier Read de Alaniz
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Christopher M Bates
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
11
|
Diana-Rivero R, Rivero DS, García-Martín A, Carrillo R, Tejedor D. Water as a Reactant: DABCO-Catalyzed Hydration of Activated Alkynes for the Synthesis of Divinyl Ethers. J Org Chem 2024; 89:15068-15074. [PMID: 39344303 PMCID: PMC11494655 DOI: 10.1021/acs.joc.4c01815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
A practical and efficient addition of water to readily available activated alkynes delivering divinyl ethers is reported. The reaction proceeds with full atom economy in a very straightforward experimental procedure. Additionally, of all the tertiary amines studied to catalyze the reaction, the best and most efficient is clearly DABCO (1,4-diazabicyclo[2.2.2]octane). Finally, the solvent choice is crucial for the efficiency of this process and we have found that the reaction is best performed in wet dichloromethane for propiolic esters and alkynones, and in wet acetonitrile for propiolamides.
Collapse
Affiliation(s)
- Raquel Diana-Rivero
- Instituto de Productos Naturales y
Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Astrofísico Francisco
Sánchez 3, 38 206 La Laguna, Tenerife, Islas Canarias, Spain
| | - David S. Rivero
- Instituto de Productos Naturales y
Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Astrofísico Francisco
Sánchez 3, 38 206 La Laguna, Tenerife, Islas Canarias, Spain
| | - Alba García-Martín
- Instituto de Productos Naturales y
Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Astrofísico Francisco
Sánchez 3, 38 206 La Laguna, Tenerife, Islas Canarias, Spain
| | - Romen Carrillo
- Instituto de Productos Naturales y
Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Astrofísico Francisco
Sánchez 3, 38 206 La Laguna, Tenerife, Islas Canarias, Spain
| | - David Tejedor
- Instituto de Productos Naturales y
Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Astrofísico Francisco
Sánchez 3, 38 206 La Laguna, Tenerife, Islas Canarias, Spain
| |
Collapse
|
12
|
Yang S, Du S, Zhu J, Ma S. Closed-loop recyclable polymers: from monomer and polymer design to the polymerization-depolymerization cycle. Chem Soc Rev 2024; 53:9609-9651. [PMID: 39177226 DOI: 10.1039/d4cs00663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The extensive utilization of plastic, as a symbol of modern technological society, has consumed enormous amounts of finite and non-renewable fossil resources and produced huge amounts of plastic wastes in the land or ocean, and thus recycling and reuse of the plastic wastes have great ecological and economic benefits. Closed-loop recyclable polymers with inherent recyclability can be readily depolymerized into monomers with high selectivity and purity and repolymerized into polymers with the same performance. They are deemed to be the next generation of recyclable polymers and have captured great and increasing attention from academia and industry. Herein, we provide an overview of readily closed-loop recyclable polymers based on monomer and polymer design and no-other-reactant-involved reversible ring-opening and addition polymerization reactions. The state-of-the-art of circular polymers is separately summarized and discussed based on different monomers, including lactones, thiolactones, cyclic carbonates, hindered olefins, cycloolefins, thermally labile olefin comonomers, cyclic disulfides, cyclic (dithio) acetals, lactams, Diels-Alder addition monomers, Michael addition monomers, anhydride-secondary amide monomers, and cyclic anhydride-aldehyde monomers, and polymers with activatable end groups. The polymerization and depolymerization mechanisms are clearly disclosed, and the evolution of the monomer structure, the polymerization and depolymerization conditions, the corresponding polymerization yield, molecular weight, performance of the polymers, monomer recovery, and depolymerization equipment are also systematically summarized and discussed. Furthermore, the challenges and future prospects are also highlighted.
Collapse
Affiliation(s)
- Shuaiqi Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Shuai Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Songqi Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| |
Collapse
|
13
|
Song D, Koo B, Kang H, Seo K, Kim C. Chiral Acetal-Based Stereo-Controlled Degradable Polymer Synthesis. Chemistry 2024; 30:e202402064. [PMID: 38923725 DOI: 10.1002/chem.202402064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
The precise synthesis of chiral polymers remains a significant challenge in polymer chemistry, particularly for applications in advanced biomedical and electronic materials. The development of degradable polymers is important for eco-friendly and advanced materials. Here, we introduce a stereo-controlled degradable polymer via cascade enyne metathesis polymerization and enantioselective acetal synthesis through Pd-catalyzed asymmetric hydroamination. This approach allows for the creation of chiral acetal-based polymers with controlled stereochemistry and degradability, highlighting their potential for use in drug delivery and electronic applications. This concept article reviews the background, development, and potential applications of these stereo-controlled degradable polymers.
Collapse
Affiliation(s)
- Dayong Song
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Bonwoo Koo
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Houng Kang
- Department of Chemistry Education, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Kyeongdeok Seo
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Choeljae Kim
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| |
Collapse
|
14
|
Liu P, Jimaja S, Immel S, Thomas C, Mayer M, Weder C, Bruns N. Mechanically triggered on-demand degradation of polymers synthesized by radical polymerizations. Nat Chem 2024; 16:1184-1192. [PMID: 38609710 PMCID: PMC11230896 DOI: 10.1038/s41557-024-01508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Polymers that degrade on demand have the potential to facilitate chemical recycling, reduce environmental pollution and are useful in implant immolation, drug delivery or as adhesives that debond on demand. However, polymers made by radical polymerization, which feature all carbon-bond backbones and constitute the most important class of polymers, have proven difficult to render degradable. Here we report cyclobutene-based monomers that can be co-polymerized with conventional monomers and impart the resulting polymers with mechanically triggered degradability. The cyclobutene residues act as mechanophores and can undergo a mechanically triggered ring-opening reaction, which causes a rearrangement that renders the polymer chains cleavable by hydrolysis under basic conditions. These cyclobutene-based monomers are broadly applicable in free radical and controlled radical polymerizations, introduce functional groups into the backbone of polymers and allow the mechanically gated degradation of high-molecular-weight materials or cross-linked polymer networks into low-molecular-weight species.
Collapse
Affiliation(s)
- Peng Liu
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland.
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland.
- Department of Materials, ETH Zürich, Zürich, Switzerland.
| | - Sètuhn Jimaja
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland
| | - Stefan Immel
- Department of Chemistry and Centre for Synthetic Biology, University of Darmstadt, Darmstadt, Germany
| | | | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland
| | - Nico Bruns
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland.
- Department of Chemistry and Centre for Synthetic Biology, University of Darmstadt, Darmstadt, Germany.
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
15
|
McFadden TP, Cope RB, Muhlestein R, Layton DJ, Lessard JJ, Moore JS, Sigman MS. Using Data Science Tools to Reveal and Understand Subtle Relationships of Inhibitor Structure in Frontal Ring-Opening Metathesis Polymerization. J Am Chem Soc 2024. [PMID: 38836636 DOI: 10.1021/jacs.4c04622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The rate of frontal ring-opening metathesis polymerization (FROMP) using the Grubbs generation II catalyst is impacted by both the concentration and choice of monomers and inhibitors, usually organophosphorus derivatives. Herein we report a data-science-driven workflow to evaluate how these factors impact both the rate of FROMP and how long the formulation of the mixture is stable (pot life). Using this workflow, we built a classification model using a single-node decision tree to determine how a simple phosphine structural descriptor (Vbur-near) can bin long versus short pot life. Additionally, we applied a nonlinear kernel ridge regression model to predict how the inhibitor and selection/concentration of comonomers impact the FROMP rate. The analysis provides selection criteria for material network structures that span from highly cross-linked thermosets to non-cross-linked thermoplastics as well as degradable and nondegradable materials.
Collapse
Affiliation(s)
- Timothy P McFadden
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Reid B Cope
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Rachel Muhlestein
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Dustin J Layton
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jacob J Lessard
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, Departments of Chemistry and Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
16
|
Lundberg DJ, Ko K, Kilgallon LJ, Johnson JA. Defining Reactivity-Deconstructability Relationships for Copolymerizations Involving Cleavable Comonomer Additives. ACS Macro Lett 2024; 13:521-527. [PMID: 38626454 DOI: 10.1021/acsmacrolett.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The incorporation of cleavable comonomers as additives into polymers can imbue traditional polymers with controlled deconstructability and expanded end-of-life options. The efficiency with which cleavable comonomer additives (CCAs) can enable deconstruction is sensitive to their local distribution within a copolymer backbone, which is dictated by their copolymerization behavior. While qualitative heuristics exist that describe deconstructability, comprehensive quantitative connections between CCA loadings, reactivity ratios, polymerization mechanisms, and deconstruction reactions on the deconstruction efficiency of copolymers containing CCAs have not been established. Here, we broadly define these relationships using stochastic simulations characterizing various polymerization mechanisms (e.g., coltrolled/living, free-radical, and reversible ring-opening polymerizations), reactivity ratio pairs (spanning 2 orders of magnitude between 0.01 and 100), CCA loadings (2.5% to 20%), and deconstruction reactions (e.g., comonomer sequence-dependent deconstruction behavior). We show general agreement between simulated and experimentally observed deconstruction fragment sizes from the literature, demonstrating the predictive power of the methods used herein. These results will guide the development of more efficient CCAs and inform the formulation of deconstructable materials.
Collapse
Affiliation(s)
- David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kwangwook Ko
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Landon J Kilgallon
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Wongwailikhit K, Suwannakeeree R, Kihara N. Synthesis and Oxidative Degradation of Leucine-Based Poly(diacylhydrazine). Polymers (Basel) 2024; 16:1222. [PMID: 38732691 PMCID: PMC11085065 DOI: 10.3390/polym16091222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Diacylhydrazine is thermally and chemically stable, and it remains inert to oxygen even at high temperatures. However, it is rapidly oxidized by sodium hypochlorite, leading to its decomposition into carboxylic acid and nitrogen gas. In the synthesis of a novel poly(diacylhydrazine) as an oxidatively degradable polymer, L-leucine methyl ester is acylated by terephthaloyl chloride. Subsequent hydrazination yields a bishydrazide monomer. The oxidative coupling polymerization of this monomer produces poly(diacylhydrazine). The molecular structures of the products are confirmed by an 1H NMR analysis. A polymodal molecular weight distribution and a large polydispersity index are observed by GPC in all cases. A 10% weight loss temperature is noted at 286 °C in air by TGA. The obtained polymer is not oxidized by oxygen. No glass transition is observed below the decomposition temperature. Upon the treatment of the poly(diacylhydrazine) with sodium hypochlorite solution, decomposition occurs rapidly, resulting in monomeric carboxylic acid and nitrogen gas. The L-leucine-based poly(diacylhydrazine) serves as a novel on-demand degradable polymer with high levels of thermal and chemical stability during usage.
Collapse
Affiliation(s)
- Kanda Wongwailikhit
- Department of Chemistry, Faculty of Science, Rangsit University, Phaholyothin Road, Lak-Hok, Pathum Thani 12000, Thailand;
| | - Ratha Suwannakeeree
- Department of Chemistry, Faculty of Science, Rangsit University, Phaholyothin Road, Lak-Hok, Pathum Thani 12000, Thailand;
| | - Nobuhiro Kihara
- Department of Science, Faculty of Science, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| |
Collapse
|
18
|
Yang Y, Cho Y, Choi TL. Designing Degradable Polymers from Tricycloalkenes via Complete Cascade Metathesis Polymerization. Angew Chem Int Ed Engl 2024; 63:e202400235. [PMID: 38456570 DOI: 10.1002/anie.202400235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/18/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
Cascade metathesis polymerization has been developed as a promising method to synthesize complex but well-defined polymers from monomers containing multiple reactive functional groups. However, this approach has been limited to the monomers involving simple alkene/alkyne moieties or produced mainly non-degradable polymers. In this study, we demonstrate a complete cascade ring-opening/ring-closing metathesis polymerization (RORCMP) using various tricycloalkenes and two strategies for the efficient degradation. Through rational design of tricycloalkene monomers, the structure and reactivity relationship was explored. For example, tricycloalkenes with trans configuration in the central ring enabled faster and better selective cascade RORCMP than the corresponding cis isomers. Also, a 4-substituted cyclopentene moiety in the monomers significantly enhanced the overall cascade RORCMP performance, with the maximum turnover number (TON) reaching almost 10,000 and molecular weight up to 170 kg/mol using an amide-containing monomer. Furthermore, we achieved one-shot cascade multiple olefin metathesis polymerization using tricycloalkenes and a diacrylate, to produce new highly A,B-alternating copolymers with full degradability. Lastly, we successfully designed xylose-based tricycloalkenes to give well-defined polymers that underwent ultra-fast and complete degradation under mild conditions.
Collapse
Affiliation(s)
- Yongkang Yang
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yunhyeong Cho
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae-Lim Choi
- Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| |
Collapse
|
19
|
Satchanska G, Davidova S, Petrov PD. Natural and Synthetic Polymers for Biomedical and Environmental Applications. Polymers (Basel) 2024; 16:1159. [PMID: 38675078 PMCID: PMC11055061 DOI: 10.3390/polym16081159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Natural and synthetic polymers are a versatile platform for developing biomaterials in the biomedical and environmental fields. Natural polymers are organic compounds that are found in nature. The most common natural polymers include polysaccharides, such as alginate, hyaluronic acid, and starch, proteins, e.g., collagen, silk, and fibrin, and bacterial polyesters. Natural polymers have already been applied in numerous sectors, such as carriers for drug delivery, tissue engineering, stem cell morphogenesis, wound healing, regenerative medicine, food packaging, etc. Various synthetic polymers, including poly(lactic acid), poly(acrylic acid), poly(vinyl alcohol), polyethylene glycol, etc., are biocompatible and biodegradable; therefore, they are studied and applied in controlled drug release systems, nano-carriers, tissue engineering, dispersion of bacterial biofilms, gene delivery systems, bio-ink in 3D-printing, textiles in medicine, agriculture, heavy metals removal, and food packaging. In the following review, recent advancements in polymer chemistry, which enable the imparting of specific biomedical functions of polymers, will be discussed in detail, including antiviral, anticancer, and antimicrobial activities. This work contains the authors' experimental contributions to biomedical and environmental polymer applications. This review is a vast overview of natural and synthetic polymers used in biomedical and environmental fields, polymer synthesis, and isolation methods, critically assessessing their advantages, limitations, and prospects.
Collapse
Affiliation(s)
- Galina Satchanska
- BioLaboratory, Department of Natural Sciences, New Bulgarian University, Montevideo Str. 21, 1618 Sofia, Bulgaria;
| | - Slavena Davidova
- BioLaboratory, Department of Natural Sciences, New Bulgarian University, Montevideo Str. 21, 1618 Sofia, Bulgaria;
| | - Petar D. Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Str., Bl.103A, 1113 Sofia, Bulgaria;
| |
Collapse
|
20
|
Deng Y, Zhang Q, Feringa BL. Dynamic Chemistry Toolbox for Advanced Sustainable Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308666. [PMID: 38321810 PMCID: PMC11005721 DOI: 10.1002/advs.202308666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Indexed: 02/08/2024]
Abstract
Developing dynamic chemistry for polymeric materials offers chemical solutions to solve key problems associated with current plastics. Mechanical performance and dynamic function are equally important in material design because the former determines the application scope and the latter enables chemical recycling and hence sustainability. However, it is a long-term challenge to balance the subtle trade-off between mechanical robustness and dynamic properties in a single material. The rise of dynamic chemistry, including supramolecular and dynamic covalent chemistry, provides many opportunities and versatile molecular tools for designing constitutionally dynamic materials that can adapt, repair, and recycle. Facing the growing social need for developing advanced sustainable materials without compromising properties, recent progress showing how the toolbox of dynamic chemistry can be explored to enable high-performance sustainable materials by molecular engineering strategies is discussed here. The state of the art and recent milestones are summarized and discussed, followed by an outlook toward future opportunities and challenges present in this field.
Collapse
Affiliation(s)
- Yuanxin Deng
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Technology130 Meilong RoadShanghai200237China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsFaculty of Science and EngineeringUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Technology130 Meilong RoadShanghai200237China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsFaculty of Science and EngineeringUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Technology130 Meilong RoadShanghai200237China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsFaculty of Science and EngineeringUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| |
Collapse
|
21
|
Starvaggi FA, Suslick BA, Xia Y. Ring Opening Metathesis Polymerization of Cyclooctadiene and Cyclooctene with Dihydrofuran: Influence of Ru Fischer Carbene. ACS Macro Lett 2024; 13:296-301. [PMID: 38359364 DOI: 10.1021/acsmacrolett.3c00770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Vinyl ethers are commonly used to deactivate Grubbs catalysts and terminate ring opening metathesis polymerization (ROMP) by forming Fischer carbene species with attenuated metathesis reactivity. However, we recently demonstrated that a cyclic enol ether, 2,3-dihydrofuran (DHF), can in fact be homopolymerized or copolymerized with norbornene derivatives. 1,5-Cyclooctadiene (COD) and cyclooctene (COE) consist of an important class of ROMP monomers, and we describe here a study of their copolymerization with DHF. Addition of DHF greatly suppressed the ROMP activity of COD and COE and resulted in significant alkene isomerization of COD. Chloranil was found to be an effective additive to prevent undesired isomerization and promote copolymerization. As a result, high molecular weight COD/COE and DHF copolymers were synthesized. Hydrolysis of the enol ether main chain linkages yields polyalkenamers with alcohol and aldehyde end groups. This study encourages further exploration of the in situ formed Ru Fischer carbene species in ROMP to access degradable polymers.
Collapse
Affiliation(s)
- Francesca A Starvaggi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Benjamin A Suslick
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yan Xia
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
22
|
Zhang X, Xia Y, Sun Y, Zhang C, Zhang X. Water-Degradable Oxygen-Rich Polymers with AB/ABB Units from Fast and Selective Copolymerization. Angew Chem Int Ed Engl 2024; 63:e202315524. [PMID: 38279840 DOI: 10.1002/anie.202315524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 01/29/2024]
Abstract
Researchers have been chasing plastics that can automatically and fully degrade into valuable products under natural conditions. Here, we develop a series of water-degradable polymers from the first reported fast and selective cationic copolymerization of formaldehyde (B) with cyclic anhydrides (A). In addition to readily accessible monomers, the method is performed at industrially relevant temperatures (~100 °C), takes tens or even minutes, and uses common acid as the catalyst. Interestingly, such polymers possess tunable AB/ABB-type repeating units, which are considered to be thermodynamic and kinetic products, respectively, resulting in low carbon content ([O] : [C] up to 1 : 1). Notably, the polymers can completely degrade to valuable diacids within 150 days in water at ambient temperature owing to the incorporation of carboxyl terminals and acid-responsive acetal units. By washing with aqueous sodium carbonate, the polymers are relatively stable over several months.
Collapse
Affiliation(s)
- Xun Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Yanni Xia
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Yue Sun
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Chengjian Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Xinghong Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| |
Collapse
|
23
|
Hu Y, Lin Y, Craig SL. Mechanically Triggered Polymer Deconstruction through Mechanoacid Generation and Catalytic Enol Ether Hydrolysis. J Am Chem Soc 2024; 146:2876-2881. [PMID: 38265762 DOI: 10.1021/jacs.3c10153] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Polymers that amplify a transient external stimulus into changes in their morphology, physical state, or properties continue to be desirable targets for a range of applications. Here, we report a polymer comprising an acid-sensitive, hydrolytically unstable enol ether backbone onto which is embedded gem-dichlorocyclopropane (gDCC) mechanophores through a single postsynthetic modification. The gDCC mechanophore releases HCl in response to large forces of tension along the polymer backbone, and the acid subsequently catalyzes polymer deconstruction at the enol ether sites. Pulsed sonication of a 61 kDa PDHF with 77% gDCC on the backbone in THF with 100 mM H2O for 10 min triggers the subsequent degradation of the polymer to a final molecular weight of less than 3 kDa after 24 h of standing, whereas controls lacking either the gDCC or the enol ether reach final molecular weights of 38 and 27 kDa, respectively. The process of sonication, along with the presence of water and the existence of gDCC on the backbone, significantly accelerates the rate of polymer chain deconstruction. Both acid generation and the resulting triggered polymer deconstruction are translated to bulk, cross-linked polymer networks. Networks formed via thiol-ene cross-linking and subjected to unconstrained quasi-static uniaxial compression dissolve on time scales that are at least 3 times faster than controls where the mechanophore is not covalently coupled to the network. We anticipate that this concept can be extended to other acid-sensitive polymer networks for the stress-responsive deconstruction of gels and solvent-free elastomers.
Collapse
Affiliation(s)
- Yixin Hu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yangju Lin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
24
|
Gitter SR, Li R, Boydston AJ. Access to Functionalized Materials by Metal-Free Ring-Opening Metathesis Polymerization of Active Esters and Divergent Postpolymerization Modification. ACS Macro Lett 2024:144-150. [PMID: 38226917 DOI: 10.1021/acsmacrolett.3c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Metal-free ring-opening metathesis polymerization (MF-ROMP) is an emerging polymerization strategy that provides access to ROMP materials by using organic initiators and photoredox catalysts. Unlike metal-mediated ROMP, MF-ROMP is not highly tolerant toward functionalized monomers. Herein, we report that pentafluorophenyl esters are polymerizable under MF-ROMP conditions to produce homopolymers, statistical copolymers, and block copolymers. Amine coupling agents were then used to install a range of functional groups via acyl substitution including alkynes, amino acid derivatives, fluorophores, and redox active moieties. Overall, these findings provide a framework to prepare functionalized ROMP polymers without the risk of metal contamination.
Collapse
Affiliation(s)
- Sean R Gitter
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Ruojia Li
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Andrew J Boydston
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
- Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
25
|
Sun H, Ibrahim T, Ritacco A, Durkee K. Biomass-Derived Degradable Polymers via Alternating Ring-Opening Metathesis Polymerization of Exo-Oxanorbornenes and Cyclic Enol Ethers. ACS Macro Lett 2023; 12:1642-1647. [PMID: 37983535 DOI: 10.1021/acsmacrolett.3c00608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Degradable polymers made via ring-opening metathesis polymerization (ROMP) hold tremendous promise as eco-friendly materials. However, most of the ROMP monomers are derived from petroleum resources, which are typically considered less sustainable compared to biomass. Herein, we present a synthetic strategy to degradable polymers by harnessing alternating ROMP of biomass-based cyclic olefin monomers including exo-oxanorbornenes and cyclic enol ethers. A library of well-defined poly(enol ether)s with modular structures, tunable glass transition temperatures, and controlled molecular weights was achieved, demonstrating the versatility of this approach. Most importantly, the resulting copolymers exhibit high degrees of alternation, rendering their backbones fully degradable under acidic conditions.
Collapse
Affiliation(s)
- Hao Sun
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Tarek Ibrahim
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Angelo Ritacco
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Katie Durkee
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| |
Collapse
|
26
|
Si G, Li C, Chen M, Chen C. Polymer Multi-Block and Multi-Block + Strategies for the Upcycling of Mixed Polyolefins and Other Plastics. Angew Chem Int Ed Engl 2023; 62:e202311733. [PMID: 37850388 DOI: 10.1002/anie.202311733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
Due to a continued rise in the production and use of plastic products, their end-of-life pollution has become a pressing global issue. One of the biggest challenges in plastics recycling is the separation of different polymers. Multi-block copolymers (MBCPs) represent an efficient strategy for the upcycling of mixed plastics via induced compatibilization, but this approach is limited by difficulties associated with synthesis and structural modification. In this contribution, several synthetic strategies are explored to prepare MBCPs with tunable microstructures, which were then used as compatibilizer additives to upcycle mixtures of polyolefins with other plastics. A multi-block+ strategy based on a reactive telechelic block copolymer platform was introduced, which enabled block extension during the in situ melt blending of mixed plastics, leading to better compatibilizing properties as well as better 3D printing capability. This strategy was also applicable to more complex ternary plastic blends. The polymer multi-block strategy enabled by versatile MBCPs synthesis and the multi-block+ strategy enabled by in situ block extension show exciting opportunities for the upcycling of mixed plastics.
Collapse
Affiliation(s)
- Guifu Si
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Min Chen
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Changle Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
27
|
An T, Ryu H, Choi TL. Living Alternating Ring-Opening Metathesis Copolymerization of 2,3-Dihydrofuran to Provide Completely Degradable Polymers. Angew Chem Int Ed Engl 2023; 62:e202309632. [PMID: 37789610 DOI: 10.1002/anie.202309632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023]
Abstract
2,3-Dihydrofuran (DHF) has recently been gaining significant attention as a comonomer in metathesis polymerization, thanks to its ability to provide the resultant polymer backbones with stimuli-responsive degradability. In this report, we present living alternating copolymerization of DHF with less reactive endo-tricyclo[4.2.2.02,5 ]deca-3,9-dienes (TDs) and endo-oxonorbornenes (oxoNBs). By carefully controlling the reactivity of both the Ru initiators and the monomers, we have achieved outstanding A, B-alternation (up to 98 %) under near stoichiometric DHF loading conditions. Notably, we have also found that the use of a more sterically hindered Ru initiator helps to attain polymer backbones with higher DHF incorporation and superior A, B-alternation. While preserving the living characteristics of DHF copolymerization, as evidenced by controlled molecular weights (up to 73.9 kDa), narrow dispersities (down to 1.05), and block copolymer formation, our DHF copolymers could be broken down to a single repeat unit level under acidic conditions. 1 H NMR analysis of the model copolymer revealed that after 24 hours of degradation, up to 80 % of the initial polymer was transformed into a single small molecule product, and after purification, up to 66 % of the degradation product was retrieved. This study provides a versatile approach to improve the alternation and degradability of DHF copolymers.
Collapse
Affiliation(s)
- Taeyang An
- Department of Chemistry, Seoul National University, 08826, Seoul, Republic of Korea
| | - Hanseul Ryu
- Department of Chemistry, Seoul National University, 08826, Seoul, Republic of Korea
| | - Tae-Lim Choi
- Department of Materials, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
28
|
Koo B, Kim C. Synthesis of Stereocontrolled Degradable Polymer by Living Cascade Enyne Metathesis Polymerization. Angew Chem Int Ed Engl 2023; 62:e202312399. [PMID: 37737689 DOI: 10.1002/anie.202312399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023]
Abstract
A stereocontrolled degradable polymer was synthesized via living cascade enyne metathesis polymerization. Highly stereodefined N,O-acetal-containing enyne monomers were prepared using the Pd-catalyzed hydroamination of alkoxyallenes and ring-closing metathesis. The resulting chiral polymer exhibited a narrow dispersity window. Block copolymers were prepared not only by sequentially adding nondegradable and degradable monomers but also by using enantiomerically different monomers to produce stereocontrolled blocks. Owing to the hydrolyzable N,O-acetal moiety in the backbone structure, the resulting polymer could degrade under acidic conditions generated using various acid concentrations to control the degradation. Additionally, the aza-Diels-Alder reaction modified the polymer without losing the stereochemistry.
Collapse
Affiliation(s)
- Bonwoo Koo
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, 28644, Cheongju, Republic of Korea
| | - Cheoljae Kim
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, 28644, Cheongju, Republic of Korea
| |
Collapse
|
29
|
Li S, Feng S, Zhou Y, Liu C, Chen B, Xing X. Development of Highly Enantio- and Z-Selective Grubbs Catalysts via Controllable C-H Bond Activation. J Am Chem Soc 2023; 145:22745-22752. [PMID: 37800981 DOI: 10.1021/jacs.3c08420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Asymmetric olefin metathesis is a powerful strategy for stereocontrolled synthesis that allows the formation of chiral elements in conjunction with carbon-carbon double bonds. Here, we report a new series of cyclometalated stereogenic-at-Ru catalysts that enable highly efficient asymmetric ring opening/cross-metathesis (AROCM) and asymmetric ring-closing metathesis (ARCM) reactions. Single enantiomers of these catalysts with either right-handed or left-handed configurations at the Ru center can be easily accessed via highly stereoselective C-H bond activation-based cyclometalation. Right-handed chiral Ru catalysts enabled the Z- and enantioselective AROCM of a wide range of norbornenes and terminal alkenes, generating densely functionalized cyclopentanes with excellent stereo- and enantioselectivities (99:1 Z/E, up to 99% ee). Left-handed chiral Ru catalysts enabled the facile ARCM of sterically unhindered, all-terminal prochiral trienes, which had not been achieved by previous Ru catalysts, providing simple cyclic ethers and amides with tertiary or quaternary carbon stereocenters with excellent enantioselectivities (up to 99% ee).
Collapse
Affiliation(s)
- Shaofeng Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shijie Feng
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yali Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chao Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bo Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiangyou Xing
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
30
|
Mandal A, Kilbinger AFM. Catalytic Living ROMP: Synthesis of Degradable Star Polymers. ACS Macro Lett 2023; 12:1372-1378. [PMID: 37748103 DOI: 10.1021/acsmacrolett.3c00441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Star polymers have attracted considerable attention over the past few years due to their distinctive physical and chemical attributes that are different from conventional linear polymers. Here, we present a one-pot synthesis of narrowly dispersed and degradable homoarm and miktoarm star polymers exploiting the catalytic living ring-opening metathesis polymerization (ROMP) mechanism. Several complex polymeric architectures (such as A3-, A4-, A6-, A2B-, A3B-, and AB2-type star polymers) were synthesized quite straightforwardly by using appropriate vinyl ether chain transfer agents. SEC, 1H NMR, and DOSY NMR spectroscopy were employed to analyze and characterize all of the synthesized polymers. We believe that this sustainable and environmentally friendly synthesis of star polymers could become an important synthetic tool for polymer engineers working on supramolecular, industrial or biomedical applications.
Collapse
Affiliation(s)
- Ankita Mandal
- Department of Chemistry, University of Fribourg, CH-1700 Fribourg, Switzerland
| | | |
Collapse
|
31
|
Zhang X, Guo W, Zhang C, Zhang X. A recyclable polyester library from reversible alternating copolymerization of aldehyde and cyclic anhydride. Nat Commun 2023; 14:5423. [PMID: 37669954 PMCID: PMC10480228 DOI: 10.1038/s41467-023-41136-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023] Open
Abstract
Our society is pursuing chemically recyclable polymers to accelerate the green revolution in plastics. Here, we develop a recyclable polyester library from the alternating copolymerization of aldehyde and cyclic anhydride. Although these two monomer sets have little or no thermodynamic driving force for homopolymerization, their copolymerization demonstrates the unexpected alternating characteristics. In addition to readily available monomers, the method is performed under mild conditions, uses common Lewis/Brønsted acids as catalysts, achieves the facile tuning of polyester structure using two distinct monomer sets, and yields 60 polyesters. Interestingly, the copolymerization exhibits the chemical reversibility attributed to its relatively low enthalpy, which makes the resulting polyesters perform closed-loop recycling to monomers at high temperatures. This study provides a modular, efficient, and facile synthesis of recyclable polyesters using sustainable monomers.
Collapse
Affiliation(s)
- Xun Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenqi Guo
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chengjian Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Xinghong Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
32
|
Cormier S, Fogg DE. Probing Catalyst Degradation in Metathesis of Internal Olefins: Expanding Access to Amine-Tagged ROMP Polymers. ACS Catal 2023; 13:11834-11840. [PMID: 37671179 PMCID: PMC10476157 DOI: 10.1021/acscatal.3c02729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/15/2023] [Indexed: 09/07/2023]
Abstract
Ruthenium-promoted ring-opening metathesis polymerization (ROMP) offers potentially powerful routes to amine-functionalized polymers with antimicrobial, adhesive, and self-healing properties. However, amines readily degrade the methylidene and unsubstituted ruthenacyclobutane intermediates formed in metathesis of terminal olefins. Examined herein is the relevance of these decomposition pathways to ROMP (i.e., metathesis of internal olefins) by the third-generation Grubbs catalyst. Primary alkylamines rapidly quench polymerization via fast adduct formation, followed by nucleophilic abstraction of the propagating alkylidene. Bulkier, Brønsted-basic amines are less aggressive: attack competes only for slow polymerization or strong bases (e.g., DBU). Added HCl limits degradation, as demonstrated by the successful ROMP of an otherwise intractable methylamine monomer.
Collapse
Affiliation(s)
- Samantha
K. Cormier
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Deryn E. Fogg
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, Canada K1N 6N5
- Department
of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
33
|
Mandal A, Pal S, Kilbinger AFM. Controlled Ring Opening Metathesis Polymerization of a New Monomer: On Switching the Solvent-Water-Soluble Homopolymers to Degradable Copolymers. Macromol Rapid Commun 2023; 44:e2300218. [PMID: 37435988 DOI: 10.1002/marc.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/12/2023] [Accepted: 06/25/2023] [Indexed: 07/13/2023]
Abstract
A new heterocyclic monomer is developed via simple Diels-Alder reaction which is reluctant to polymerize in dichloromethane (DCM) whereas undergoes facile polymerization in tetrahydrofuran with excellent control over molecular weight (Mn ) and dispersities (Đ) using Grubbs' third generation catalyst (G3). The deprotection of the tert-butoxycarbonyl group from the polymeric backbone yielded a water-soluble ring opening metathesis polymerization (ROMP) polymer easily. Moreover, in DCM this new monomer copolymerizes with 2,3-dihydrofuran under catalytic living ROMP conditions to give backbone degradable polymers. All the synthesized polymers are characterized by size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR) spectroscopy. It is believed that this new route to water soluble ROMP homopolymers as well as the cost-effective and environmentally friendly route to degradable copolymers and block-copolymers could find applications in biomedicine in the near future.
Collapse
Affiliation(s)
- Ankita Mandal
- Department of Chemistry, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Subhajit Pal
- Department of Chemistry, University of Fribourg, Fribourg, CH-1700, Switzerland
| | | |
Collapse
|
34
|
Brown CM, Husted KEL, Wang Y, Kilgallon LJ, Shieh P, Zafar H, Lundberg DJ, Johnson JA. Thiol-triggered deconstruction of bifunctional silyl ether terpolymers via an S NAr-triggered cascade. Chem Sci 2023; 14:8869-8877. [PMID: 37621440 PMCID: PMC10445473 DOI: 10.1039/d3sc02868b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/12/2023] [Indexed: 08/26/2023] Open
Abstract
While Si-containing polymers can often be deconstructed using chemical triggers such as fluoride, acids, and bases, they are resistant to cleavage by mild reagents such as biological nucleophiles, thus limiting their end-of-life options and potential environmental degradability. Here, using ring-opening metathesis polymerization, we synthesize terpolymers of (1) a "functional" monomer (e.g., a polyethylene glycol macromonomer or dicyclopentadiene); (2) a monomer containing an electrophilic pentafluorophenyl (PFP) substituent; and (3) a cleavable monomer based on a bifunctional silyl ether . Exposing these polymers to thiols under basic conditions triggers a cascade of nucleophilic aromatic substitution (SNAr) at the PFP groups, which liberates fluoride ions, followed by cleavage of the backbone Si-O bonds, inducing polymer backbone deconstruction. This method is shown to be effective for deconstruction of polyethylene glycol (PEG) based graft terpolymers in organic or aqueous conditions as well as polydicyclopentadiene (pDCPD) thermosets, significantly expanding upon the versatility of bifunctional silyl ether based functional polymers.
Collapse
Affiliation(s)
- Christopher M Brown
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Keith E L Husted
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Yuyan Wang
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Landon J Kilgallon
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Peyton Shieh
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Hadiqa Zafar
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - David J Lundberg
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
- Department of Chemical Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| |
Collapse
|
35
|
Xia Y, Zhou F, Hao W, Tang S. Synthesis of Degradable Polyolefins Bearing Disulfide Units via Metathesis Copolymerization. Polymers (Basel) 2023; 15:3101. [PMID: 37514489 PMCID: PMC10384691 DOI: 10.3390/polym15143101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Disulfide bonds are dynamic covalent bonds, which are easy to cleave and reform upon chemical stimulus. Various methods including the oxidative coupling of thiols and polymerization of disulfide-containing monomers have been developed for the synthesis of poly(disulfide)s. However, installing small amounts of disulfide units in the main chain of polyolefins has received much less attention. Herein, we report a novel strategy for incorporating cleavable disulfide units into the backbone of polyolefins using commercially available diallyl disulfide (DADS) as a comonomer via metathesis copolymerization. The copolymerization of diallyl disulfide with cyclooctene occurred using the second-generation Grubbs catalyst under mild conditions, allowing for the synthesis of copolymers with adjustable disulfide content ranging from 0.7 to 8.5 mol%, and the molecular weight of the obtained copolymers ranged from 5.8 kg·mol-1 to 42.8 kg·mol-1. The resulting polyolefins with disulfide insertion retained excellent thermal processability and exhibited degradability. Treatment of the copolymer (8.5 mol% disulfide content) with tri-n-butylphosphine resulted in a significant reduction in molecular weight from 5.8 kg·mol-1 to 1.6 kg·mol-1. Successful copolymerization with diallyl disulfide provides a convenient and effective method for obtaining degradable polyolefins.
Collapse
Affiliation(s)
- Yu Xia
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fulin Zhou
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenyan Hao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Shan Tang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
36
|
Zhao F, Li Y, Houk KN, Lu Q, Liu F. Computational Elucidation on the Conformational Control of Selectivity in Intramolecular Ring-Closing Metathesis vs Intermolecular Homometathesis. J Org Chem 2023. [PMID: 37364253 DOI: 10.1021/acs.joc.3c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The ring-closing metathesis reaction of diene plays an important role in the construction of cyclic compounds. In this research, density functional theory (DFT) calculations were conducted to elucidate the mechanisms and origins of the selectivity of ring-closing metathesis and homometathesis. The computational results suggest that the selectivity is determined by the substrate conformation. For the ester-tethered substrate, the homometathesis is more favorable, due to the planar structure of ester facilitating the conjugative effect of the formed E-homometathesis product. For the amide-tethered substrate, the ring-closing metathesis product is the only observed product because the steric hindrance of N-substituents disfavors homometathesis.
Collapse
Affiliation(s)
- Fengyue Zhao
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yixuan Li
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Qianqian Lu
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Fang Liu
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
37
|
Mandal A, Kilbinger AFM. Catalytic living ROMP: block copolymers from macro-chain transfer agents. Polym Chem 2023; 14:2797-2802. [PMID: 37325179 PMCID: PMC10262279 DOI: 10.1039/d3py00387f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
Vinyl ether based macro-chain transfer agents (m-CTAs) are used to produce different di or tri-block copolymers under catalytic living ROMP conditions. Polystyrene (PS) vinyl ether m-CTA and polycaprolactone (PCL) or polylactide vinyl ether (PLA) m-CTAs are synthesized straightforwardly via ATRP and ROP respectively. Regioselectivity as well as the high metathesis activity of these m-CTAs enabled us to synthesise a range of metathesis-based A-B diblock copolymers with controlled dispersities (Đ < 1.4). In this manner, PS-ROMP (here, ROMP refers to a poly(MNI-co-DHF) block), PCL-ROMP and PLA-ROMP were synthesized using substoichiometric amounts of ruthenium complex in a living fashion. Also, a more complex PEG-PCL-ROMP tri-block terpolymer was obtained catalytically. All block copolymers were characterized by SEC and DOSY NMR spectroscopy. We believe that this methodology of using macro-chain transfer agents to prepare degradable ROMP polymers under catalytic living ROMP conditions will find applications in biomedicine.
Collapse
Affiliation(s)
- Ankita Mandal
- Department of chemistry, University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Andreas F M Kilbinger
- Department of chemistry, University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| |
Collapse
|
38
|
Liang Y, Sullivan HL, Carrow K, Mesfin JM, Korpanty J, Worthington K, Luo C, Christman KL, Gianneschi NC. Inflammation-Responsive Micellar Nanoparticles from Degradable Polyphosphoramidates for Targeted Delivery to Myocardial Infarction. J Am Chem Soc 2023; 145:11185-11194. [PMID: 37184379 PMCID: PMC11467961 DOI: 10.1021/jacs.3c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Nanoparticles that undergo a localized morphology change to target areas of inflammation have been previously developed but are limited by their lack of biodegradability. In this paper, we describe a low-ring-strain cyclic olefin monomer, 1,3-dimethyl-2-phenoxy-1,3,4,7-tetrahydro-1,3,2-diazaphosphepine 2-oxide (MePTDO), that rapidly polymerizes via ring-opening metathesis polymerization at room temperature to generate well-defined degradable polyphosphoramidates with high monomer conversion (>84%). Efficient MePTDO copolymerizations with norbornene-based monomers are demonstrated, including a norbornenyl monomer functionalized with a peptide substrate for inflammation-associated matrix metalloproteinases (MMPs). The resulting amphiphilic peptide brush copolymers self-assembled in aqueous solution to generate micellar nanoparticles (30 nm in diameter) which exhibit excellent cyto- and hemocompatibility and undergo MMP-induced assembly into micron-scale aggregates. As MMPs are upregulated in the heart postmyocardial infarction (MI), the MMP-responsive micelles were applied to target and accumulate in the infarcted heart following intravenous administration in a rat model of MI. These particles displayed a distinct biodistribution and clearance pattern in comparison to nondegradable analogues. Specifically, accumulation at the site of MI competed with elimination predominantly through the kidney rather than the liver. Together, these results suggest this as a promising new biodegradable platform for inflammation targeted delivery.
Collapse
Affiliation(s)
- Yifei Liang
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly L Sullivan
- Shu Chien-Gene Lay Department of Bioengineering and the Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California 92037, United States
| | - Kendal Carrow
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Joshua M Mesfin
- Shu Chien-Gene Lay Department of Bioengineering and the Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California 92037, United States
| | - Joanna Korpanty
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Kendra Worthington
- Shu Chien-Gene Lay Department of Bioengineering and the Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California 92037, United States
| | - Colin Luo
- Shu Chien-Gene Lay Department of Bioengineering and the Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California 92037, United States
| | - Karen L Christman
- Shu Chien-Gene Lay Department of Bioengineering and the Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California 92037, United States
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92037, United States
| |
Collapse
|
39
|
Wang BS, Zhang Q, Wang ZQ, Shi CY, Gong XQ, Tian H, Qu DH. Acid-catalyzed Disulfide-mediated Reversible Polymerization for Recyclable Dynamic Covalent Materials. Angew Chem Int Ed Engl 2023; 62:e202215329. [PMID: 36602285 DOI: 10.1002/anie.202215329] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Poly(1,2-dithiolane)s are a family of intrinsically recyclable polymers due to their dynamic covalent disulfide linkages. Despite the common use of thiolate-initiated anionic ring-opening polymerization (ROP) under basic condition, cationic ROP is still not exploited. Here we report that disulfide bond can act as a proton acceptor, being protonated by acids to form sulfonium cations, which can efficiently initiate the ROP of 1,2-dithiolanes and result in high-molecular-weight (over 1000 kDa) poly(disulfide)s. The reaction can be triggered by adding catalytic amounts of acids and non-coordinating anion salts, and completed in few minutes at room temperature. The acidic conditions allow the applicability for acidic monomers. Importantly, the reaction condition can be under open air without inert protection, enabling the nearly quantitative chemical recycling from bulk materials to original monomers.
Collapse
Affiliation(s)
- Bang-Sen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhi-Qiang Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chen-Yu Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
40
|
Tashiro K, Akiyama M, Kashiwagi K, Okazoe T. The Fluorocarbene Exploit: Enforcing Alternation in Ring-Opening Metathesis Polymerization. J Am Chem Soc 2023; 145:2941-2950. [PMID: 36701256 DOI: 10.1021/jacs.2c11373] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fluoroalkenes are known to be notoriously reluctant substrates for olefin metathesis due to the generation of thermodynamically stable Fischer-type fluorocarbene intermediates, which invariably fail to undergo further reaction. In the present disclosure, we find that fluorine substitution on the sp2 carbon also strictly suppresses homopolymerization of norbornene derivatives (NBEs), and this can be harnessed to achieve alternating ring-opening metathesis polymerization (ROMP) with an appropriately electron-rich comonomer. Dihydrofuran (DHF) is thereby shown to undergo alternating ROMP with fluorinated norbornenes, the perfectly alternating structure of the resulting copolymer having been unambiguously elucidated by 1H, 19F, and 13C NMR analyses. Furthermore, we find that the degradability of the resultant copolymers in acidic media via hydrolysis of enol ether moieties in the backbone can be predictably modulated by the number of fluorine atoms present in the NBE comonomer, affording an opportunity to engage with the desirable physical properties of fluorinated polymers while limiting their attendant environmental degradability issues.
Collapse
Affiliation(s)
- Kaoru Tashiro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Midori Akiyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kimiaki Kashiwagi
- AGC Inc., Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takashi Okazoe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.,AGC Inc., Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
41
|
Xu J, Hadjichristidis N. Heteroatom-containing degradable polymers by ring-opening metathesis polymerization. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
42
|
Li XL, Ma K, Xu F, Xu TQ. Advances in the Synthesis of Chemically Recyclable Polymers. Chem Asian J 2023; 18:e202201167. [PMID: 36623942 DOI: 10.1002/asia.202201167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Indexed: 01/11/2023]
Abstract
The development of modern society is closely related to polymer materials. However, the accumulation of polymer materials and their evolution in the environment causes not only serious environmental problems, but also waste of resources. Although physical processing can be used to reuse polymers, the properties of the resulting polymers are significantly degraded. Chemically recyclable polymers, a type of polymer that degrades into monomers, can be an effective solution to the degradation of polymer properties caused by physical recycling of polymers. The ideal chemical recycling of polymers, i. e., quantitative conversion of the polymer to monomers at low energy consumption and repolymerization of the formed monomers into polymers with comparable properties to the original, is an attractive research goal. In recent years, significant progress has been made in the design of recyclable polymers, enabling the regulation of the "polymerization-depolymerization" equilibrium and closed-loop recycling under mild conditions. This review will focus on the following aspects of closed-loop recycling of poly(sulfur) esters, polycarbonates, polyacetals, polyolefins, and poly(disulfide) polymer, illustrate the challenges in this area, and provide an outlook on future directions.
Collapse
Affiliation(s)
- Xin-Lei Li
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Kai Ma
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fei Xu
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Tie-Qi Xu
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
43
|
Lin X, Shi J, Niwayama S. Synthesis of polynorbornadienes by ring-opening metathesis polymerization and their saturated derivatives bearing various ester groups and carboxyl groups. RSC Adv 2023; 13:3494-3504. [PMID: 36756597 PMCID: PMC9872776 DOI: 10.1039/d2ra07779e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Various symmetric and non-symmetric polynorbornadienes having a variety of ester groups and carboxyl groups were synthesized by ring-opening metathesis polymerization (ROMP) with Grubbs' third generation catalyst (G3 or [Ru]-III catalyst) in a controlled living manner from half-esters prepared by the selective monohydrolysis of symmetric diesters that we previously reported. The half-esters thus obtained can be directly submitted to ROMP with the G3 catalyst, leading to mostly the trans structure and narrow polydispersity indexes. The subsequent hydrogenation yielded saturated polymers, improving the thermostabilities according to the T 5 d results. Our selective monohydrolysis reactions combined with ROMP initiated by the G3 catalyst have proven to be an efficient tool for the production of a variety of homopolymers with well-controlled structures in a living manner.
Collapse
Affiliation(s)
- Xiaoxue Lin
- College of Chemistry and Chemical Engineering, Hainan Normal UniversityHaikouHainan 571158P. R. China
| | - Jianjun Shi
- College of Chemistry and Chemical Engineering, Hainan Normal University Haikou Hainan 571158 P. R. China.,Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology 27-1, Mizumoto-cho Muroran Hokkaido 050-8585 Japan
| | - Satomi Niwayama
- Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology 27-1, Mizumoto-cho Muroran Hokkaido 050-8585 Japan
| |
Collapse
|
44
|
Mandal A, Mandal I, Kilbinger AFM. Catalytic Living Ring-Opening Metathesis Polymerization Using Vinyl Ethers as Effective Chain-Transfer Agents. Angew Chem Int Ed Engl 2023; 62:e202211842. [PMID: 36445835 DOI: 10.1002/anie.202211842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
A catalytic living ring-opening metathesis copolymerization (ROMP) method is described that relies on a degenerative, reversible and regioselective exchange of propagating Fischer-carbenes. All characteristics of a living polymerization such as narrow dispersity, excellent molar mass control and the ability to form block copolymers are achieved by this method. The method allows the use of up to 200 times less ruthenium complex than traditional living ROMP. We demonstrate the synthesis of ROMP-ROMP diblock copolymers, ATRP from a ROMP macro-initiator and living ROMP from a PEG-based macro chain transfer agent. The cost-effective, sustainable and environmentally friendly synthesis of degradable polymers and block copolymers enabled by this strategy will find various applications in biomedicine, materials science, and technology.
Collapse
Affiliation(s)
- Ankita Mandal
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Indradip Mandal
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Andreas F M Kilbinger
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| |
Collapse
|
45
|
Hsu TG, Liu S, Guan X, Yoon S, Zhou J, Chen WY, Gaire S, Seylar J, Chen H, Wang Z, Rivera J, Wu L, Ziegler CJ, McKenzie R, Wang J. Mechanochemically accessing a challenging-to-synthesize depolymerizable polymer. Nat Commun 2023; 14:225. [PMID: 36641481 PMCID: PMC9840636 DOI: 10.1038/s41467-023-35925-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Polymers with low ceiling temperatures (Tc) are highly desirable as they can depolymerize under mild conditions, but they typically suffer from demanding synthetic conditions and poor stability. We envision that this challenge can be addressed by developing high-Tc polymers that can be converted into low-Tc polymers on demand. Here, we demonstrate the mechanochemical generation of a low-Tc polymer, poly(2,5-dihydrofuran) (PDHF), from an unsaturated polyether that contains cyclobutane-fused THF in each repeat unit. Upon mechanically induced cycloreversion of cyclobutane, each repeat unit generates three repeat units of PDHF. The resulting PDHF completely depolymerizes into 2,5-dihydrofuran in the presence of a ruthenium catalyst. The mechanochemical generation of the otherwise difficult-to-synthesize PDHF highlights the power of polymer mechanochemistry in accessing elusive structures. The concept of mechanochemically regulating the Tc of polymers can be applied to develop next-generation sustainable plastics.
Collapse
Affiliation(s)
- Tze-Gang Hsu
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Shiqi Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Xin Guan
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Seiyoung Yoon
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Junfeng Zhou
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Wei-Yuan Chen
- Department of Chemistry, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Sanjay Gaire
- Department of Chemistry, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Joshua Seylar
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Hanlin Chen
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Zeyu Wang
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Jared Rivera
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Leyao Wu
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Christopher J Ziegler
- Department of Chemistry, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Ruel McKenzie
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Junpeng Wang
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave, Akron, OH, 44325, USA.
| |
Collapse
|
46
|
Bermesheva EV, Medentseva EI, Khrychikova AP, Wozniak AI, Guseva MA, Nazarov IV, Morontsev AA, Karpov GO, Topchiy MA, Asachenko AF, Danshina AA, Nelyubina YV, Bermeshev MV. Air-Stable Single-Component Pd-Catalysts for Vinyl-Addition Polymerization of Functionalized Norbornenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Evgeniya V. Bermesheva
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
- I.M. Sechenov First Moscow State Medical University, Trubetskaya str., 8, building 2, Moscow 119991, Russia
| | - Ekaterina I. Medentseva
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Anna P. Khrychikova
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
- D.I. Mendeleyev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow 125047, Russia
| | - Alyona I. Wozniak
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Marina A. Guseva
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Ivan V. Nazarov
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Alexander A. Morontsev
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Gleb O. Karpov
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Maxim A. Topchiy
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Andrey F. Asachenko
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Anastasia A. Danshina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russia
- Moscow Institute of Physics and Technology (National Research University), Institutskiy per., 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Yulia V. Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russia
| | - Maxim V. Bermeshev
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| |
Collapse
|
47
|
Leguizamon SC, Lyons K, Monk NT, Hochrein MT, Jones BH, Foster JC. Additive Manufacturing of Degradable Materials via Ring-Opening Metathesis Polymerization (ROMP). ACS APPLIED MATERIALS & INTERFACES 2022; 14:51301-51306. [PMID: 36318511 DOI: 10.1021/acsami.2c14411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Thermoset materials comprise a significant proportion of high-performance plastics due to their shape permanence and excellent thermal and mechanical properties. However, these properties come at the expense of degradability. Here, we show for the first time that the industrial thermoset polydicyclopentadiene (PDCPD) can be additively manufactured (AM) with degradable 2,3-dihydrofuran (DHF) linkages using a photochemical approach. Treatment of the manufactured objects with acid results in rapid degradation to soluble byproducts. This work highlights the potential of ring-opening metathesis polymerization (ROMP) chemistry to create degradable materials amenable to advanced manufacturing processes.
Collapse
Affiliation(s)
| | - Kenneth Lyons
- Sandia National Laboratories, Albuquerque, New Mexico87185, United States
| | - Nicolas T Monk
- Sandia National Laboratories, Albuquerque, New Mexico87185, United States
| | - Madison T Hochrein
- Sandia National Laboratories, Albuquerque, New Mexico87185, United States
| | - Brad H Jones
- Sandia National Laboratories, Albuquerque, New Mexico87185, United States
| | - Jeffrey C Foster
- Sandia National Laboratories, Albuquerque, New Mexico87185, United States
| |
Collapse
|
48
|
Gong H, Ji Q, Cheng Y, Xiong J, Zhang M, Zhang Z. Controllable synthesis and structural design of novel all-organic polymers toward high energy storage dielectrics. Front Chem 2022; 10:979926. [PMID: 36059883 PMCID: PMC9428677 DOI: 10.3389/fchem.2022.979926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
As the core unit of energy storage equipment, high voltage pulse capacitor plays an indispensable role in the field of electric power system and electromagnetic energy related equipment. The mostly utilized polymer materials are metallized polymer thin films, which are represented by biaxially oriented polypropylene (BOPP) films, possessing the advantages including low cost, high breakdown strength, excellent processing ability, and self-healing performance. However, the low dielectric constant (εr < 3) of traditional BOPP films makes it impossible to meet the demand for increased high energy density. Controlled/living radical polymerization (CRP) and related techniques have become a powerful approach to tailor the chemical and physical properties of materials and have given rise to great advances in tuning the properties of polymer dielectrics. Although organic-inorganic composite dielectrics have received much attention in previous studies, all-organic polymer dielectrics have been proven to be the most promising choice because of its light weight and easy large-scale continuous processing. In this short review, we begin with some basic theory of polymer dielectrics and some theoretical considerations for the rational design of dielectric polymers with high performance. In the guidance of these theoretical considerations, we review recent progress toward all-organic polymer dielectrics based on two major approaches, one is to control the polymer chain structure, containing microscopic main-chain and side-chain structures, by the method of CRP and the other is macroscopic structure design of all-organic polymer dielectric films. And various chemistry and compositions are discussed within each approach.
Collapse
Affiliation(s)
- Honghong Gong
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Xi’an Jiaotong University Suzhou Academy, Suzhou, Jiangsu, China
| | - Qinglong Ji
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yipin Cheng
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Xi’an Jiaotong University Suzhou Academy, Suzhou, Jiangsu, China
| | - Jie Xiong
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Meirong Zhang
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhicheng Zhang
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Zhicheng Zhang,
| |
Collapse
|
49
|
Mandal A, Mandal I, Kilbinger AFM. Catalytic Syntheses of Degradable Polymers via Ring-Opening Metathesis Copolymerization Using Vinyl Ethers as Chain Transfer Agents. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ankita Mandal
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Indradip Mandal
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Andreas F. M. Kilbinger
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| |
Collapse
|
50
|
Li Y, Tian R, Wang P, Li K, Lu C. Fluorescence monitoring of the degradation evolution of aliphatic polyesters. Chem Commun (Camb) 2022; 58:8818-8821. [PMID: 35848468 DOI: 10.1039/d2cc02150a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To provide lifecycle monitoring for degradable polymers, we have proposed a three-dimensional fluorescence monitoring and quantification method to simultaneously study the thermal and photothermal degradation by combining the intrinsic conjugation and probe-labelled carboxyl of poly(butylene adipate-co-terephthalate) (PBAT).
Collapse
Affiliation(s)
- Yujie Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 10029, China.
| | - Rui Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 10029, China.
| | - Peili Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 10029, China.
| | - Kaitao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 10029, China.
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 10029, China. .,Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|